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A Potential Negative Societal Impacts

The adversarial attack is a major security concern in the real-world machine learning system, because
the generated adversarial perturbation could be used for the malicious purpose. Our study relies only
on the top-1 predicted label to craft the adversarial examples which is applicable to most real-world
systems, making it more useful and practical. Although the experiments in this paper are about
attacking the image classifier, this method can be used in other settings, such as the object detection,
the recommender system, the facial recognition system, and the autonomous driving. In summary,
this study could be used in harmful ways by malicious users.

In a broader perspective, the adversarial example is not restricted to malicious applications, and it
can be used in the positive side, e.g., the generation of CAPTCHA and the privacy protection. In
particular, the study of adversarial attacks can promote the defense techniques. In recent years, many
proposed defenses are broken by the latest attacks, which stimulates the development of defenses.

Our results also point to the potential defense techniques against hard-label attacks. For example, the
defense can prohibit queries near the decision boundary, then the approximate gradient cannot be esti-
mated, making Tangent Attack ineffective. Another possible defense is to add random perturbations
to the input image to prevent effective gradient estimation, or predict random classification labels for
samples near the classification decision boundary.

B Proof of Theorem 1

B.1 Notations and Assumption

Before we formally prove Theorem 1, let us first define the notations that will be used in the proof.
Let x denote the original image, and w.l.o.g. we assume the boundary sample xt−1 = 0 be the origin
of the coordinate axis. Let B denote a n-dimensional ball centered at xt−1 with the radius of R,
and its surface is denoted as S := ∂B. Note that B denotes a complete ball in this proof. However,
B denotes the hemisphere in the main text of the paper. Theorem 1 assumes that the classification
decision boundary of the target model is the hyperplane H , which is defined by its unit normal vector
u. Then, the hyperplane H divides Rn into two half-spaces:

H≥0 = {v ∈ Rn | 〈v,u〉 ≥ 0},
H≤0 = {v ∈ Rn | 〈v,u〉 ≤ 0}. (1)

In the attack, H≥0 mainly contains the adversarial region, and H≤0 represents the non-adversarial
region. In Fig. 1, we visually represent the hyperplane H and two half-spaces in R3. Suppose
∗Corresponding author.
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Figure 1: Illustration of the entities defined in the proof, where C is a convex cone whose boundary
intersects with the circle formed by all the tangent points from x to the ball B.

x ∈ H≤0 \B is a fixed point outside B such that 〈x,u〉 < 0. Now, let us define the cosine function
cos(a,b) := 〈a,b〉

‖a‖‖b‖ to represent the cosine of the angle between two vectors, then we can define the
convex cone C with xt−1 as its vertex, as shown below:

C :=

{
v ∈ Rn | cos(v,x) ≥ R

‖x‖

}
. (2)

Fig. 1 demonstrates the convex cone C in R3. For v ∈ S ∩C that satisfies cos(v,x) = R / ‖x‖, the
equation ‖v− x‖2 = ‖x‖2 − ‖v‖2 holds, i.e., v is the tangent point of the tangent line from x to the
surface of B.

To make the feasible region of the optimization problem (3) in Theorem 1 nonempty, we need to
make an assumption about the positional relationship between x and the ball B. Let ΠH : Rn 7→ H
denote the orthogonal projection from Rn onto the hyperplane H , we make the following assumption:

Assumption B.1. ΠH(x) ∈ C

Note that Assumption B.1 is not really an “assumption”: it essentially means that there is a tangent
point on S ∩H≥0, which is in the adversarial region. Assumption B.1 means the feasible region of
the optimization problem (3) is a nonempty set. By repeatedly reducing the radius R, the algorithm
guarantees that the optimal tangent point is in the adversarial region, thereby making Assumption B.1
always hold. In addition, according to Assumption B.1, ‖ΠH(x)‖ ≥ R holds.

In Theorem 1, k is an arbitrary point on the surface of the hemisphere B ∩H≥0, so this proof mainly
focuses on points in this region. In the following text, the hemisphere is denoted as B′ := B ∩H≥0,
and its surface is denoted as S′ := S ∩H≥0 for brevity. Now, let us pick up any k ∈ S′2, and then
the intersection point between the hyperplane H and the line passing through x and k is denoted as
yk. Then, (yk, λ) is the unique solution of the following equation system:

yk = λk + (1− λ)x,

〈yk,u〉 = 0,

0 ≤ λ ≤ 1.

