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A  SUPPLEMENTARY MATERIAL

A.1 SIMULATION AND TRAINING SETTINGS

A.1.1 DFT

In theDFT simulations, the PYSCF package and its Generalized Kohn-Sham (GKS) function were
employed. A convergence limit of 1 x 10~% and a maximum of 2000 iterations ensured accurate
total energy values for unstable molecules. The default optimizer of GKS was utilized, setting the
simulation basis to ccpvdz and using LDA, VWN as the XC functional. Additional simulation settings
are detailed in Table 4l

Table 4: Input variables for in-house DFT simulations. Coordinates for each element in the

molecules are separated by ;’. ‘NA’ denotes not applicable, used when there is no other element to
bond with.
Material 3D Coordinates (X, y, z; X, ¥, z) (A)  Spin  Bond Length (A)
H 0,0,0 1 NA
Li 0,0,0 1 NA
Be 0,0,0 0 NA
B 0,0,0 1 NA
C 0,0,0 2 NA
N 0,0,0 3 NA
0 0,0,0 2 NA
Li—H 0,0,0;0,0,3 2 3.0
Li—Li 0,0,0;0,0,5 2 5
C=0 0,0,0;0,0,2.2 0 2.2
N=N 0,0,0;0,0,2.1 2 2.1

A.1.2 FERMINET AND PSIFORMER

In our simulations for FERMINET and PSTFORMER, we employed the code from their GitHub pages
(James S. Spencer & Contributors, 2020). The batch size was adjusted to 64 to align with T2E’s
training. Training was halted when the mean variance was < 0.001 and pmove was < 0.5, after
observing similar values in the referenced papers. This approach allowed for consistent, efficient
training across methods, avoiding excessive training time. The default KFAC optimizer was used
(Martens & Grossel 2015)). Inputs adhered to PySCF style, with only specified settings altered. For
molecule simulations, results from the original papers sufficed due to the high similarity in precision
and information about their scaling. This decision averted the need for time-intensive in-house sim-
ulations yielding similar results. For the molecular simulations, we utilized published results. Given
the high similarity in precision and provided scaling information, in-house simulations, requiring
significant time, were deemed unnecessary for comparable precision.

A.1.3 VMC

We directly adopted the results from the FERMINET work, aligning our configurations with FER-
MINET and PSIFORMER. This approach ensured consistency while avoiding redundant recalcula-
tions.

A.1.4 T2E

T2E’s simulation settings mirror those of DFT, with the substitution of the Generalized Hartree-
Fock method, in alignment with FERMINET and PSIFORMER pretraining. Around 6000 data points
were generated for each element and molecule tested. In section half of each dataset was
randomly selected and combined, totaling 9000 training and 3000 test data points. The datasets
encompass coordinates from 0 to 3 at 0.2 intervals. Batch sizes of 64 and 1 were utilized for single-
element (section and new material/molecule experiments (sections and [4.3), respectively.
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Table 5: Input variables for in-house FERMINET and PSIFORMER simulations. The semicolon
in the coordinate separates element coordinates in the molecules. ‘NA’ denotes the absence of
another element for bonding.

MATERIAL 3D COORDINATES (X, Y, Z; X, Y, Z) SPIN Bond Length (ao)
H 0,0,0 1 NA
Li 0,0,0 1 NA
Be 0,0,0 0 NA
B 0,0,0 1 NA
C 0,0,0 2 NA
N 0,0,0 3 NA
O 0,0,0 2 NA
Li—H Check Reference Check Reference 3.0
Li—Li Check Reference Check Reference 5
C=0 Check Reference Check Reference 2.2
N=N Check Reference Check Reference 2.1

Lastly, we applied vector augmentation to our embedded text vector, setting the noise standard
deviation to 0.5, shift range to 128, and augmentation probability to 0.7.

Table 6: Simulation variables used for T2E. The ‘;’ in coordinates separates elements in
molecules. ‘NA’ denotes the absence of additional elements for bonding.
Material 3D Coordinates (X, y, z; X, ¥, Z) (A) Spin  Bond Length (A)
H Varying 1 NA
Li Varying 1 NA
Be Varying 0 NA
B Varying 1 NA
C Varying 2 NA
N Varying 3 NA
o Varying 2 NA
Li—H 0,0, 0; Varying 2 3.0
Li—Li 0,0, 0; Varying 2 3.0
N=N 0,0, 0; Varying 2 2.2
C=0 0,0, 0; Varying 0 2.2

A.2 DETAILED ANALYSIS OF EXPERIMENTS

A.2.1 FOR SINGLE ELEMENTS

The detailed precision for single element experiments in Table [2 is further elaborated in Table
Even upon detailed examination, the accuracy of FERMINET, PSIFORMER, VMC, and T2E closely
aligns. T2E stands out by offering reduced parameters and model complexity. As anticipated, DFT
consistently ranks last for each element, underscoring its diminishing precision with escalating ma-
terial complexity. The loss graphs in Figure[6|demonstrate the expected trend: as system complexity
augments, the model requires more time to optimize and ensure accurate predictions, owing to the
increased particle count in the system.

