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A ADDITIONAL RELATED WORK

The number of research in federated learning is proliferating during the past few years. In federated
learning, the main objective is to learn a global model that is good enough for yet to be seen data
and has fast convergence to a local optimum. This indicates that there are several uncanny resem-
blances between federated learning and meta-learning approaches (Finn et al., 2017; Nichol et al.,
2018). However, despite this similarity, meta-learning approaches are mainly trying to learn mul-
tiple models, personalized for each new task, whereas in most federated learning approaches, the
main focus is on the single global model. As discussed by Kairouz et al. (2019), the gap between
the performance of global and personalized models shows the crucial importance of personalization
in federated learning. Several different approaches are trying to personalize the global model, pri-
marily focusing on optimization error, while the main challenge with personalization is during the
inference time. Some of these works on the personalization of models in a decentralized setting can
be found in Vanhaesebrouck et al. (2017); Almeida & Xavier (2018), where in addition to the opti-
mization error, they have network constraints or peer-to-peer communication limitation (Bellet et al.,
2017; Zantedeschi et al., 2019). In general, as discussed by Kairouz et al. (2019), there are three
significant categories of personalization methods in federated learning, namely, local fine-tuning,
multi-task learning, and contextualization. Yu et al. (2020) argue that the global model learned by
federated learning, especially with having differential privacy and robust learning objectives, can
hurt the performance of many clients. They indicate that those clients can obtain a better model by
using only their own data. Hence, they empirically show that using these three approaches can boost
the performance of those clients. In addition to these three, there is also another category that fits
the most to our proposed approach, which is mixing the global and local models.
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Local fine-tuning: The dominant approach for personalization is local fine-tuning, where each
client receives a global model and tune it using its own local data and several gradient descent
steps. This approach is predominantly used in meta-learning methods such as MAML by Finn
et al. (2017) or domain adaptation and transfer learning (Ben-David et al., 2010; Mansour et al.,
2009; Pan & Yang, 2009). Jiang et al. (2019) discuss the similarity between federated learning and
meta-learning approaches, notably the Reptile algorithm by Nichol et al. (2018) and FedAvg, and
combine them to personalize local models. They observed that federated learning with a single
objective of performance of the global model could limit the capacity of the learned model for
personalization. In Khodak et al. (2019), authors using online convex optimization to introduce a
meta-learning approach that can be used in federated learning for better personalization. Fallah et al.
(2020) borrow ideas from MAML to learn personalized models for each client with convergence
guarantees. Similar to fine-tuning, they update the local models with several gradient steps, but they
use second-order information to update the global model, like MAML. Another approach adopted
for deep neural networks is introduced by Arivazhagan et al. (2019), where they freeze the base
layers and only change the last “personalized” layer for each client locally. The main drawback of
local fine-tuning is that it minimizes the optimization error, whereas the more important part is the
generalization performance of the personalized model. In this setting, the personalized model is
pruned to overfit.

Multi-task learning: Another view of the personalization problem is to see it as a multi-task
learning problem similar to Smith et al. (2017). In this setting, optimization on each client can be
considered as a new task; hence, the approaches of multi-task learning can be applied. One other
approach, discussed as an open problem in Kairouz et al. (2019), is to cluster groups of clients based
on some features such as region, as similar tasks, similar to one approach proposed by Mansour
et al. (2020).

Contextualization: An important application of personalization in federated learning is using the
model under different contexts. For instance, in the next character recognition task in Hard et al.
(2018), based on the context of the use case, the results should be different. Hence, we need a
personalized model on one client under different contexts. This requires access to more features
about the context during the training. Evaluation of the personalized model in such a setting has
been investigated by Wang et al. (2019), which is in line with our approach in experimental results
in Section 5. Liang et al. (2020) propose to directly learn the feature representation locally, and
train the discriminator globally, which reduces the effect of data heterogeneity and ensures the fair
learning.

Personalization via model regularization: Another significant trial for personalization is model
regularization. There are several studies to introduce different personalization approaches for feder-
ated learning by regularize the difference between the global and local models. Hanzely & Richtárik
(2020) try to introduce a new formulation for federated learning where they add the regulariza-
tion term on the distance of local and global models. In their effort, they use a mixing parameter,
which controls the degree of optimization for both local models and the global model. The Fe-
dAvg (McMahan et al., 2017) can be considered a special case of this approach. They show that the
learned model is in the convex haul of both local and global models, and at each iteration, depend
on the local models’ optimization parameters, the global model is getting closer to the global model
learned by FedAvg. Similarly, Huang et al. (2020) and Dinh et al. (2020) also propose to use the reg-
ularization between local and global model, to realize the personalized learning. Shen et al. (2020)
propose a knowledge distillation way to achieve personalization, where they apply the regularization
on the predictions between local model and global model.

Personalization via model interpolation: Parallel to our work, there are other studies to introduce
different personalization approaches for federated learning by mixing the global and local models.
The closest approach for personalization to our proposal is introduced by Mansour et al. (2020).
In fact, they propose three different approaches for personalization with generalization guarantees,
namely, client clustering, data interpolation, and model interpolation. Out of these three, the first
two approaches need some meta-features from all clients that makes them not a feasible approach
for federated learning, due to privacy concerns. The third schema, which is the most promising
one in practice as well, has a close formulation to ours in the interpolation of the local and global
models. However, in their theory, the generalization bound does not demonstrate the advantage of
mixing models, but in our analysis, we show how the model mixing can impact the generalization
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bound, by presenting its dependency on the mixture parameter, data diversity and optimal models
on local and global distributions.

Beyond different techniques for personalization in federated learning, Kairouz et al. (2019) ask an
essential question of “when is a global FL-trained model better?”, or as we can ask, when is per-
sonalization better? The answer to these questions mostly depends on the distribution of data across
clients. As we theoretically prove and empirically verify in this paper, when the data is distributed
IID, we cannot benefit from personalization, and it is similar to the local SGD scenario (Stich, 2018;
Haddadpour et al., 2019a;b; Woodworth et al., 2020b). However, when the data is non-IID across
clients, which is mostly the case in federated learning, personalization can help to balance between
shared and local knowledge. Then, the question becomes, what degree of personalization is best for
each client? While this was an open problem in Mohri et al. (2019) on how to appropriately mix
the global and local model, we answer this question by adaptively tuning the degree of personaliza-
tion for each client, as discussed in Section 3, so it can perfectly become agnostic to the local data
distributions.

B ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional experimental results to demonstrate the efficacy of the proposed
APFL algorithm. First, we describe different datasets we have used in this paper, and then, present
additional results.

B.1 DATASETS

For the experiments we use 4 different data sources as follows:

MNIST and CIFAR10 For the MNIST and CIFAR10 datasets to be similar to the setting in fed-
erated learning, we need to manually distribute them in a non-IID way, hence the data distribution
is pathologically heterogeneous. To this end, we follow the steps used by McMahan et al. (2017),
where they partitioned the dataset based on labels and for each client draw samples from some lim-
ited number of classes. We use the same way to create 3 datasets for the MNIST, that are, MNIST
non-IID with 2 classes per client, MNIST non-IID with 4 classes per client, and MNIST IID, where
the data is distributed uniformly random across different clients. Also, we create a non-IID CIFAR10
dataset, where each client has access to only 2 classes of data.

EMNIST In addition to pathological heterogeneous data distributions, we applied our algorithm
on a real-world heterogeneous dataset, which is an extension to MNIST dataset. The EMNIST
dataset includes images of characters divided by authors, where each author has a different style,
make their distributions different Caldas et al. (2018). We use only digit characters and 1000 authors’
data to train our models on.

Synthetic For generating the synthetic dataset, we follow the procedure used by Li et al. (2018),
where they use two parameters, say synthetic(γ, β), that control how much the local model and
the local dataset of each client differ from that of other clients, respectively. Using these parameters,
we want to control the diversity between data and model of different clients. The procedure is that for
each client we generate a weight matrixW i ∈ Rm×c and a bias b ∈ Rc, where the output for the ith
client is yi = arg max

(
σ
(
W>

i xi + b
))

, where σ(.) is the softmax. In this setting, the input data
xi ∈ Rm has m features and the output y can have c different values indicating number of classes.
The model is generated based on a Gaussian distribution W i ∼ N (µi, 1) and bi ∼ N (µi, 1),
where µi ∼ N (0, γ). The input is drown from a Gaussian distribution xi ∼ N (νi,Σ), where
νi ∼ N (Vi, 1) and Vi ∼ N (0, β). Also the variance Σ is a diagonal matrix with value of Σk,k =
k−1.2. Using this procedure, we generate three different datasets, namely synthetic(0.0, 0.0),
synthetic(0.5, 0.5), and synthetic(1.0, 1.0), where we move from an IID dataset to a highly
non-IID data.
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(a) α = 0.25
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Figure 4: Evaluating the effect of sampling on APFL and FedAvg algorithm using the MNIST
dataset that is non-IID with only 2 classes per client with logistic regression as the loss. The first
row is training performance on the local model of FedAvg and personalized model of APFL with
different sampling rates from {0.3, 0.5, 0.7}. The second row is the generalization performance
of models on local validation data, aggregated over all clients. It can be inferred that despite the
sampling ratio, APFL can superbly outperform FedAvg.

B.2 ADDITIONAL RESULTS

In this part, we present more experimental results that can further illustrate the effectiveness of APFL
on other datasets and models.

Effect of sampling. To understand how the sampling of different clients will affect the perfor-
mance of the APFL algorithm, we run the same experiment with different sampling rates for the
MNIST dataset. The results of this experiment are depicted in Figure 4, where we run the experi-
ment for different sampling rates of K ∈ {0.3, 0.5, 0.7}. Also, we run it with different values of
α ∈ {0.25, 0.5, 0.75}. The results are reported for the personalized model of APFL and localized
FedAvg. As it can be inferred, decreasing the sampling ratio has a negative impact on both the
training and generalization performance of FedAvg. However, we can see that despite the sampling
ratio, APFL is outperforming local model of the FedAvg in both training and generalization. Also,
from the results of Figure 2, we know that for this dataset that is highly non-IID, larger α values are
preferred. Increasing α can diminish the negative impacts of sampling on personalized models both
in training and generalization.

Natural heterogeneous data In addition to the CIFAR10 and MNIST datasets with pathological
heterogeneous data distributions, we apply our algorithm on a natural heterogeneous dataset, EM-
NIST (Caldas et al., 2018). We use the data from 1000 clients, and for each round of communication
we randomly select 10% of clients to participate in the training. We use an MLP model with 2 hid-
den layers, each with 200 neurons and ReLU as the activation function, using cross entropy as the
loss function. For APFL, we use the adaptive α scheme with initial value of 0.5 for each client. We
run both algorithms for 250 rounds of communication. In each round, each online client performs
the local updates for 1 epoch on its data. Figure 5 shows the results of this experiment for person-
alized model of APFL and the localized model of the FedAvg. APFL with adaptive α can reach to
the same training loss of the local FedAvg, while greatly outperforms the local FedAvg model in
generalization on local validation data.