(3)

Because the position of k determines the distance between yk and x, we can define the function
f(k) := ‖yk − x‖ to represent the distance between x and yk.

B.2 Proof

To prove Theorem 1, we turn to prove the following lemma, which is equivalent to Theorem 1.

2Note that k defined here may not be a tangent point on the ball.
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Lemma 1. Let S′, f be defined as above, then minimizing f over the feasible region S′ is equivalent
to finding the point k from the set S′ ∩ C that is farthest away from H , i.e.,

arg min
k∈S′

f(k) = arg max
k∈(S′∩C)

〈k,u〉. (4)

In addition, we can replace S′ with B′ in the above equation, and the optimal solution of f(k) does
not change. In other words, when the feasible region is B′, the optimal solution can be always
obtained at the surface of B′. Thus, the following equation holds:

arg min
k∈S′

f(k) = arg min
k∈B′

f(k) = arg max
k∈(S′∩C)

〈k,u〉 = arg max
k∈(B′∩C)

〈k,u〉. (5)

Proof. By simplifying the original problem to a two-dimensional plane, the proof of Lemma 1 will
be readily apparent. Let V := span({x,u}) be the plane spanned by x and u. It is easy to observe B,
S, C, B′, and S′ are symmetrical about the plane V . Next, we will show that for any k ∈ B′, there
must exist a point k∗ ∈ S′ ∩ V such that f(k∗) ≤ f(k). To find the k∗ that satisfies the condition,
we introduce the notation ΠV : Rn 7→ V to denote the projection from Rn to V .

Now, take any k ∈ B′, and use k′′ to denote the mirror point of k with respect to V , as shown in Fig. 2.
The projection point ΠV (k) is the midpoint of the line between k and k′′, i.e., k′′ = 2ΠV (k)− k.
Note that if k ∈ V , then k, k′ and k′′ coincide. Since B′ is symmetrical about the plane V , we have
k′′ ∈ B′. Now since B′ is the intersection of two convex sets B and H≥0, we know that B′ is also
a convex set. Notice that ΠV (k) = 1

2 · (k + k′′) is a convex combination of k and k′′, and B′ is a
convex set, thus we conclude ΠV (k) ∈ B′.
Now, we will show that we can ignore any point outside of V , thus restricting the problem to the
two-dimensional plane V . Formally, the following inequality holds for any k:

f (ΠV (k)) ≤ f(k). (6)
The above inequality is easy to prove. Because x ∈ V , we have ‖ΠV (yk − x)‖ = ‖ΠV (yk)− x‖.
Therefore,

f (ΠV (k)) = ‖ΠV (yk)− x‖ = ‖ΠV (yk − x)‖ ≤ ‖yk − x‖ = f(k). (7)
Now, we can focus on the plane V and find the optimal k∗ on it such that f(k∗) ≤ f (ΠV (k)). Let
us define C0 to denote the convex cone with the point x as the vertex, and its boundary is formed by
all tangent lines from x to B:

C0 :=

{
v ∈ Rn | cos(v − x,−x) ≥

√
1− R2

‖x‖2

}
. (8)
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Figure 2: Illustration of the points used in proving Lemma 1, where k′′ is the mirror point of k with
respect to the plane V , and k′ is the projection of k onto the plane V .
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Figure 3: Illustration of the problem reduced to the plane V .

Let k′ := ΠV (k) be the projection point of k onto the plane V (see Fig. 3). Because k′ ∈ B′ and
k′ ∈ V , we have k′ ∈ ΠV (B′). Now, we define k∗ ∈ S′ ∩ C0 ∩ V to be the tangent point from x
to the semicircle ΠV (B′). We claim k∗ is the optimal one that attains the minimum f(k′) among
all k′ in ΠV (B′). We denote the angle between −x and u as θ1, i.e., θ1 := arccos (cos(−x,u)).
The angle between −x and k′ − x is denoted as θ2, i.e., θ2 := arccos (cos(−x,k′ − x)). Based on
the position of k′ in ΠV (B′), there are two possible cases for the angle θ2, as shown in Fig. 3a and
Fig. 3b, respectively. We discuss them separately below.