A.2.2 FOR MOLECULES

Molecule experiments, initially presented in Table [3| are more precisely explored in Table [§] This
extended analysis echoes the observations from single-element experiments (section [A.2.1), with
T2E, FERMINET, and PSTFORMER demonstrating consistent accuracy levels. DFT remains an out-
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Table 7: Total energy predictions with for first and second row elements (H to O) in higher
precision, excluding He.. This table outlines total energy values for DFT, FERMINET, and PSI-
FORMER from our simulations, alongside VMC and literature reference values, all expressed in
Hartrees. "NA’ stands for not available.

ELEMENT REFERENCE DFT T2E FERMINET PSIFORMER VMC
Hydrogen (H) —0.4998 —0.4774 —0.4992 —0.5001 —0.4999 NA
Lithium (Li) —7.4780 —7.3413 —7.4324 —7.5017 —7.4634 —7.4780
Beryllium (Be) —14.6674 —14.4435 —14.5723  —14.6945 —14.6598 —14.6672
Boron (B) —24.6539 —24.3493 —24.5300 —24.6402 —24.6358 —24.6534
Carbon (C) —37.8450 —37.4326 —37.6865 —37.8276 —37.8360  —37.8438
Nitrogen (N) —54.5892 —54.1152 —54.3911 —54.5942 —54.5931 —54.5873
Oxygen (O) —75.0673 —74.4945 —74.7921  —75.0571 —75.0798  —75.0632
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Figure 6: Training and validation loss graphs for T2E on individual elements. (A) Training
loss. (B) Validation loss.

lier, exhibiting accuracy only for Li —— H, analogous to a Be with additional interactions. Notably,

DFT fails to reach convergence for C== O, underscoring a demand for enhanced optimization
cycles within the self-consistent loop.

Table 8: Enhanced precision in total energy predictions for common molecules. The table
describes total energy estimations from FERMINET and PSIFORMER, referencing previous studies,
and DFT computations from PYSCF simulations. All presented values are expressed in Hartrees.
Note: "NC” signifies non-convergence.

MOLECULE REFERENCE T2E FERMINET PSIFORMER DFT
Li—H —14.9954 —15.0073 —14.9949 —14.9949 —14.6665
Li—Li —8.0706 —7.9667 —8.0705 —8.0705 —17.8031
N=N —109.5423  —110.4302 —109.5418 —109.5418 —108.0186
C=0 —112.9 —113.6524 —113.3247 —113.3247 —102.1189 (NC)

Additionally, Figure [7)illustrates the loss graph for T2E’s molecular performance. As anticipated,
performance diminishes with increasing material complexity.
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Figure 7: Train and validation MSE loss graphs of T2E for molecules. The model was individu-
ally trained on each molecule following the usual approach. (A): Training outcomes. (B): Validation
outcomes.

A.3 NETWORK FEATURES AND ABLATION STUDIES

During our experiments, insights into T2E’s performance with different architectures and physical
information were gained. We observed no benefit, but a mere overfitting, in increasing the num-
ber of hidden parameters while keeping the physical information unchanged. Additionally, we saw
no useful benefit of regularization terms such as L; and L,. As depicted in Figure @ the addition
of extra physical information to a pure MLP layer markedly enhances the model’s accuracy. An
in-depth analysis of both training and validation data reveals that the omission of external physical
information severely restricts the model’s capabilities. The integration of mass number informa-
tion notably aids the training dataset and provides stability to validation variation, albeit without
enhancing accuracy. Further, adding information about valence electrons to the mass number sub-
stantially improves the model’s performance on both training and validation datasets. The inclusion
of total electron count information does not augment the model’s performance, presumably because
this data is already indirectly embedded within the model considering the elements are neutral. The
unique and significant role of valence electrons, determined by orbitals, is underscored in enhancing
the model’s performance compared to the total electron count.

Lastly, we observed a significant decline in model precision when injecting physical information
into just one layer. Notably, the model’s accuracy showed no substantial enhancement with more
than two such injections.

A.4 EXTENDED ARCHITECTURAL DETAILS FOR ORBITAL-INFORMED MLP

Orbital-informed MLP part of T2E is illustrated previously in Figure[3] The initial layer takes 768
features from the embedded text and then reduces them to 64 features. After this reduction, a ReLU
activation function is applied, followed by dropout regularization. This process is repeated once
more before the addition of physical terms. The feature size is then reduced to 34 with the addition
of 2 physical parameters, and the same processing is applied, resulting in 8 features just before the
final prediction. At this point, physical information is again incorporated into the model, and the
prediction is generated.
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Figure 8: Train and validation graphs of T2E’s accuracy when different types of physical
information are fed into the MLP layer. The settings were kept consistent with previously given
results, with only the injected physical information being altered. Graphs are generated for total
energy prediction of B when trained on Li, Be, and C. (A): Training results, (B) Testing results.
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