C DISCUSSIONS AND EXTENSIONS

Connection between learning guarantee and convergence. As Theorem 1 suggests, the gener-
alization bound depends on the divergence of the local and global distributions. In the language
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Figure 5: The results of applying FedAvg and APFL (with adaptive α) on an MLP model using EM-
NIST dataset, which is naturally heterogeneous. APFL achieves the same training loss of localized
FedAVG, while outperforms it in validation accuracy.

of optimization, the counter-part of divergence of distribution is the gradient diversity; hence, the
gradient diversity appears in our empirical loss convergence rate (Theorem 2). The other interesting
discovery is in the generalization bound, we have the term λH and LDi(h∗i ), which are intrinsic
to the distributions and hypothesis class. Meanwhile, in the convergence result, we have the term
‖v∗i −w∗‖2, which also only depends on the data distribution and hypothesis class we choose. In
addition, ‖v∗i −w∗‖2 also reveals the divergence between local and global optimal solutions.

Why APFL is “Adaptive”. Both information-theoretically (Theorem 1) and computationally
(Theorem 2), we prove that when the local distribution drifts far away from the average distribu-
tion, the global model does not contribute too much to improve the local generalization and we have
to tune the mixing parameter α to a larger value. Thus it is necessary to make α updated adaptively
during empirical risk minimization. In Section 3, (6) shows that the update of α depends on the
correlation of local gradient and deviation between local and global models. Experimental results
show that our method can adaptively tune α, and can outperform the training scheme using fixed α.

Comparison with local ERM model A crucial question about personalization is when it is prefer-
able to employ a mixed model?, and how bad a local ERM model will be? In the following corollary,
we answer this by showing that the risk of local ERM model can be strictly worse than that of our
personalized model.

Corollary 1. Continuing with Theorem 1, there exist a distribution Di, constant C1 and C2, such
that with probability at least 1 − δ, the following upper bound for the difference between risks of
personalized model hαi and local ERM model ĥ∗i on Di, holds :

LDi(hαi)− LDi(ĥ∗i ) ≤ (2α2
i − 1)LDi(h∗i ) + (2α2

iC1 − C2)

√
d+ log(1/δ)

mi
+ 2α2

iGλH(Si)

+ 2(1− αi)2

(
L̂D̄(h̄∗) +B‖D̄ − Di‖1 + C1

√
d+ log(1/δ)

m

)
.

By examining the above bound, the personalized model is preferable to local model if this value is
less than 0. In this case, we require (2α2−1) and (2α2

iC1−C2) to be negative, which is satisfied by

choosing αi ≤ min{
√

2
2 ,
√

C2

2C1
}. Then, the term

√
d+log(1/δ)

mi
, should be sufficiently large, and the

divergence term, as well as the global model generalization error has to be small. In this case, from
the local model perspective, it can benefit from incorporate some global model. Using the similar
technique, we can prove the supremacy of mixed model over global model as well.
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Figure 6: Comparing the effect of fine-tuning with the local model of FedAvg and with the personal-
ized model of APFL on the synthetic datasets. The model is trained for 100 rounds of communication
with 97 clients, and then 3 clients will join in fine-tuning the global model based on their own data.
It can be seen that the model from APFL can better personalize the global model with respect to the
FedAvg method both in training loss and validation accuracy. Increasing diversity makes it harder
to personalize, however, APFL surpasses FedAvg again.

Proof of Corollary 1. Since in Theorem 1, we already obtained upper bound for LDi(hαi) as fol-
lowing,

LDi(hαi) ≤ 2α2
i

LDi(h∗i ) + 2C1

√
d+ log(1/δ)

mi
+GλH(Si)


+ 2(1− αi)2

(
L̂D̄(h̄∗) +B‖D̄ − Di‖1 + C1

√
d+ log(1/δ)

m

)
,

to find the upper bound of LDi(hαi) − LDi(ĥ∗i ), we just need the lower bound of LDi(ĥ∗i ). The
fundamental theorem of statistical learning (Shalev-Shwartz & Ben-David, 2014; Mohri et al., 2018)
states a lower risk bound for agnostic PAC learning: for a hypothesis class with finite VC dimension
d, then there exists a distribution D, such that for any learning algorithm, which learns a hypothesis
h ∈ H on m i.i.d. samples from D, there exists a constant C, with the probability at least 1− δ, we
have:

LD(h)− min
h′∈H

LD(h′) ≥ C
√
d+ log(1/δ)

m
.

Since ĥ∗i is learnt by ERM algorithm, the agnostic PAC learning lower risk bound also holds for it,
so in worst case it might hold that under distribution Di, if ĥ∗i is learnt by ERM algorithm using mi

samples, then there is a C2, such that with probability at least 1− δ, we have:

LDi(ĥ∗i ) ≥ LDi(h∗i ) + C2

√
d+ log(1/δ)

mi
.

Thus we can bound LDi(hαi)− LDi(ĥ∗i ) as Corollary 1 claims.

Personalization for new participant nodes. Suppose we already have a trained global model ŵ,
and now a new device k joins in the network, which is desired to personalize the global model
to adapt its own domain. This can be done by performing a few local stochastic gradient descent
updates from the given global model as an initial local model:

v
(t+1)
k = v

(t)
k − ηt∇vfk(αkv

(t)
k + (1− αk)ŵ; ξ

(t)
k ) (7)

to quickly learn a personalized model for the newly joined device. One thing worthy of inves-
tigation is the difference between APFL and meta-learning approaches, such as model-agnostic
meta-learning (Finn et al., 2017). Our goal is to share the knowledge among the different users,
in order to reduce the generalization error; while meta-learning cares more about how to build a
meta-learner, to help training models faster and with fewer samples. In this scenario, similar to
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FedAvg, when a new node joins the network, it gets the global model and takes a few stochastic
steps based on its own data to update the global model. In Figure 6, we show the results of applying
FedAvg and APFL on synthetic data with two different rates of diversity, synthetic(0.0, 0.0)
and synthetic(0.5, 0.5). In this experiment, we keep 3 nodes with their data off in the entire
training for 100 rounds of communication between 97 nodes. In each round, each client updates its
local and personalized models for one epoch. After the training is done, those 3 clients will join
the network and get the latest global model and start training local and personalized models of their
own. Figure 6 shows the training loss and validation accuracy of these 3 nodes during the 5 epochs
of updates. The local model represents the model that will be trained in FedAvg, while the person-
alized model is the one resulting from APFL. Although the goal of APFL is to adaptively learn the
personalized model during the training, it can be inferred that APFL can learn a better personalized
model in a meta-learning scenario as well.

Agnostic global model. As pointed out by Mohri et al. (2019), the global model can be distribu-
tionally robust if we optimize the agnostic loss:

min
w∈Rd

max
q∈∆n

F (w) :=

n∑
i

qifi(w), (8)

where ∆n = {q ∈ Rn+ |
∑
qi = 1} is the n-dimensional simplex. We call this scenario “Adaptive

Personalized Agnostic Federated Learning”. In this case, the analysis will be more challenging since
the global empirical risk minimization is performed at a totally different domain, so the risk upper
bound for hαi we derived does not hold anymore. Also, from a computational standpoint, since the
resulted problem is a minimax optimization problem, the convergence analysis of agnostic APFL
will be more involved, which we will leave as an interesting future work.
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D PROOF OF GENERALIZATION BOUND

In this section we present the proof of generalization bound for APFL algorithm. Recall that we
define the following hypotheses on ith local true and empirical distributions:

ĥ∗i = arg min
h∈H
L̂Di(h) (LOCAL EMPIRICAL RISK MINIMIZER)

h∗i = arg min
h∈H
LDi(h) (LOCAL TRUE RISK MINIMIZER)

h̄∗ = arg min
h∈H
LD̄(h) (GLOBAL EMPIRICAL RISK MINIMIZER)

ĥ∗loc,i = arg min
h∈H
L̂Di(αih+ (1− αi)h̄∗) (MIXED EMPIRICAL RISK MINIMIZER)

h∗loc,i = arg min
h∈H
LDi(αih+ (1− αi)h̄∗) (MIXED TRUE RISK MINIMIZER)

where L̂Di(h) and LDi(h) denote the empirical and true risks on Di, respectively.

From a high-level technical view, since we wish to bound the risk of the mixed model on local
distribution Di, first we need to utilize the convex property of the risk function, and decompose it
into two parts: LDi

(
ĥ∗loc,i

)
and LDi

(
h̄∗
)
. To bound LDi

(
ĥ∗loc,i

)
, a natural idea is to characterize

it by the risk of optimal model LDi (h∗i ), plus some excess risk. However, due to fact that ĥ∗loc,i
is not the sole local empirical risk minimizer, rather it partially incorporates the global model, we
need to characterize to what extent it drifts from the local empirical risk minimizer ĥ∗i . This drift
can be depicted by the hypothesis capacity, so that is our motivation to define λH(S) to quantify
the empirical loss discrepancy over S among pair of hypotheses in H. We have to admit that there
should be a tighter theory to bound this drift, depending how global model is incorporated, which
we leave it as a future work.

The following simple result will be useful in the proof of generalization.

Lemma 1. Let H be a hypothesis class and D and D′ denote two probability measures over space
Ξ. Let LD(h) = E(x,y)∼D [` (h(x), y)] denote the risk of h over D . If the loss function `(·) is
bounded by B, then for every h ∈ H:

LD(h) ≤ LD′(h) +B‖D − D′‖1, (9)

where ‖D − D′‖1 =
∫

Ξ
|P(x,y)∼D − P(x,y)∼D′ |dxdy.

Proof.

LD(h) ≤ LD′(h) + |LD(h)− LD′(h)|

≤ LD(h) +

∫
Ξ

|`(y, h(x))||P(x,y)∼D − P(x,y)∼D′ |dxdy

= LD(h) +B‖D − D′‖1.