In the first case (Fig. 3a), yk′ and ΠH(x) are on the same side of xt−1. By Assumption B.1, we know
that ‖ΠH(x)‖ ≥ R, so cos(−x,u) =

√
1− ‖ΠH(x)‖2 / ‖x‖2 ≤

√
1−R2 / ‖x‖2. According

to the definition of the convex cone C0, u is outside C0. Notice that x ∈ C0 and k′ ∈ ΠV (B′),
hence k′ − x is in the convex cone ΠV (C0). Therefore, based on the positions of the two vectors u
and k′ − x with respect to the cone ΠV (C0), we conclude that θ1 ≥ θ2. In such case, the distance
function is f(k′) = ‖yk′ − x‖ = |〈x,u〉| / cos(θ1 − θ2), as shown in Fig. 3a. Because both x
and u are fixed, the value of θ1 is fixed. Therefore, the only way to minimize f(k′) is to maximize
θ2. Among all possible choices of k′ in ΠV (B′), the k′ that maximizes the angle θ2 appears on
the boundary of ΠV (C0) ∩H≥0. The only point that satisfies this condition is the tangent point k∗.
Therefore, in the first case, arg mink∈B′ f(k) = k∗.

In the second case (Fig. 3b), yk′ and ΠH(x) are on different sides of xt−1. In this case, θ2 ≥ 0. In
particular, when θ2 = 0, yk′ and xt−1 coincide. According to Assumption B.1, θ1 > 0. The distance
function can be defined as f(k′) = ‖yk′ −x‖ = |〈x,u〉| / cos(θ1 + θ2) in this case. Because θ1 > 0
and θ2 ≥ 0, the following inequality holds:

f(k′) =
|〈x,u〉|

cos(θ1 + θ2)
≥ |〈x,u〉|

cos(θ1)
≥ |〈x,u〉|

cos(θ1 − θ2)
. (9)

According to the above inequality, the distance obtained from the second case is greater than or equal
to the distance in the first case, and the distances in both cases are equal only if θ2 = 0. Therefore,
we can still conclude that f(k′) ≥ f(k∗), i.e., arg mink∈B′ f(k) = k∗.

Finally, we need to prove arg maxk∈(B′∩C) 〈k,u〉 = k∗, so that Eq. (5) holds. The overall proof
process is similar to the above proof, except that all f(k) in the above proof need to be replaced by
〈k,u〉. Correspondingly, Eq. (6) needs to be changed to the following formula:

〈k∗,u〉 ≥ 〈ΠV (k),u〉 = 〈k,u〉. (10)

Firstly, let us prove the equality part of Eq. (10): when projecting any k ∈ (B′ ∩ C) onto the plane
V , the value of 〈k,u〉 does not change. Thus, we have 〈ΠV (k),u〉 = 〈k,u〉. Secondly, we prove the
inequality part of Eq. (10): 〈k∗,u〉 ≥ 〈ΠV (k),u〉. Now the problem is reduced to the plane V again.
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Because ΠV (k) ∈ (B′ ∩ C ∩ V ), only the first case mentioned above can happen (Fig. 3a). By a
similar argument, we conclude that arg maxk∈(B′∩C) 〈k,u〉 = k∗ holds, which proves Lemma 1.
Consequently, Theorem 1 holds.

C Experimental Settings

In this section, we provide the hyperparameter settings of the compared methods, i.e., Hop-
SkipJumpAttack (HSJA) [2], Boundary Attack (BA) [1], Sign-OPT [3], and SVM-OPT [3]. In
addition, the proposed Tangent Attack is abbreviated as TA, and the Generalized Tangent Attack is
abbreviated as G-TA.

Table 1: The hyperparameters of HSJA.

Dataset Hyperparameter Value

CIFAR-10

γ, threshold of the binary search 1.0
B0, the initial batch size for gradient estimation 100
Bmax, the maximum batch size for gradient estimation 10,000
the search method for step size geometric progression
number of iterations 64

ImageNet

γ, threshold of the binary search 1,000.0
B0, the initial batch size for gradient estimation 100
Bmax, the maximum batch size for gradient estimation 10,000
the search method for step size geometric progression
number of iterations 64

Table 2: The hyperparameters of BA.

Hyperparameter Value

maximum number of trials per iteration 25
number of iterations 1,200
spherical step size 0.01
source step size 0.01
step size adaptation multiplier 1.5
disable automatic batch size tuning False
generate candidates and random numbers without using multithreading False

Table 3: The hyperparameters of Sign-OPT.

Hyperparameter Value

k, number of queries for estimating an approximate gradient 200
α, the update step size of the direction θ 0.2
β, used for the gradient estimation of θ and determining the stopping threshold of binary search 0.001
the number of iterations 1,000
the binary search’s stopping threshold of the CIFAR-10 dataset β

500

the binary search’s stopping threshold of the ImageNet dataset 1 × 10−4

Experimental Equipment. The experiments of all compared methods are conducted by using
PyTorch 1.7.1 framework on a NVIDIA 1080Ti GPU.

HSJA. Hyperparameters of HSJA [2] are listed in Table 1. We translate the implementation code
into the PyTorch version for the experiments. In the experiments of targeted attacks, we randomly
select an image from the target class as the initial adversarial example. For fair comparison, we set
the hyperparameters of TA and G-TA to be the same with HSJA, i.e., the same initial batch size B0

and the same γ.

BA. Hyperparameters of BA [1] are listed in Table 2. In the experiments, we directly use the
implementation of BA from Foolbox 2.0 [8, 9], and adopt a randomly selected image from the target
class as the initialization in the targeted attack.
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Table 4: The hyperparameters of SVM-OPT.

Hyperparameter Value

k, number of queries for estimating gradients 100
α, the step size of the gradient descent of θ 0.2
β, used for the gradient estimation of θ and determining the stopping threshold of binary search 0.001
the number of iterations 1,000
the binary search’s stopping threshold of the CIFAR-10 dataset β

500

the binary search’s stopping threshold of the ImageNet dataset 1 × 10−4

Sign-OPT and SVM-OPT. Hyperparameters of Sign-OPT [3] and SVM-OPT [3] are listed in
Tables 3 and 4. We translate the implementation code into the PyTorch version for the experiments.
In the experiments of targeted attacks, we set the initial direction θ0 of Sign-OPT and SVM-OPT to
the direction of a randomly selected image of the target class.

D Experimental Results

D.1 Limitation of Tangent Attack

The proposed approach supports all types of attacks, including both untargeted and targeted attacks
under the both `2 and `∞ norm constraints. This is the strength of the proposed approach. However,
in the `∞ norm attack, TA and G-TA obtain the similar performance to the baseline method HSJA.
Because under the definition of the `∞ norm distance: D`∞(x, y) := maxi(|xi−yi|), i ∈ {1, . . . , d}
(d is the image dimension), the intersection of the tangent line and the decision boundary may not be
the one with the shortest `∞ norm distance to the original image. Therefore, searching the boundary
sample along the tangent line cannot always outperform HSJA in the `∞ norm attack.

Tables 5 and 6 demonstrate the experimental results of attacking against undefended models on the
CIFAR-10 and ImageNet datasets.

Table 5: Mean `∞ distortions of different query budgets on the ImageNet dataset, where the radius
ratio r is set to 1.1 in G-TA. BA is not applicable to the `∞ norm attack, hence it is not listed.

Target Model Method Targeted Attack Untargeted Attack
@300 @1K @2K @5K @8K @10K @300 @1K @2K @5K @8K @10K

Inception-v3

Sign-OPT [3] 0.557 0.519 0.481 0.421 0.390 0.375 1.078 0.792 0.548 0.328 0.262 0.239
SVM-OPT [3] 0.558 0.512 0.476 0.423 0.397 0.385 1.079 0.763 0.526 0.336 0.280 0.260

HSJA [2] 0.370 0.330 0.289 0.211 0.169 0.147 0.305 0.236 0.174 0.093 0.069 0.059
TA 0.370 0.330 0.291 0.216 0.172 0.149 0.304 0.234 0.173 0.093 0.068 0.059

G-TA 0.364 0.326 0.289 0.220 0.179 0.159 0.304 0.238 0.174 0.093 0.068 0.059

Inception-v4

Sign-OPT [3] 0.545 0.504 0.464 0.402 0.370 0.355 1.176 0.867 0.603 0.369 0.296 0.270
SVM-OPT [3] 0.547 0.498 0.460 0.406 0.379 0.367 1.181 0.842 0.588 0.381 0.319 0.296

HSJA [2] 0.357 0.324 0.287 0.215 0.175 0.152 0.336 0.257 0.185 0.091 0.060 0.048
TA 0.354 0.328 0.294 0.221 0.182 0.161 0.337 0.264 0.196 0.103 0.073 0.062