Proof of Theorem 1 We now turn to proving the generalization bound for the proposed APFL al-
gorithm. Recall that for the classification task we consider squared hinge loss, and for the regression
case we consider MSE loss. We will first prove that in both cases we can decompose the risk as
follows:

LDi(h∗αi) ≤ 2α2
iLDi

(
ĥ∗loc,i

)
+ 2(1− αi)2LDi

(
h̄∗(x)

)
. (10)

We start with the classification case first. Note that, hinge loss: max{0, 1 − z} is convex in z, so
max{0, 1− y(αih+ (1−αi)h′)} ≤ αi max{0, 1− yh}+ (1−αi) max{0, 1− yh′}, according to
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Jensen’s inequality. Hence, we have:

LDi(h∗αi) = LDi(αiĥ∗loc,i + (1− αi)h̄∗)

= E(x,y)∼Di

(
max{0, 1− y(αiĥ

∗
loc,i(x) + (1− αi)h̄∗(x))}

)2

= E(x,y)∼Di

(
αi max{0, 1− yĥ∗loc,i(x)}+ (1− αi) max{0, 1− yh̄∗(x)}

)2

≤ 2α2
iE(x,y)∼Di

(
max{0, 1− yĥ∗loc,i(x)}

)2

+ 2(1− αi)2E(x,y)∼Di
(
max{0, 1− yh̄∗(x)}

)2
≤ 2α2

iLDi
(
ĥ∗loc,i

)
+ 2(1− αi)2LDi

(
h̄∗
)
.

For regression case:

LDi(h∗αi) = LDi(αiĥ∗loc,i + (1− αi)h̄∗)

= E(x,y)∼Di

∥∥∥y − (αiĥ
∗
loc,i(x) + (1− αi)h̄∗(x))

∥∥∥2

= E(x,y)∼Di

∥∥∥αiy − αiĥ∗loc,i(x) + (1− αi)y − (1− αi)h̄∗(x)
∥∥∥2

≤ 2α2
iE(x,y)∼Di

∥∥∥y − ĥ∗loc,i(x)
∥∥∥2

+ 2(1− αi)2E(x,y)∼Di
∥∥y − h̄∗(x)

∥∥2

≤ 2α2
iLDi

(
ĥ∗loc,i

)
+ 2(1− αi)2LDi

(
h̄∗
)

Thus we can conclude:

LDi(h∗αi) ≤ 2α2
i LDi

(
ĥ∗loc,i

)
︸ ︷︷ ︸

T1

+2(1− αi)2 LDi
(
h̄∗
)︸ ︷︷ ︸

T2

. (11)

We proceed to bound the terms T1 and T2 in RHS of above inequality. We first bound T1 as follows.
The first step is to utilize uniform VC dimension error bound over H Mohri et al. (2018); Shalev-
Shwartz & Ben-David (2014):

∀h ∈ H, |LDi(h)− L̂Di(h)| ≤ C

√
d+ log(1/δ)

mi
,

where C is constant factor. So we can bound T1 as:

T1 = LDi(ĥ∗loc,i) = LDi(h∗i ) + LDi(ĥ∗loc,i)− LDi(h∗i )
= LDi(h∗i )

+ LDi(ĥ∗loc,i)− L̂Di(ĥ∗loc,i)︸ ︷︷ ︸
≤C

√
d+log(1/δ)

mi

+L̂Di(ĥ∗loc,i)− L̂Di(h∗i ) + L̂Di(h∗i )− LDi(h∗i )︸ ︷︷ ︸
≤C

√
d+log(1/δ)

mi

≤ LDi(h∗i ) + 2C

√
d+ log(1/δ)

mi
+ L̂Di(ĥ∗loc,i)− L̂Di(ĥ∗i ).

Note that

L̂Di(ĥ∗loc,i)− L̂Di(ĥ∗i ) ≤ G
1

|Si|
∑

(x,y)∈Si

|ĥ∗loc,i(x)− ĥ∗i (x)| ≤ GλH(Si),

As a result we can bound T1 by:

T1 ≤ LDi(h∗i ) + 2C

√
d+ log(1/δ)

mi
+GλH(Si).
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We now turn to bounding T2. Plugging Lemma 1 in (11) and using uniform generalization risk
bound will immediately give:

T2 ≤ L̂D̄(h̄∗) +B2‖D − D̄‖1 + C

√
d+ log(1/δ)

m
.

Plugging T1 and T2 back into (11) concludes the proof.
Remark 2. One thing worth mentioning is that, we assume the customary boundedness of loss
functions. Actually it can be satisfied if the data and the parameters of hypothesis are bounded.
For example, considering the scenario where we are learning a linear model w with the constraint
‖w‖ ≤ 1, and also the data tuples (x, y) are drawn from some bounded domain, then the loss is
obviously bounded by some finite real value.

Remark 3. As LDi
(
ĥ∗loc,i

)
is the risk of the empirical risk minimizer on Di after incorporating a

model learned on a different domain (i.e., global distribution), one might argue that generalization
techniques established in multi-domain learning theory (Ben-David et al., 2010; Mansour et al.,
2009; Zhang et al., 2020) can be utilized to serve our purpose. However, we note that the techniques
developed in Ben-David et al. (2010); Mansour et al. (2009); Zhang et al. (2020) are only applicable
to a settings where we aim at directly learning a model in some combination of source and target
domain, while in our setting, we partially incorporate the model learned from source domain and
then perform ERM on joint model over target domain. Moreover, their results only apply to very
simple loss functions, e.g., absolute loss or MSE loss, while we consider squared hinge loss in
the classification case. Analogous to multiple domain theory, we derive the multi domain learning
bound based on the divergence of source and target domains but measured in absolute distance,
‖ · ‖1. As Mansour et al. (2009) points out, divergence measured by absolute loss can be large, and
as a result we leave the development of a more general multiple domain learning theory that can
deal with most popular loss functions like hinge loss, cross entropy loss and optimal transport, with
tighter divergence measure on distributions as an open question.

E PROOF OF CONVERGENCE RATE IN CONVEX SETTING

In this section, we present the proof of convergence raters. For ease of mathematical derivations, we
first consider the case without sampling clients at each communication step and then generalize the
proof to the setting where K devices are sampled uniformly at random by the server as employed in
the proposed algorithm.

Technical challenges. The analysis of convergence rates in our setting is more involved compared
to analysis of local SGD with periodic averaging by Stich (2018); Woodworth et al. (2020a). The key
difficulty arises from the fact that unlike local SGD where local solutions are evolved by employing
mini-batch SGD, in our setting we also partially incorporate the global model to compute stochastic
gradients over local data. In addition, our goal is to find the convergence rate of the mixed model,
rather than merely the local model or global model. To better illustrate this, let us first clarify the
notations of models that will be used in analysis. Let us consider the simple case for now where
we set K = n (all device participate averaging). We define three virtual sequences: {w(t)}Tt=1,
{v̄(t)}Tt=1 and {v̂(t)}Tt=1 wherew(t) = 1

n

∑n
j=1w

(t)
i ,v̄(t)

i = αiv
(t)
i +(1−αi)w(t)

i v̂
(t)
i = αiv

(t)
i +

(1−αi)w(t). Since the personalized model incorporates 1−αi percentage of global model, then the
key challenge in the convergence analysis is to find out how much the global model benefits/hurts
the local convergence. To this end, we analyze how much the dynamics of personalized model
v̂

(t)
i and global model w(t) differ from each other at each iteration. To be more specific, we study

the distance between gradients ‖∇fi(v̂(t)
i ) − ∇F (w(t))‖2. Surprisingly, we relate this distance

to gradient diversity, personalized model convergence, global model convergence and local-global
optimality gap:

E
[
‖∇fi(v̂(t)

i )−∇F (w(t))‖2
]
≤ 6ζi + 2L2E

[
‖v̂(t)

i − v
∗‖2
]

+ 6L2E
[
‖w(t) −w∗‖2

]
+ 6L2∆i.

E
[
‖v̂(t)

i − v∗‖2
]

and E
[
‖w(t) −w∗‖2

]
will converge very fast under smooth strongly convex

objective, and ζi and ∆i will serve as residual error that indicates the heterogeneity among local
functions.
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Algorithm 2: Local Descent APFL (without sampling)

input: Mixture weights α1, · · · , αn, Synchronization gap τ , Local models v(0)
i for i ∈ [n] and

local version of global model w(0)
i for i ∈ [n].

for t = 0, · · · , T do
if t not divides τ then

w
(t)
i = w

(t−1)
i − ηt∇fi

(
w

(t−1)
i ; ξti

)
v

(t)
i = v

(t−1)
i − ηt∇vfi

(
v̄

(t−1)
i ; ξti

)
v̄

(t)
i = αiv

(t)
i + (1− αi)w(t)

i
else

each client sends w(t)
j to the server

w(t) = 1
n

∑n
j=1w

(t)
j

server broadcast w(t) to all clients
end

end
for i = 1, · · · , n do

output: Personalized model: v̂i = 1
ST

∑T
t=1 pt(αiv

(t)
i + (1− αi) 1

n

∑n
j=1w

(t)
j );

Global model: ŵ = 1
nST

∑T
t=1 pt

∑n
j=1w

(t)
j .

end

E.1 PROOF WITHOUT SAMPLING

Before giving the proof of convergence analysis of the Algorithm 1 in the main paper, we first
discuss a warm-up case: local descent APFL without client sampling. As Algorithm 2 shows, all
clients will participate in the averaging stage every τ iterations. The convergence of global and local
models in Algorithm 2 are given in the following theorems. We start by stating the convergence of
global model.
Theorem 4 (Global model convergence of Local Descent APFL without Sampling). If
each client’s objective function is µ-strongly convex and L-smooth, and satisfies Assumption 1,
using Algorithm 2, choosing the mixing weight αi ≥ max{1 − 1

4
√

6κ
, 1 − 1

4
√

6κ
√
µ
}, learning rate

ηt = 16
µ(t+a) , where a = max{128κ, τ}, and using average scheme ŵ = 1

nST

∑T
t=1 pt

∑n
j=1w

(t)
j ,

where pt = (t+ a)2, ST =
∑T
t=1 pt, then the following convergence holds:

E [F (ŵ)]− F (w∗) ≤ O
( µ
T 3

)
+O

(
κ2τ

(
σ2 + τ ζ

n

)
µT 2

)
+O

(
κ2τ

(
σ2 + τ ζ

n

)
lnT

µT 3

)
+O

(
σ2

nT

)
,

where w∗ = arg minw F (w) is the optimal global solution.

Proof. Proof is deferred to Appendix E.1.2.