G-TA 0.354 0.324 0.290 0.220 0.182 0.162 0.337 0.264 0.196 0.104 0.073 0.061

SENet-154

Sign-OPT [3] 0.537 0.491 0.439 0.357 0.316 0.298 0.806 0.631 0.462 0.299 0.247 0.227
SVM-OPT [3] 0.538 0.480 0.429 0.357 0.322 0.307 0.807 0.608 0.444 0.306 0.262 0.246

HSJA [2] 0.347 0.288 0.249 0.176 0.139 0.119 0.253 0.195 0.141 0.071 0.048 0.039
TA 0.346 0.289 0.251 0.181 0.142 0.123 0.253 0.196 0.141 0.071 0.047 0.038

G-TA 0.344 0.288 0.252 0.179 0.142 0.123 0.253 0.196 0.141 0.070 0.047 0.038

ResNet-101

Sign-OPT [3] 0.549 0.501 0.450 0.370 0.329 0.309 0.645 0.515 0.385 0.251 0.206 0.190
SVM-OPT [3] 0.550 0.492 0.444 0.371 0.335 0.319 0.642 0.494 0.370 0.258 0.220 0.206

HSJA [2] 0.340 0.283 0.247 0.179 0.143 0.125 0.197 0.140 0.098 0.049 0.034 0.028
TA 0.340 0.282 0.246 0.180 0.143 0.125 0.196 0.145 0.109 0.064 0.050 0.044

G-TA 0.337 0.280 0.246 0.182 0.150 0.132 0.196 0.147 0.110 0.064 0.050 0.044

The results of Tables 5 and 6 show that HSJA, TA and G-TA obtain the similar average `∞ distortions.
Therefore, although the proposed approach is applicable to `∞ norm attack, the performance is
similar to that of the baseline method HSJA.
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Table 6: Mean `∞ distortions of different query budgets on the CIFAR-10 dataset, where the radius
ratio r is set to 1.5 in G-TA. BA is not applicable to the `∞ norm attack, and thus it is not listed.

Target Model Method Targeted Attack Untargeted Attack
@300 @1K @2K @5K @8K @10K @300 @1K @2K @5K @8K @10K

PyramidNet-272

Sign-OPT [3] 0.395 0.318 0.237 0.134 0.096 0.082 0.284 0.189 0.115 0.059 0.047 0.043
SVM-OPT [3] 0.390 0.299 0.226 0.134 0.099 0.087 0.286 0.173 0.104 0.059 0.049 0.046

HSJA [2] 0.218 0.155 0.112 0.057 0.039 0.032 0.133 0.056 0.034 0.016 0.012 0.011
TA 0.219 0.154 0.112 0.057 0.039 0.032 0.134 0.057 0.035 0.017 0.013 0.011

G-TA 0.218 0.153 0.113 0.057 0.039 0.031 0.133 0.056 0.034 0.016 0.012 0.010

GDAS

Sign-OPT [3] 0.398 0.332 0.266 0.153 0.107 0.089 0.305 0.269 0.231 0.185 0.167 0.160
SVM-OPT [3] 0.389 0.325 0.267 0.164 0.118 0.100 0.304 0.257 0.219 0.181 0.168 0.163

HSJA [2] 0.210 0.147 0.112 0.060 0.040 0.031 0.049 0.029 0.020 0.011 0.009 0.008
TA 0.214 0.151 0.115 0.062 0.041 0.032 0.049 0.029 0.020 0.011 0.009 0.008

G-TA 0.214 0.151 0.116 0.062 0.041 0.032 0.049 0.029 0.020 0.011 0.009 0.008

WRN-28

Sign-OPT [3] 0.402 0.307 0.225 0.121 0.086 0.074 0.200 0.130 0.085 0.053 0.044 0.041
SVM-OPT [3] 0.382 0.296 0.223 0.128 0.093 0.080 0.201 0.121 0.079 0.052 0.045 0.043

HSJA [2] 0.185 0.106 0.070 0.032 0.021 0.018 0.090 0.031 0.020 0.012 0.010 0.009
TA 0.186 0.107 0.070 0.031 0.021 0.018 0.090 0.030 0.020 0.012 0.010 0.009

G-TA 0.185 0.106 0.069 0.032 0.022 0.018 0.090 0.030 0.020 0.012 0.010 0.009

WRN-40

Sign-OPT [3] 0.397 0.305 0.220 0.120 0.085 0.073 0.284 0.208 0.125 0.051 0.042 0.039
SVM-OPT [3] 0.381 0.293 0.220 0.126 0.092 0.079 0.273 0.190 0.120 0.057 0.045 0.041

HSJA [2] 0.194 0.111 0.072 0.032 0.022 0.019 0.084 0.030 0.020 0.012 0.010 0.009
TA 0.195 0.112 0.073 0.032 0.022 0.019 0.082 0.029 0.020 0.012 0.010 0.009

G-TA 0.194 0.110 0.072 0.032 0.022 0.019 0.082 0.029 0.020 0.012 0.010 0.009

D.2 Experimental Results of Attacks against Defense Models

We also conduct experiments by using `∞ norm attacks to break five defense models, and the
experimental results are shown in Table 7. The conclusion drawn from this table is the same as that
in Tables 5 and 6: TA and G-TA obtain the similar performance with HSJA in `∞ norm attacks.

Table 7: The experimental results of performing `∞ norm attacks against the defense models on the
CIFAR-10 dataset, where the radius ratio r is set to 1.5 in G-TA.

Target Model Method Untargeted Attack
@300 @1K @2K @5K @8K @10K

AT [7]

Sign-OPT [3] 0.731 0.519 0.395 0.288 0.255 0.243
SVM-OPT [3] 0.719 0.498 0.382 0.287 0.261 0.251

HSJA [2] 0.181 0.145 0.121 0.090 0.080 0.075
TA 0.184 0.147 0.121 0.090 0.079 0.075

G-TA 0.181 0.145 0.121 0.090 0.080 0.075

TRADES [11]

Sign-OPT [3] 0.748 0.562 0.419 0.304 0.269 0.257
SVM-OPT [3] 0.743 0.534 0.409 0.308 0.281 0.271

HSJA [2] 0.194 0.162 0.137 0.106 0.095 0.090
TA 0.195 0.163 0.138 0.107 0.095 0.090

G-TA 0.194 0.163 0.138 0.107 0.095 0.090

JPEG [4]

Sign-OPT [3] 0.301 0.292 0.281 0.262 0.250 0.245
SVM-OPT [3] 0.301 0.288 0.275 0.256 0.249 0.246

HSJA [2] 0.094 0.086 0.078 0.066 0.061 0.058
TA 0.093 0.087 0.080 0.067 0.061 0.058

G-TA 0.097 0.091 0.081 0.068 0.062 0.059

Feature Distillation [6]

Sign-OPT [3] 0.344 0.330 0.317 0.290 0.273 0.266
SVM-OPT [3] 0.354 0.338 0.323 0.297 0.284 0.279

HSJA [2] 0.090 0.087 0.080 0.069 0.064 0.061
TA 0.089 0.086 0.079 0.070 0.063 0.060

G-TA 0.090 0.086 0.079 0.067 0.062 0.059

Feature Scatter [10]

Sign-OPT [3] 0.561 0.380 0.246 0.135 0.110 0.101
SVM-OPT [3] 0.550 0.344 0.222 0.137 0.116 0.110

HSJA [2] 0.202 0.137 0.104 0.062 0.048 0.042
TA 0.202 0.137 0.104 0.062 0.048 0.042

G-TA 0.205 0.139 0.105 0.062 0.048 0.042

Next, we conduct experiments by using `2 norm attack to break different defense models on the
CIFAR-10 and ImageNet datasets. In the CIFAR-10 dataset, we select six types of defense models:

• Adversarial Training (AT) [7]: the most effective defense method, which uses adversarial
examples as the training data to obtain the robust classifier.

• TRADES [11]: an improved AT that optimizes a regularized surrogate loss.
• JPEG [4]: a standard image compression algorithm based on the discrete cosine transform,

which can remove the adversarial perturbations, thereby providing some degree of defense.

7



• Feature Distillation [6]: a defense method based on the improved JPEG image compression.
Its defense mechanism is divided into two steps. Firstly, it filters out adversarial perturbations
by using a semi-analytical method. Secondly, it restores the classification accuracy of benign
images by using a DNN-oriented quantization process.

• Feature Scatter [10]: a feature scattering-based AT method, which is an unsupervised
approach for generating adversarial examples during the training.

• ComDefend [5]: a defense model that consists of a compression CNN and a reconstruction
CNN to transform the adversarial image into its clean version to defend against attacks.