The following theorem obtains the convergence of personalized model in Algorithm 2.
Theorem 5 (Personalized model convergence of Local Descent APFL without
Sampling). If each client’s objective function is µ-strongly convex and L-smooth, and satisfies
Assumption 1, using Algorithm 2, choosing the mixing weight αi ≥ max{1− 1

4
√

6κ
, 1− 1

4
√

6κ
√
µ
},

learning rate ηt = 16
µ(t+a) , where a = max{128κ, τ}, and using average scheme

v̂i = 1
ST

∑T
t=1 pt(αiv

(t)
i + (1 − αi)

1
n

∑n
j=1w

(t)
j ), where pt = (t + a)2, ST =

∑T
t=1 pt,

and f∗i is the local minimum of the ith client, then the following convergence holds for all i ∈ [n]:

E[fi(v̂i)]− f∗i ≤ O
( µ
T 3

)
+ α2

iO

(
σ2

µT

)
+ (1− αi)2O

(
ζi
µ

+ κL∆i

)
+ (1− αi)2

(
O

(
κL lnT

T 3

)
+O

(
κ2σ2

µnT

)
+O

(
κ2τ

(
σ2 + τ(ζi + ζ

n
)
)

µT 2

)
+O

(
κ4τ

(
σ2 + 2τ ζ

n

)
µT 2

))
.
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Proof. Proof is deferred to Appendix E.1.3.

E.1.1 PROOF OF USEFUL LEMMAS

Before giving the proof of Theorem 4 and 5, we first prove few useful lemmas. Recall that we define
virtual sequences {w(t)}Tt=1,{v̄(t)

i }Tt=1,{v̂(t)
i }Tt=1 wherew(t) = 1

n

∑n
i=1w

(t)
i ,v̄(t)

i = αiv
(t)
i + (1−

αi)w
(t)
i ,v̂(t)

i = αiv
(t)
i + (1− αi)w(t).

We start with the following lemma that bounds the difference between the gradients of local objective
and global objective at local and global models.
Lemma 2. For Algorithm 2, at each iteration, the gap between local gradient and global gradient
is bounded by

E
[
‖∇fi(v̂(t)

i )−∇F (w(t))‖2
]
≤ 2L2E

[
‖v̂(t)

i − v∗‖2
]

+ 6ζi + 6L2E
[
‖w(t) −w∗‖2

]
+ 6L2∆i.

Proof. From the smoothness assumption and by applying the Jensen’s inequality we have:

E
[
‖∇fi(v̂(t)

i )−∇F (w(t))‖2
]

≤ 2E
[
‖∇fi(v̂(t)

i )−∇fi(v∗i )‖2
]

+ 2E
[
‖∇fi(v∗i )−∇F (w(t))‖2

]
≤ 2L2E

[
‖v̂(t)

i − v
∗‖2
]

+ 6E
[
‖∇fi(v∗i )−∇fi(w∗)‖2

]
+ 6E

[
‖∇fi(w∗)−∇F (w∗)‖2

]
+ 6E

[
‖∇F (w∗)−∇F (w(t))‖2

]
≤ 2L2E

[
‖v̂(t)

i − v
∗‖2
]

+ 6L2E
[
‖v∗i −w∗‖2

]
+ 6ζi + 6L2E

[
‖w(t) −w∗‖2

]
≤ 2L2E

[
‖v̂(t)

i − v
∗‖2
]

+ 6L2∆i + 6ζi + 6L2E
[
‖w(t) −w∗‖2

]
.

Lemma 3 (Local model deviation without sampling). For Algorithm 2, at each iteration, the devi-
ation between each local version of the global model w(t)

i and the global model w(t) is bounded
by:

E
[
‖w(t) −w(t)

i ‖
2
]
≤ 3τσ2η2

t−1 + 3(ζi +
ζ

n
)τ2η2

t−1,

1

n

n∑
i=1

E
[
‖w(t) −w(t)

i ‖
2
]
≤ 3τσ2η2

t−1 + 6τ2 ζ

n
η2
t−1,

where ζ
n = 1

n

∑n
i=1 ζi.

Proof. According to Lemma 8 in Woodworth et al. (2020a):

E
[
‖w(t) −w(t)

i ‖
2
]
≤ 1

n

n∑
j=1

E
[
‖w(t)

j −w
(t)
i ‖

2
]

≤ 3

(
σ2 + ζiτ +

ζ

n
τ

) t−1∑
p=tc

η2
p

t−1∏
q=p+1

(1− µηq)

1

n

n∑
i=1

E
[
‖w(t) −w(t)

i ‖
2
]
≤ 1

n2

n∑
i=1

n∑
j=1

E
[
‖w(t)

j −w
(t)
i ‖

2
]

≤ 3

(
σ2 + 2τ

ζ

n

) t−1∑
p=tc

η2
p

t−1∏
q=p+1

(1− µηq) .
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Plugging in ηq = 16
µ(a+q) yields:

E
[
‖w(t) −w(t)

i ‖
2
]
≤ 3

(
σ2 + ζiτ +

ζ

n
τ

) t−1∑
p=tc

η2
p

t−1∏
q=p+1

a+ q − 16

a+ q

≤ 3

(
σ2 + ζiτ +

ζ

n
τ

) t−1∑
p=tc

η2
p

t−1∏
q=p+1

a+ q − 16

a+ q

≤ 3

(
σ2 + ζiτ +

ζ

n
τ

) t−1∑
p=tc

η2
p

t−1∏
q=p+1

a+ q − 2

a+ q

≤ 3

(
σ2 + ζiτ +

ζ

n
τ

) t−1∑
p=tc

η2
p

(a+ p− 1)(a+ p)

(a+ t− 2)(a+ t− 1)

≤ 3

(
σ2 + ζiτ +

ζ

n
τ

) t−1∑
p=tc

η2
p

η2
t−1

η2
p

≤ 3τ

(
σ2 + ζiτ +

ζ

n
τ

)
η2
t−1.

Similarly,

1

n

n∑
i=1

E
[
‖w(t) −w(t)

i ‖
2
]
≤ 3τσ2η2

t−1 + 6τ2 ζ

n
η2
t−1.

Lemma 4. (Convergence of global model) Let w(t) = 1
n

∑n
i=1w

(t)
i . Under the setting of Theorem

5, we have:

E
[
‖w(T+1) −w∗‖2

]
≤ a3

(T + a)3
E
[
‖w(1) −w∗‖2

]
+

(
T + 16

(
1

a+ 1
+ ln(T + a)

)) 1536a2τ
(
σ2 + 2τ ζn

)
L2

(a− 1)2µ4(T + a)3
+

128σ2T (T + 2a)

nµ2(T + a)3
.

Proof. By the updating rule we have:

w(t+1) −w∗ = w(t) −w∗ − ηt
1

n

n∑
j=1

∇fj(w(t)
j ; ξtj).

Then, taking square of norm and expectation on both sides, as well as applying strong convexity and
smoothness assumptions yields:

E
[
‖w(t+1) −w∗‖2

]
≤ E

[
‖w(t) −w∗‖2

]
− 2ηtE

[〈
1

n

n∑
j=1

∇fj(w(t)
j ),w(t) −w∗

〉]

+ η2t
σ2

n
+ η2tE

[∥∥∥∥∥ 1

n

n∑
j=1

∇fj(w(t)
j )

∥∥∥∥∥
2]

≤ E
[
‖w(t) −w∗‖2

]
− 2ηtE

[〈
∇F (w(t)),w(t) −w∗

〉]
+ η2t

σ2

n
+ η2t E

[∥∥∥∥∥ 1

n

n∑
j=1

∇fj(w(t)
j )

∥∥∥∥∥
2]

︸ ︷︷ ︸
T1

−2ηtE

[〈
1

n

n∑
j=1

∇fj(w(t)
j )−∇F (w(t)),w(t) −w∗

〉]
︸ ︷︷ ︸

T2

≤ (1− µηt)E
[
‖w(t) −w∗‖2

]
− 2ηt(E[F (w(t))]− F (w∗)) + η2t

σ2

n
+ T1 + T2, (12)
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where at the last step we used the strongly convex property.

Now we are going to bound T1. By the Jensen’s inequality and smoothness, we have:

T1 ≤ 2η2
tE


∥∥∥∥∥∥ 1

n

n∑
j=1

∇fj(w(t)
j )−∇F (w(t))

∥∥∥∥∥∥
2
+ 2η2

tE
[∥∥∥∇F (w(t))

∥∥∥2
]

≤ 2η2
tL

2 1

n

n∑
j=1

E
[
‖w(t)

j −w
(t)‖2

]
+ 4η2

tL
(
E
[
F (w(t))

]
− F (w∗)

)
(13)

Then, we bound T2 as:

T2 ≤ ηt

 2

µ
E


∥∥∥∥∥∥ 1

n

n∑
j=1

∇fj(w(t)
j )−∇F (w(t))

∥∥∥∥∥∥
2
+

µ

2
E
[
‖w(t) −w∗‖2

]
≤ 2ηtL

2

µ

1

n

n∑
j=1

E
[∥∥∥w(t)

j −w
(t)
∥∥∥2
]

+
µηt
2

E
[
‖w(t) −w∗‖2

]
. (14)

Now, by plugging back T1 and T2 from (13) and (14) in (12), we have:

E
[
‖w(t+1) −w∗‖2

]
≤
(

1− µηt
2

)
E
[
‖w(t) −w∗‖2

]
−(2ηt − 4η2

tL)︸ ︷︷ ︸
≤−ηt

(
E
[
F (w(t))

]
− F (w∗)

)
+ η2

t

σ2

n

+

(
2ηtL

2

µ
+ 2η2

tL
2

)
1

n

n∑
j=1

E
[∥∥∥w(t)

j −w
(t)
∥∥∥2
]

(15)

≤
(

1− µηt
2

)
E
[
‖w(t) −w∗‖2

]
+ η2

t

σ2

n
+

(
2ηtL

2

µ
+ 2η2

tL
2

)
1

n

n∑
j=1

E
[∥∥∥w(t)

j −w
(t)
∥∥∥2
]
.

Now, by using Lemma 3 we have:

E
[
‖w(t+1) −w∗‖2

]
≤
(

1− µηt
2

)
E
[
‖w(t) −w∗‖2

]
+

(
2ηtL

2

µ
+ 2η2

tL
2

)
3τ

(
σ2 + 2τ

ζ

n

)
η2
t−1 + η2

t

σ2

n
.