In the ImageNet dataset, we directly use the publicly available AT models for experiments, all of
which use the ResNet-50 networks as their backbones. The pre-trained weights can be downloaded
from https://github.com/MadryLab/robustness. In the experiments, we set the radius ratio
r of G-TA to 1.5, and the experimental results are shown in Fig. 4. In untargeted attacks (Figs. 4a,
4b, 4c), the G-TA (the semi-ellipsoid version) outperforms the TA (the hemisphere version), and the
baseline method HSJA outperforms TA and G-TA. We conjecture that it is because the classification
decision boundaries of the AT models on the ImageNet dataset are extremely curved in untargeted
attacks, resulting in the better performance of HSJA. In targeted attacks (Figs. 4d, 4e, 4f), both TA
and G-TA outperform HSJA in the attacks of different AT models. These results indicate that TA
and G-TA are more suitable for the targeted attack. Another interesting finding is that SVM-OPT
performs better in untargeted attacks while Sign-OPT performs better in targeted attacks. We will
explore the reasons for these results in the future work.
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(e) AT (`∞ norm ε = 4/255)
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(f) AT (`∞ norm ε = 8/255)
Figure 4: Experimental results of `2 norm attacks against adversarial trained ResNet-50 networks on
the ImageNet dataset, where the first row (Figs. 4a, 4b, 4c) shows the results of untargeted attacks,
and the second row (Figs. 4d, 4e, 4f) shows the results of targeted attacks.

Figs. 5 and 6 show the experimental results of untargeted and targeted attacks on the CIFAR-10
dataset, respectively. In the results of untargeted attacks (Fig. 5), G-TA outperforms HSJA and TA in
the attacks of ComDefend, JPEG and Feature Distillation. When the target models are AT, Feature
Scatter and TRADES, the performance of G-TA is similar to that of the baseline attack method HSJA.

In addition, in the experimental results of targeted attacks (Fig. 6), the performance of G-TA is similar
to that of TA when attacking different defense models.
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(c) Feature Scatter
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(d) TRADES (ε = 8/255)
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(e) JPEG
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(f) Feature Distillation
Figure 5: Experimental results of the `2 norm untargeted attacks against defense models on the
CIFAR-10 dataset, where all defense models adopt the backbone of ResNet-50 network.
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(d) TRADES (ε = 8/255)
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(e) JPEG
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(f) Feature Distillation
Figure 6: Experimental results of the `2 norm targeted attacks against defense models on the CIFAR-
10 dataset, where all defense models adopt the backbone of ResNet-50 network.

D.3 Distributions of Distortions across Different Adversarial Examples

So far, all the experimental results only show the average `2 distortion of 1,000 adversarial examples.
To check the distortion of each adversarial example in more detail, we extract the `2 distortions of 20
samples from HSJA, TA and G-TA. These samples are selected from 1,000 images in the following
way: from the 1st image to the 1,000th image, we select one image for every 50 images. Fig. 7 shows
the distributions of `2 distortions across 20 adversarial examples on the ImageNet dataset, where the
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1st image’s “image number index” is 0. The results indicate that the `2 distortions obtained by TA
and G-TA are uniformly better than that of the baseline method HSJA. Thus, our approach can obtain
better `2 distortions on different adversarial examples, not just on specific samples.
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(b) Inception-v3 (query: 5K)
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(c) Inception-v3 (query: 10K)
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(d) Inception-v4 (query: 1K)
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(e) Inception-v4 (query: 5K)
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(f) Inception-v4 (query: 10K)
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(g) SENet-154 (query: 1K)
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(h) SENet-154 (query: 5K)
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(i) SENet-154 (query: 10K)
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(j) ResNet-101 (query: 1K)
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(k) ResNet-101 (query: 5K)
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(l) ResNet-101 (query: 10K)
Figure 7: Comparisons of `2 distortions across 20 adversarial examples in targeted attacks of the
ImageNet dataset.

D.4 Experimental Results of Median Distortions

In this section, we report the median `2 distortions of different query budgets on the CIFAR-10
and ImageNet datasets. Tables 8 and 9 show the experimental results. We can draw the following
conclusions based on the results.
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Table 8: Median `2 distortions of different query budgets on the ImageNet dataset. “-” denotes no
adversarial example is found in this query budget.