Note that (1− µηt
2 )ptηt = µ(t+a)2(t−8+a)

16 ≤ µ(t−1+a)3

16 = pt−1

ηt−1
, so we multiply pt

ηt
on both sides and

do the telescoping sum:
pT
ηT

E
[
‖w(T+1) −w∗‖2

]
≤ p0

η0
E
[
‖w(1) −w∗‖2
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+
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+
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(16)
Then, by re-arranging the terms will conclude the proof:

E
[
‖w(T+1) −w∗‖2

]
≤ a3

(T + a)3
E
[
‖w(1) −w∗‖2

]
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(
T + 16
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1
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+ ln(T + a)

)) 1536a2τ
(
σ2 + 2τ ζn

)
L2

(a− 1)2µ4(T + a)3
+

128σ2T (T + 2a)
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,

where we use the inequality
∑T
t=1

1
t+a ≤

1
a+1 +

∫ T
1

1
t+a <

1
a+1 + ln(T + a).
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E.1.2 PROOF OF THEOREM 4

Proof. According to (15) and (16) in the proof of Lemma 4 we have:

pT
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E
[
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]
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E
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+

T∑
t=1

(
2L2

µ
+ 2ηtL

2

)
3τ

(
σ2 + 2τ

ζ

n

)
256a2
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+

T∑
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ptηt
σ2

n
,

re-arranging term and dividing both sides by ST =
∑T
t=1 pt > T 3 yields:

1

ST
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E
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]
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Recall that ŵ = 1
nST

∑T
t=1

∑n
j=1w

(t)
j and convexity of F , we can conclude that:

E [F (ŵ)]− F (w∗) ≤ O
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.

E.1.3 PROOF OF THEOREM 5

Proof. Recall that we defined virtual sequences {w(t)}Tt=1 where w(t) = 1
n

∑n
i=1w

(t)
i and v̂(t)

i =

αiv
(t)
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Now, we bound the term T1 as follows:
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where we use the fact (α2
i + 1 − αi) ≤ 1. Note that, because we set αi ≥ max{1 − 1

4
√

6κ
, 1 −

1
4
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6κ
√
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i ) ≥ 0, so in the second inequality we can use the arithmetic-
geometry inequality.

Next, we turn to bounding the term T2 in (17):
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And finally, we bound the term T3 in (17) as follows:
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Now, using Lemma 3, (1 − αi)2 ≤ 1 and plugging back T1, T2, and T3 from (18), (19), and (20)
into (17), yields:
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where using Lemma 2 we can bound T4 as:
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By plugging back T4 from (23) in (21) and using the fact−(ηt−4η2
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By applying the telescoping sum and dividing both sides by ST =
∑T
t=1 pt ≥ T 3 we have:
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8T (T + 2a)

µ

)
= O

( µ
T 3

)
+ α2

iO

(
σ2

µT

)
+ (1− αi)2O

(
ζi
µ

+ κL∆i

)
+ (1− αi)2

(
O

(
κL lnT

T 3

)
+O

(
κ2σ2

µnT

)
+O

(
κ2τ2(ζi + ζ

n
) + κ2τσ2

µT 2

)
+O

(
κ4τ

(
σ2 + 2τ ζ

n

)
µT 2

))
.

where we use the convergence of
∑∞
t=1

ln t
t2 −→ O(1), and

∑∞
t=1

1
t2 −→

π2

6 .

E.2 PROOF OF CONVERGENCE OF APFL WITH SAMPLING

In this section we will provide the formal proof of the Theorem 2. Before proceed to the proof, we
would like to give the convergence of global model here first. The following theorem establishes the
convergence of global model in APFL.
Theorem 6 (Global model convergence of Local Descent APFL). If each client’s objective function
is µ-strongly convex and L-smooth, and satisfies Assumption 1, using Algorithm 1, by choosing
the learning rate ηt = 16

µ(t+a) , where a = max{128κ, τ}, κ = L
µ , and using average scheme

ŵ = 1
KST

∑T
t=1 pt

∑
j∈Ut w

(t)
j , where pt = (t+ a)2, ST =

∑T
t=1 pt, and letting F ∗ to denote the
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minimum of the F , then the following convergence holds:

E [F (ŵ)]− F ∗ ≤ O
( µ
T 3

)
+O

(
κ2τ

(
σ2 + 2τ ζ

K

)
µT 2

)
+O

(
κ2τ

(
σ2 + 2τ ζ

K

)
lnT

µT 3

)
+O

(
σ2

KT

)
,

(24)

where τ is the number of local updates (i.e., synchronization gap) .

Proof. The proof is provided in Appendix E.2.2.

Remark 4. It is noticeable that the obtained rate matches the convergence rate of the FedAvg,
and if we choose τ =

√
T/K, we recover the rate O(

√
1/KT ), which is the convergence rate of

well-known local SGD with periodic averaging (Woodworth et al., 2020a).

Now we switch to the proof of the Theorem 2. The proof pipeline is similar to what we did in
Appendix E.1.3, non-sampling setting. The only difference is that we use sampling method here,
hence, we will introduce the variance depending on sampling size K. Now we first begin with the
proof of some technique lemmas.

E.2.1 PROOF OF USEFUL LEMMAS

Lemma 5. For Algorithm 1, at each iteration, the gap between local gradient and global gradient
is bounded by

E

[∥∥∥∥∥∇fi(v̂(t)
i )− 1

K

∑
j∈Ut

∇fj(w(t))

∥∥∥∥∥
2]

≤ 2L2E
[
‖v̂(t)

i − v∗‖2
]

+ 6

(
2ζi + 2

ζ

K

)
+ 6L2E

[
‖w(t) −w∗‖2

]
+ 6L2∆i.

Proof. From the smoothness assumption and by applying the Jensen’s inequality we have:

E

[
‖∇fi(v̂(t)

i )− 1

K

∑
j∈Ut

∇fj(w(t))‖2
]

≤ 2E
[
‖∇fi(v̂(t)

i )−∇fi(v∗i )‖2
]

+ 2E

[
‖∇fi(v∗i )−

1

K

∑
j∈Ut

∇fj(w(t))‖2
]

≤ 2L2E
[
‖v̂(t)

i − v∗‖2
]

+ 6E
[
‖∇fi(v∗i )−∇fi(w∗)‖2

]
+ 6E

[
‖∇fi(w∗)−

1

K

∑
j∈Ut

∇fj(w∗)‖2
]

+ 6E

[
‖∇ 1

K

∑
j∈Ut

∇fj(w∗)−
1

K

∑
j∈Ut

∇fj(w(t))‖2
]

≤ 2L2E
[
‖v̂(t)

i − v∗‖2
]

+ 6L2E
[
‖v∗i −w∗‖2

]
+ 6

(
2ζi + 2

1

K

∑
j∈Ut

ζj

)
+ 6L2E

[
‖w(t) −w∗‖2

]
≤ 2L2E

[
‖v̂(t)

i − v∗‖2
]

+ 6L2∆i + 6

(
2ζi + 2

ζ

K

)
+ 6L2E

[
‖w(t) −w∗‖2

]
.

Lemma 6 (Local model deviation with sampling). For Algorithm 1, at each iteration, the deviation
between each local version of the global model w(t)

i and the global model w(t) is bounded by:

E
[
‖w(t) −w(t)

i ‖
2
]
≤ 3τσ2η2

t−1 + 3(ζi +
ζ

K
)τ2η2

t−1,

1

K

∑
i∈Ut

E
[
‖w(t) −w(t)

i ‖
2
]
≤ 3τσ2η2

t−1 + 6τ2 ζ

K
η2
t−1.

where ζ
K = 1

K

∑n
i=1 ζi.
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Proof. According to Lemma 8 in Woodworth et al. (2020a):

E
[
‖w(t) −w(t)

i ‖
2
]
≤ 1

K

∑
j∈Ut

E
[
‖w(t)

j −w
(t)
i ‖

2
]

≤ 3

(
σ2 + ζiτ +

ζ

K
τ

) t−1∑
p=tc

η2
p

t−1∏
q=p+1

(1− µηq)

1

n

n∑
i=1

E
[
‖w(t) −w(t)

i ‖
2
]
≤ 1

n2

n∑
i=1

n∑
j=1

E
[
‖w(t)

j −w
(t)
i ‖

2
]

≤ 3

(
σ2 + 2τ

ζ

K

) t−1∑
p=tc

η2
p

t−1∏
q=p+1

(1− µηq) .

Then the rest of the proof follows Lemma 3.

Lemma 7. (Convergence of Global Model) Let w(t) = 1
K

∑
j∈Ut w

(t)
j . In Theorem 2’s setting,

using Algorithm 1 by choosing learning rate as ηt = 16
µ(t+a) , we have:

E
[
‖w(T+1) −w∗‖2

]
≤ a3

(T + a)3
E
[
‖w(1) −w∗‖2

]
+

(
T + 16

(
1

a+ 1
+ ln(T + a)

))
1536a2τ

(
σ2 + 2τ ζ

K

)
L2

(a− 1)2µ4(T + a)3
+

128σ2T (T + 2a)

Kµ2(T + a)3
.

Proof. First, we note that from the updating rule we have

w(t+1) −w∗ = w(t) −w∗ − ηt
1

K

∑
j∈Ut

∇fj(w(t)
j ; ξtj). (25)

Now, making both sides squared and according to the strong convexity we have:

E
[
‖w(t+1) −w∗‖2

]
≤ E

[
‖w(t) −w∗‖2

]
− 2ηtE

〈 1

K

∑
j∈Ut

∇fj(w(t)
j ),w(t) −w∗

〉
+ η2

tE


∥∥∥∥∥∥ 1

K

∑
j∈Ut

∇fj(w(t)
j )

∥∥∥∥∥∥
2
+ η2

t

σ2

K

≤ (1− µηt)E
[
‖w(t) −w∗‖2

]
− (2ηt − 2Lη2

t )E
[
F (w(t))− F (w∗)

]
+ η2

t

σ2

K

+ η2
t

1

K

∑
j∈Ut

L2E
[∥∥∥w(t)

j −w
(t)
∥∥∥2
]
− 2ηtE

〈 1

K

∑
j∈Ut

∇fj(w(t)
j )−∇fj(w(t)),w(t) −w∗

〉
≤ (1− µηt)E

[
‖w(t) −w∗‖2

]
−(2ηt − 4Lη2

t )︸ ︷︷ ︸
≤−ηt

E
[
F (w(t))− F (w∗)

]
+ η2

t

σ2

K

+ 2η2
tL

2 1

K

∑
j∈Ut

E
[∥∥∥w(t)

j −w
(t)
∥∥∥2
]

+
2ηtL

2

µ

1

K

∑
j∈Ut

E
[∥∥∥w(t)

j −w
(t)
∥∥∥2
]

+
µηt
2

E
[
‖w(t) −w∗‖2

]
.

(26)
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Then, merging the term, multiplying both sides with pt
ηt

, and do the telescoping sum yields:

pT
ηT

E
[
‖w(T+1) −w∗‖2

]
≤ p0

η0
E
[
‖w(1) −w∗‖2

]
− E[F (w(t))− F (w∗)]

+

T∑
t=1

(
2L2

µ
+ 2ηtL

2

)
pt

1

K

∑
j∈Ut

E
[∥∥∥w(t)

j −w
(t)
∥∥∥2
]

+

T∑
t=1

ptηt
σ2

K
.

(27)

Plugging Lemma 6 into (27) yields:
pT
ηT

E
[
‖w(T+1) −w∗‖2

]
≤ p0

η0
E
[
‖w(1) −w∗‖2

]
− E[F (w(t))− F (w∗)]

+

T∑
t=1

(
2L2

µ
+ 2ηtL

2

)
3ptη

2
t−1τ

(
σ2 + 2τ

ζ

K

)
+

T∑
t=1

ptηt
σ2

K
.

(28)

Then, by re-arranging the terms will conclude the proof as

E
[
‖w(T+1) −w∗‖2

]
≤ a3

(T + a)3
E
[
‖w(1) −w∗‖2

]
+

(
T + 16

(
1

a+ 1
+ ln(T + a)

)) 1536a2L2τ
(
σ2 + 2τ ζ

K

)
(a− 1)2µ4(T + a)3

+
128σ2T (T + 2a)

Kµ2(T + a)3
.

E.2.2 PROOF OF THEOREM 6

Proof. According to (29) we have:
pT
ηT

E
[
‖w(T+1) −w∗‖2

]
≤ p0

η0
E
[
‖w(1) −w∗‖2

]
− E[F (w(t))− F (w∗)]

+

T∑
t=1

(
2L2

µ
+ 2ηtL

2

)
3ptη

2
t−1τ

(
σ2 + 2τ

ζ

K

)
+

T∑
t=1

ptηt
σ2

K
.

(29)

By re-arranging the terms and dividing both sides by ST =
∑T
t=1 pt > T 3 yields:

1

ST

T∑
t=1

pt
(
E
[
F (w(t))

]
− F (w∗)

)
≤ p0
ST η0

E
[
‖w(1) −w∗‖2

]
+

1

ST

T∑
t=1

(
2L2

µ
+ 2ηtL

2

)
3ptη

2
t−1τ

(
σ2 + 2τ

ζ

K

)
+

1

ST

T∑
t=1

ptηt
σ2

K

≤ O

µE
[
‖w(1) −w∗‖2

]
T 3

+O

(
κ2τ

(
σ2 + 2τ ζ

K

)
µT 2

)
+O

(
κ2τ

(
σ2 + 2τ ζ

K

)
lnT

µT 3

)
+O

(
σ2

KT

)
.

Recalling that ŵ = 1
nST

∑T
t=1 pt

∑n
j=1w

(t)
j , from the convexity of F (·), we can conclude that

E [F (ŵ)]− F (w∗) ≤ O
( µ
T 3

)
+O

(
κ2τ

(
σ2 + 2τ ζ

K

)
µT 2

)
+O

(
κ2τ

(
σ2 + 2τ ζ

K

)
lnT

µT 3

)
+O

(
σ2

KT

)
.
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E.2.3 PROOF OF THEOREM 2

Now we provide the formal proof of Theorem 2. The main difference from without-sampling setting
is that only a subset of local models get updated each period due to partial participation of devices,
i.e., K out of all n devices that are sampled uniformly at random. To generalize the proof, we will
use an indicator function to model this stochastic update, and show that while the stochastic gradient
is unbiased, the variance is changed.

Proof. Recall that we defined virtual sequences of {w(t)}Tt=1 where w(t) = 1
K

∑
j∈Ut w

(t)
i and

v̂
(t)
i = αiv

(t)
i + (1− αi)w(t). We also define an indicator variable to denote whether ith client was

selected at iteration t:

Iti =

{
1 if i ∈ Ut
0 else

obviously, E [Iti] = K
n . We start by writing the updating rule:

v̂
(t+1)
i = v̂

(t)
i − α

2
i Itiηt∇fi(v̄

(t)
i ; ξti)− (1− αi)ηt

1

K

∑
j∈Ut

∇fj(w(t)
j ; ξti).

Now, subtracting v∗i on both sides, taking the square of norm and expectation, yields:

E
[
‖v̂(t+1)

i − v∗i ‖2
]

= E

[∥∥∥∥∥v̂(t)
i − α

2
i Itiηt∇fi(v̄

(t)
i )− (1− αi)ηt

1

K

∑
j∈Ut

∇fj(w(t)
j )− v∗i

∥∥∥∥∥
2]

+ E

[∥∥∥∥∥α2
i Itiηt

(
∇fi(v̄(t)

i )−∇fi(v̄(t)
i ; ξti)

)
+ (1− αi)ηt

(
1

K

∑
j∈Ut

∇fj(w(t)
j )− 1

K

∑
j∈Ut

∇fj(w(t)
j ; ξt)

)∥∥∥∥∥
2]

= E
[
‖v̂(t)

i − v∗i ‖2
]
− 2

〈
K

n
α2
i ηt∇fi(v̄

(t)
i ) + (1− αi)ηt

1

K

∑
j∈Ut

∇fj(w(t)
j ), v̂

(t)
i − v∗i

〉

+ η2tE

[∥∥∥∥∥α2
i Iti∇fi(v̄

(t)
i ) + (1− αi)

1

K

∑
j∈Ut

∇fj(w(t)
j )

∥∥∥∥∥
2]

+ α2
i η

2
t

2K2σ2

n2
+ (1− αi)2η2t

2σ2

K
.

= E
[
‖v̂(t)

i − v∗i ‖2
]
−2ηt

〈(
K

n
α2
i + 1− αi

)
∇fi(v̄(t)

i ), v̂
(t)
i − v∗i

〉
︸ ︷︷ ︸

T1

−2ηt(1− αi)E

[〈
1

K

∑
j∈Ut

∇fj(w(t)
j )−∇fi(v̄(t)

i ), v̂
(t)
i − v∗i

〉]
︸ ︷︷ ︸

T2

+ η2t E

[∥∥∥∥∥α2
i Iti∇fi(v̄

(t)
i ) + (1− αi)

1

K

∑
j∈Ut

∇fj(w(t)
j )

∥∥∥∥∥
2]

︸ ︷︷ ︸
T3

+α2
i η

2
t

2K2σ2

n2
+ (1− αi)2η2t

2σ2

K
.
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Now we switch to bound T1:

T1 = −2ηt(
K

n
α2
i + 1− αi)E

[〈
∇fi(v̂(t)

i ), v̂
(t)
i − v

∗
i

〉]
− 2ηt(

K

n
α2
i + 1− αi)E

[〈
∇fi(v̄(t)

i )−∇fi(v̂(t)
i ), v̂

(t)
i − v

∗
i

〉]
≤ −2ηt(

K

n
α2
i + 1− αi)

(
E
[
fi(v̂

(t)
i )
]
− fi(v∗i ) +

µ

2
E
[
‖v̂(t)

i − v
∗
i ‖2
])

+ (
K

n
α2
i + 1− αi)ηt

(
8L2

µ(1− 8(αi − α2
i
K
n ))

E
[
‖v̂(t)

i − v̄
(t)
i ‖

2
]

+
µ(1− 8(αi − α2

i
K
n ))

8
E
[
‖v̂(t)

i − v
∗
i ‖2
])

≤ −2ηt(
K

n
α2
i + 1− αi)

(
E
[
fi(v̂

(t)
i )
]
− fi(v∗i ) +

µ

2
E
[
‖v̂(t)

i − v
∗
i ‖2
])

+ ηt

(
8L2(1− αi)2

µ(1− 8(αi − K
n α

2
i ))

E
[
‖w(t) −w(t)

i ‖
2
]

+
µ(1− 8(αi − K

n α
2
i ))

8
E
[
‖v̂(t)

i − v
∗
i ‖2
])

≤ −2ηt(
K

n
α2
i + 1− αi)

(
E
[
fi(v̂

(t)
i )
]
− fi(v∗i )

)
− 7µηt

8
E
[
‖v̂(t)

i − v
∗
i ‖2
]

+
8ηtL

2(1− αi)2

µ(1− 8(αi − α2
i ))

E
[
‖w(t) −w(t)

i ‖
2
]
, (30)

For T2, we use the same approach as we did in (19); To deal with T3, we also employ the similar
technique in (20):

T3 = E


∥∥∥∥∥∥α2

i Iti∇fi(v̄
(t)
i ) + (1− αi)

1

K

∑
j∈Ut

∇fj(w(t)
j )

∥∥∥∥∥∥
2


≤ 2(
K

n
α2
i + 1− αi)2E

[
‖∇fi(v̄(t)

i )‖2
]

+ 2E


∥∥∥∥∥∥(1− αi)

 1

K

∑
j∈Ut

∇fj(w(t)
j )−∇fi(v̄(t)

i )

∥∥∥∥∥∥
2


≤ 2

(
2(
K

n
α2
i + 1− αi)2E

[
‖∇fi(v̂(t)

i )−∇f∗i ‖2
]

+2(
K

n
α2
i + 1− αi)2E

[
‖∇fi(v̄(t)

i )−∇fi(v̂(t)
i )‖2

])

+ 2(1− αi)2E


∥∥∥∥∥∥ 1

K

∑
j∈Ut

∇fj(w(t)
j )−∇fi(v̄(t)

i )

∥∥∥∥∥∥
2


≤ 8L(
K

n
α2
i + 1− αi)

(
E
[
fi(v̂

(t)
i )
]
− f∗i

)
+ 4(1− αi)2L2E

[
‖w(t) −w(t)

i ‖
2
]

+ 6(1− αi)2

(
L2E

[∥∥∥w(t) −w(t)
i

∥∥∥2
]

+ E
[∥∥∥∇fi(v̂(t)

i )−∇F (w(t))
∥∥∥2
]

+
1

K

∑
j∈Ut

L2E
[∥∥∥w(t) −w(t)

j

∥∥∥2
] . (31)
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Then plugging T1, T2, T3 back, we obtain the similar formulation as the without sampling case
in (17). Thus:

E
[
‖v̂(t+1)

i − v∗i ‖2
]

≤
(

1− 3µηt
8

)
E
[
‖v̂(t)

i − v∗i ‖2
]
− 2(ηt − 4η2tL)

(
α2
i
K

n
+ 1− αi

)(
E
[
fi(v̂

(t)
i )
]
− fi(v∗i )

)
+ α2

i η
2
t

2Kσ2

n
+ (1− αi)2η2t

2σ2

K

+

(
8ηtL

2(1− αi)2

µ(1− 8(αi − α2
i
K
n

))
+

6(1− αi)2ηtL2

µ
+ 10(1− αi)2η2tL2

)
E
[∥∥∥w(t) −w

(t)
i

∥∥∥2]
+

(
6(1− αi)2ηtL2

µ
+ 6(1− αi)2η2tL2

)
1

K

∑
j∈Ut

E
[∥∥∥w(t) −w

(t)
j

∥∥∥2]

+

(
6ηt
µ

+ 6η2t

)
(1− αi)2E

[∥∥∥∥∥ 1

K

∑
j∈Ut

∇fj(w(t))−∇fi(v̂(t)
i )

∥∥∥∥∥
2]
. (32)

we then examine the lower bound of α2
i
K
n +1−αi. Notice that: α2

i
K
n +1−αi = K

n ((αi− n
2K )2 +

n
K −

n2

4K2 ).

Case 1: n
2K ≥ 1 The lower bound is attained when αi = 1: α2

i
K
n + 1− αi ≥ K

n .

Case 2: n
2K < 1 The lower bound is attained when αi = n

2K : α2
i
K
n + 1− αi ≥ 1− n

4K > 1
2 .

So α2
i
K
n + 1− αi ≥ b := min{Kn ,

1
2} always holds.

Now we plug it and Lemma 6 back to (32):

E
[
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≤
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1− 3µηt
8

)
E
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− bηt
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i η
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t
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+

(
8ηtL
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i
K
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+
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µ
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)
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(
σ2 + (ζi +

ζ

K
)τ

)
+

(
6(1− αi)2ηtL2

µ
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)
3τη2t−1

(
σ2 + 2

ζ

K
τ

)

+

(
6ηt
µ

+ 6η2t

)
(1− αi)2E

[∥∥∥∥∥ 1

K

∑
j∈Ut

∇fj(w(t))−∇fi(v̂(t)
i )

∥∥∥∥∥
2]
. (33)

Plugging Lemma 5 yields:

E
[
‖v̂(t+1)
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]

≤
(

1− 3µηt
8

)
E
[
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]
− bηt

(
E
[
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i )
]
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)
+ α2

i η
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2σ2
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+

(
8ηtL
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i
K
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+
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µ
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ζ

K
)τ
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+

(
6(1− αi)2ηtL2
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)
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(
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ζ

K
τ

)
+

(
6ηt
µ

+ 6η2t

)
(1− αi)2

[
2L2E

[
‖v̂(t)

i − v∗‖2
]

+ 6

(
2ζi + 2

ζ

K

)
+ 6L2E

[
‖w(t) −w∗‖2

]
+ 6L2∆i

]
.
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Then following the same procedure in Appendix E.1.3, together with the application of Lemma 7
we can conclude that:

fi(v̂i)− fi(v∗i )

≤ 1

ST

T∑
t=1

pt(fi(v̂
(t)
i )− fi(v∗i ))

≤
p0E

[
‖v̂(1)

i − v∗i ‖2
]

bη0ST
+

1

bST

T∑
t=1

ptηt

(
α2
i η

2
t

2Kσ2

n
+ (1− αi)2η2t

2σ2

K

)

+
1

bST

T∑
t=1

(1− αi)2L2

(
8

µ(1− 8(αi − α2
i
K
n

))
+

6

µ
+ 10ηt

)
3τptη

2
t−1

(
σ2 + (ζi +

ζ

K
)τ

)

+
1

bST

T∑
t=1

(1− αi)2L2

(
6

µ
+ 10ηt

)
3τptη

2
t−1

(
σ2 + 2

ζ

K
τ

)

+ 36(1− αi)2
L2

bST

T∑
t=1

pt

(
1

µ
+ ηt

)(
a3

(t− 1 + a)3
E
[
‖w(1) −w∗‖2

]
+

(
t+ 16

(
1

a+ 1
+ ln(t+ a)

))
1536a2τ

(
σ2 + 2τ ζ

K

)
L2

(a− 1)2µ4(t− 1 + a)3
+

128σ2t(t+ 2a)

Kµ2(t− 1 + a)3

)

+ 36(1− αi)2
(

2ζi + 2
ζ

K
+ L2∆i

)
1

bST

T∑
t=1

pt

(
1

µ
+ ηt

)
.

= O
( µ

bT 3

)
+ α2

iO

(
σ2

µbT

)
+ (1− αi)2O

(
2ζi + 2 ζ

K

µb
+
κL∆i

b

)

+ (1− αi)2
(
O

(
κL lnT

bT 3

)
+O

(
κ2σ2

µbKT

)
+O

(
κ2τ2(ζi + ζ

K
) + κ2τσ2

µbT 2

)

+O

(
κ4τ

(
σ2 + 2τ ζ

K

)
µbT 2

))
.

F CONVERGENCE RATE WITHOUT ASSUMPTION ON αi

In this section, we provide the convergence results of Algorithm 1 without assumption on αi. The
following Theorem establish the convergence rate:

Theorem 7 (Personalized model convergence of Local Descent APFL without assumption on αi).
If each client’s objective function is µ-strongly-convex and L-smooth, and its gradient is bounded
by G, using Algorithm 1, learning rate: ηt = 8

µ(t+a) , where a = max{64κ, τ}, and using average

scheme v̂i = 1
ST

∑T
t=1 pt(αiv

(t)
i + (1− αi) 1

K

∑
j∈Ut w

(t)
j ), where pt = (t+ a)2, ST =

∑T
t=1 pt,

and f∗i is the local minimum of the ith client, then the following convergence holds for all i ∈ [n]:

E[fi(v̂i)]− f∗i ≤ O
( µ

bT 3

)
+ α2

iO

(
σ2

µbT

)
+ (1− αi)2O

(
G2

µb

)
+ (1− αi)2

(
O

(
κL lnT

bT 3

)
+O

(
κ2σ2

µbKT

)
+O

(
κ2τ2(ζi + ζ

K ) + κ2τσ2

µbT 2

)

+O

κ4τ
(
σ2 + 2τ ζ

K

)
µbT 2

 , (34)

where b = min{Kn ,
1
2}
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Remark 5. Here we remove the assumption αi ≥ max{1− 1
4
√

6κ
, 1− 1

4
√

6κ
√
µ
}. The key difference is

that we can only show the residual error with dependency on G, instead of more accurate quantities
ζi and ∆i. Apparently, when the diversity among data shards is small, ζi and ∆i terms become
small which leads to a tighter convergence rate. Also notice that, to realize the bounded gradient
assumption, we need to require the parameters come from a bounded domainW . Thus, we need to
do projection during parameter update, which is inexpensive.

Proof. According to (33):

E
[
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]

≤
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8

)
E
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+
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+
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+
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∑
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∥∥∥∥∥∥
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 .

Here, we directly use the bound E
[∥∥∥ 1

K

∑
j∈Ut ∇fj(w

(t))−∇fi(v̂(t)
i )
∥∥∥2
]
≤ 2G2. Then we have:

E
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+

(
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ζ

K
)τ

)
+

(
6(1− αi)2ηtL

2

µ
+ 6(1− αi)2η2

tL
2

)
3τη2

t−1

(
σ2 + 2

ζ

K
τ

)
+

(
12ηt
µ

+ 12η2
t

)
(1− αi)2G2.

38



Under review as a conference paper at ICLR 2021

Then following the same procedure in Appendix E.1.3, we can conclude that:

fi(v̂i)− fi(v∗i )

≤ 1

ST

T∑
t=1

pt(fi(v̂
(t)
i )− fi(v∗i ))

≤
p0E

[
‖v̂(1)

i − v∗i ‖2
]

bη0ST
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1
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ptηt

(
α2
i η

2
t

2Kσ2

n
+ (1− αi)2η2t
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)

+
1
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T∑
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(
8
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i
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+

6

µ
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ζ
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1
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6

µ
+ 10ηt

)
3τptη

2
t−1

(
σ2 + 2

ζ

K
τ

)

+ 12(1− αi)2G2 1

bST

T∑
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(
1
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.

= O
( µ

bT 3

)
+ α2

iO

(
σ2

µbT

)
+ (1− αi)2O

(
G2
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)
+ (1− αi)2

(
O

(
κL lnT
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)
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(
κ2σ2
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)
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(
κ2τ2(ζi + ζ

K
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)
+O

(
κ4τ

(
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.

G PROOF OF CONVERGENCE RATE IN NONCONVEX SETTING

In this section we will provide the proof of convergence results on nonconvex functions. Let us first
present the convergence rate of the global model of APFL, on nonconvex function:
Theorem 8 (Global model convergence of Local Descent APFL). If each client’s objective function
is L-smooth and satisfies Assumptions -1, using Algorithm 1, by choosing K = n and learning rate
η = 1

2
√

5L
√
T

, then the following convergence holds:

1

T

T∑
t=1

E
[∥∥∥∇F (w(t))

∥∥∥2
]
≤ O

(
L√
T

)
+O

(
σ2 + σ2

n + ζ
n

T

)
+O

(
σ2

√
T

)
.

Proof. The proof is provided in Appendix G.2.

As usual, let us introduce several useful lemmas before the formal proof of Theorem 3 and 8.

G.1 PROOF OF TECHNICAL LEMMAS

Lemma 8. Under Theorem 3’s assumptions, the following statement holds true:

E
[
fi(v̂

(t+1)
i )

]
≤ E

[
fi(v̂

(t)
i )
]
− η

2
E
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2ηE
[∥∥∥∇F (w(t))

∥∥∥2] .
Proof. According to the updating rule and smoothness of fi, we have:

fi(v̂
(t+1)
i ) ≤ fi(v̂(t)

i ) +
〈
∇fi(v̂(t)

i ), v̂
(t+1)
i − v̂(t)

i

〉
+
L

2
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.
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Taking expectation on both sides yields:
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.

Using the identity: 〈a, b〉 = 1
2‖a‖

2 + 1
2‖b‖

2 − 1
2‖a− b‖

2 we have:
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Using the smoothness of f and F , together with applying Jensen’s inequality on the last term yields:
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Lemma 9. Under Theorem 3’s assumptions, the following statement holds true:

1

T
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Proof. According to the updating rule and smoothness of fi, we have:

F (w(t+1)) ≤ F (w(t)) +
〈
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〉
+
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.

Taking expectation on both sides yields:

E
[
F (w(t+1))

]
≤ E

[
F (w(t))

]
+ E

[〈
∇F (w(t)),w(t+1) −w(t)

〉]
+
L

2
E
[∥∥∥w(t+1) −w(t)

∥∥∥2
]

≤ E
[
F (w(t))

]
− ηE

〈∇F (w(t)),
1

n

n∑
j=1

∇fj(w(t)
j )

〉
+
η2L

2
E


∥∥∥∥∥∥ 1

n

n∑
j=1

∇fj(w(t)
j )

∥∥∥∥∥∥
2
+

η2Lσ2

2n
.

Using the identity 〈a, b〉 = − 1
2‖a− b‖

2 + 1
2‖a‖

2 + 1
2‖b‖

2, we have:
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2n
+
ηL2

2

1

n

n∑
i=1

E
[∥∥∥ w(t)

j −w
(t)
∥∥∥2
]
.

Re-arranging terms and doing the telescoping sum from t = 1 to T :

1

T

T∑
t=1

E
[∥∥∥∇F (w(t))

∥∥∥2
]
≤ 2

ηT
E
[
F (w(1))

]
+ L2 1

T

T∑
t=1

1

n

n∑
j=1

E
[∥∥∥ w(t)

j −w
(t)
∥∥∥2
]

+
ηLσ2

n
.

Lemma 10. Under Theorem 3’s assumptions, the following statement holds true:

1

T

T∑
t=1

1

n

n∑
i=1

E
[∥∥∥w(t) −w(t)

i

∥∥∥2
]
≤ 10τ2η2

(
σ2 +

σ2

n
+
ζ

n

)
,

1

T

T∑
t=1

E
[∥∥∥w(t) −w(t)

i

∥∥∥2
]
≤ 200L2τ4η4

(
σ2 +

σ2

n
+
ζ

n

)
+ 20τ2η2

(
σ2 +

σ2

n
+ ζi

)
.

Proof. For the first statement, we define γt = 1
n

∑n
i=1 E

[∥∥∥w(t) −w(t)
i

∥∥∥2
]

, and let tc be the latest

synchronization stage. Then we have:

γt =
1

n

n∑
i=1

E


∥∥∥∥∥∥wtc −

t∑
j=tc

η

n

n∑
k=1

∇fk(w
(j)
k ; ξjk)−

wtc −
t∑

j=tc

η∇fi(w(j)
i ; ξji )

∥∥∥∥∥∥
2


= τ

t∑
j=tc

η2

n

n∑
i=1

E

∥∥∥∥∥ 1

n

n∑
k=1

∇fk(w
(j)
k ; ξjk)−∇fi(w(j)

i ; ξji )

∥∥∥∥∥
2


= τ

t∑
j=tc

η2

n

n∑
i=1

E

[∥∥∥∥∥ 1

n

n∑
k=1

∇fk(w
(j)
k ; ξjk)−∇fk(w

(j)
k ) +∇fk(w

(j)
k )−∇fk(w(j))

+∇fk(w(j))−∇fi(w(j)) +∇fi(w(j))−∇fi(w(j)
i ) +∇fi(w(j)

i )−∇fi(w(j)
i ; ξti)

∥∥∥2
]

≤ τ
t+τ∑
j=tc

5η2

(
σ2 +

σ2

n
+ 2L2γj +

ζ

n

)
.

Summing over t from tc to tc + τ yields:

tc+τ∑
t=tc

γt ≤
tc+τ∑
t=tc

tc+τ∑
j=tc

5τη2

(
σ2 +

σ2

n
+ 2L2γj +

ζ

n

)

≤ 10L2τ2η2

(r+1)τ∑
j=rτ

γj + 5τ3η2

(
σ2 +

σ2

n

)
+ 5τ3η2 ζ

n
. (35)
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Since η ≤ 1
2
√

5τL
, we have 10L2τ2η2 ≤ 1

2 , hence by re-arranging the terms we have:

tc+τ∑
t=tc

γt ≤ 10τ3η2

(
σ2 +

σ2

n

)
+ 10τ3η2 ζ

n
.

Summing over all synchronization stages tc, and dividing both sides by T can conclude the proof of
the first statement:

1

T

T∑
t=1

γt ≤ 10τ2η2

(
σ2 +

σ2

n

)
+ 10τ2η2 ζ

n
. (36)

To prove the second statement, let δit = E
[∥∥∥w(t) −w(t)

i

∥∥∥2
]

. Notice that:

δit = E


∥∥∥∥∥∥wtc −

t∑
j=tc

η

n

n∑
k=1

∇fk(w
(j)
k ; ξjk)−

wtc −
t∑

j=tc

η∇fi(w(j)
i ; ξji )

∥∥∥∥∥∥
2


= τ

t∑
j=tc

η2E

∥∥∥∥∥ 1

n

n∑
k=1

∇fk(w
(j)
k ; ξjk)−∇fi(w(j)

i ; ξji )

∥∥∥∥∥
2


= τ

t∑
j=tc

η2E

[∥∥∥∥∥ 1

n

n∑
k=1

∇fk(w
(j)
k ; ξjk)−∇fk(w

(j)
k ) +∇fk(w

(j)
k )−∇fk(w(j))

+∇fk(w(j))−∇fi(w(j)) +∇fi(w(j))−∇fi(w(j)
i ) +∇fi(w(j)

i )−∇fi(w(j)
i ; ξti)

∥∥∥2
]

≤ τ
t+τ∑
j=tc

5η2

(
σ2 +

σ2

n
+ L2γj + L2δij + ζi

)
.

Summing over t from tc to tc + τ yields:

tc+τ∑
t=tc

γt ≤
tc+τ∑
t=tc

tc+τ∑
j=tc

5τη2

(
σ2 +

σ2

n
+ L2γj + L2δij + ζi

)

≤ 5L2τ2η2
tc+τ∑
j=tc

γj + 5L2τ2η2
tc+τ∑
j=tc

δij + 5τ3η2

(
σ2 +

σ2

n

)
+ 5τ3η2ζi.

Since η ≤ 1
2
√

5τL
, we have 5L2τ2η2 ≤ 1

4 , hence by re-arranging the terms we have:

tc+τ∑
t=tc

δit ≤ 20L2τ2η2
tc+τ∑
j=tc

γj + 20τ3η2

(
σ2 +

σ2

n

)
+ 20τ3η2ζi.

Summing over all synchronization stages tc, and dividing both sides by T can conclude the proof of
the first statement:

1

T

T∑
t=1

δit ≤ 20L2τ2η2 1

T

T∑
t=1

γt + 20τ2η2

(
σ2 +

σ2

n

)
+ 20τ2η2ζi.

Using the result from (36) to bound 2 1
T

∑T
t=1 γt we have:

1

T

T∑
t=1

δit ≤ 200L2τ4η4

(
σ2 +

σ2

n
+
ζ

n

)
+ 20τ2η2

(
σ2 +

σ2

n
+ ζi

)
.
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G.2 PROOF OF THEOREM 8

Proof. According to Lemma 9:

1

T

T∑
t=1

E
[∥∥∥∇F (w(t))

∥∥∥2
]
≤ 2

ηT
E
[
F (w(1))

]
+ L2 1

T

T∑
t=1

1

n

n∑
j=1

E
[∥∥∥ w(t)

j −w
(t)
∥∥∥2
]

+
ηLσ2

n
.

Then plugging in Lemma 10 will conclude the proof.

G.3 PROOF OF THEOREM 3

Proof. According to Lemma 8:

E
[
fi(v̂

(t+1)
i )

]
≤ E

[
fi(v̂

(t)
i )
]
− η

2
E
[∥∥∥∇fi(v̂(t)

i )
∥∥∥2]+

η2L

2

(
α4
iσ

2 + (1− αi)2
σ2

n

)
+ 2α4

i (1− αi)2ηL2E
[∥∥∥w(t)

i −w(t)
∥∥∥2]+ (1− αi)2η

1

n

n∑
j=1

E
[∥∥∥w(t) −w

(t)
j

∥∥∥2]

+ 4η(1− α2
i )

2ζi + 8η(1− α2
i )

2Γ + 8(αi − α2
i )

2ηE
[∥∥∥∇F (w(t))

∥∥∥2] .
Re-arranging the terms, summing from t = 1 to T , and dividing both sides with T yields:

1

T

T∑
t=1

E
[∥∥∥∇fi(v̂(t)

i )
∥∥∥2
]

≤
2E
[
fi(v̂

(1)
i )
]

ηT
+ ηL

(
α4
iσ

2 + (1− αi)2σ
2

n

)
+ 4α4

i (1− αi)2L2 1

T

T∑
t=1

E
[∥∥∥w(t)

i −w
(t)
∥∥∥2
]

+ 2(1− αi)2L2 1

n

n∑
j=1

1

T

T∑
t=1

E
[∥∥∥w(t)

j −w
(t)
∥∥∥2
]

+ 16(1− αi)2L2 1

T

T∑
t=1

E
[∥∥∥∇F (w(t))

∥∥∥2
]

+ 8(1− α2
i )

2ζi + 16(1− α2
i )

2Γ,

Then, plug in Lemma 9 and 10 :

1

T

T∑
t=1

E
[∥∥∥∇fi(v̂(t)

i )
∥∥∥2
]

≤
2E
[
fi(v̂

(1)
i )
]

ηT
+ ηL

(
α4
iσ

2 + (1− αi)2σ
2

n

)
+ 8(1− α2

i )
2ζi + 16(1− α2

i )
2Γ

+ 4α4
i (1− αi)2L2 1

T

T∑
t=1

E
[∥∥∥w(t)

i −w
(t)
∥∥∥2
]

+ 2(1− αi)2L2 1

n

n∑
j=1

1

T

T∑
t=1

E
[∥∥∥w(t)

j −w
(t)
∥∥∥2
]

+ 16(1− αi)2L2

 2

ηT
E
[
F (w(1))

]
+ L2 1

T

T∑
t=1

1

n

n∑
j=1

E
[∥∥∥ w(t)

j −w
(t)
∥∥∥2
]

+
ηLσ2

n


≤

2E
[
fi(v̂

(1)
i )
]

ηT
+ ηL

(
α4
iσ

2 + (1− αi)2σ
2

n

)
+ 8(1− α2

i )
2ζi + 16(1− α2

i )
2Γ

+ 4α4
i (1− αi)2L2

[
200L2τ4η4

(
σ2 +

σ2

n
+
ζ

n

)
+ 20τ2η2

(
σ2 +

σ2

n
+ ζi

)]
+ 180τ2η2(1− αi)2L2

(
σ2 +

σ2

n
+
ζ

n

)
+ 16(1− αi)2L2

(
2

ηT
E
[
F (w(1))

]
+
ηLσ2

n

)
.
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Plugging in η = 1
2
√

5
√
TL

concludes the proof:

1

T

T∑
t=1

E
[∥∥∥∇fi(v̂(t)

i )
∥∥∥2
]

≤ O
(
L√
T

)
+ α4

iO

(
σ2

√
T

)
+ (1− αi)2O

(
σ2

n
√
T

)
+ (1− αi)2

(
L√
T

+
σ2

n
√
T

)
+ (1− α2

i )
2 (ζi + Γ)

+ α4
i (1− αi)2O

τ4
(
σ2 + σ2

n + ζ
n

)
T 2

+
τ2
(
σ2 + σ2

n + ζi

)
T

+ (1− αi)2O

(
τ2(σ2 + σ2

n + ζ
n )

T

)
.
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