Target Model Method Targeted Attack Untargeted Attack
@300 @1K @2K @5K @8K @10K @300 @1K @2K @5K @8K @10K

Inception-v3

BA [1] 105.513 101.877 101.056 97.481 81.269 73.524 - 109.507 103.637 96.340 79.027 58.924
Sign-OPT [3] 96.905 83.215 66.601 43.350 31.036 25.380 115.140 73.319 38.327 12.761 8.277 6.808
SVM-OPT [3] 93.649 77.838 63.631 42.897 31.838 26.322 114.879 59.343 30.627 12.085 8.352 7.025

HSJA [2] 106.341 92.114 79.225 47.469 30.624 23.838 105.702 53.880 32.684 12.360 7.829 6.227
TA 96.612 75.610 62.573 38.226 25.892 19.993 95.302 50.878 31.833 11.921 7.464 6.030

G-TA 97.449 75.499 62.484 38.886 26.004 20.091 96.410 50.985 31.176 11.861 7.549 6.087

Inception-v4

BA [1] 104.275 101.115 99.872 96.700 79.412 71.387 - 116.855 112.335 104.557 85.044 64.123
Sign-OPT [3] 95.388 81.865 66.159 42.871 31.241 25.798 121.725 77.838 40.465 14.268 8.924 7.153
SVM-OPT [3] 92.640 77.616 62.949 42.552 31.142 26.238 120.407 64.600 33.960 13.586 9.035 7.535

HSJA [2] 104.969 90.371 78.103 47.340 31.404 24.270 109.422 60.356 37.302 14.191 8.790 6.934
TA 96.808 74.829 61.974 37.155 26.128 21.184 101.170 55.876 36.403 14.176 8.592 6.814

G-TA 95.563 75.889 62.404 38.457 26.495 21.069 101.186 57.672 36.743 13.999 8.694 6.856

SENet-154

BA [1] 75.653 72.327 71.420 68.293 52.332 44.391 - 75.355 70.498 65.186 51.950 38.164
Sign-OPT [3] 70.500 59.556 45.566 27.062 18.218 14.400 65.524 42.690 23.688 9.054 5.331 4.194
SVM-OPT [3] 73.344 55.891 44.195 27.826 19.544 15.883 65.957 35.596 20.549 8.760 5.368 4.332

HSJA [2] 72.589 60.361 49.487 25.718 14.929 12.197 70.043 34.697 21.811 8.098 4.482 3.707
TA 66.285 51.012 40.475 21.590 13.293 10.782 64.784 34.034 22.269 7.636 4.273 3.555

G-TA 66.077 51.852 41.065 21.946 13.461 10.899 65.122 33.841 21.823 7.772 4.231 3.489

ResNet-101

BA [1] 76.772 72.674 71.761 68.231 54.847 47.785 - 63.568 59.384 55.402 42.777 29.097
Sign-OPT [3] 72.361 62.383 48.664 30.089 20.752 16.478 53.757 35.070 19.035 8.442 5.929 4.999
SVM-OPT [3] 73.758 58.716 47.496 30.443 21.502 17.535 52.471 29.225 16.469 8.245 6.043 5.259

HSJA [2] 73.422 60.175 49.443 26.504 16.035 12.661 54.869 24.971 15.161 6.084 3.787 3.237
TA 69.511 55.389 44.343 24.500 14.778 11.802 51.829 24.748 15.162 5.941 3.698 3.203

G-TA 69.117 56.275 44.315 24.316 15.133 11.946 51.883 24.403 14.643 5.842 3.703 3.191

Table 9: Median `2 distortions of different query budgets on the CIFAR-10 dataset.

Target Model Method Targeted Attack Untargeted Attack
- 300 @1K @2K @5K @8K @10K 300 @1K @2K @5K @8K @10K

PyramidNet-272

BA [1] 8.240 7.711 7.697 6.013 3.938 3.068 - 5.133 4.268 4.060 2.471 1.460
Sign-OPT [3] 7.900 6.050 3.796 1.441 0.762 0.549 3.821 1.952 0.980 0.345 0.232 0.196
SVM-OPT [3] 8.870 6.432 4.199 1.651 0.894 0.655 3.777 1.956 0.877 0.363 0.235 0.202

HSJA [2] 7.616 4.013 2.109 0.589 0.384 0.325 3.935 1.022 0.587 0.294 0.224 0.201
TA 7.650 3.874 2.071 0.599 0.380 0.318 3.758 1.028 0.589 0.289 0.223 0.197

G-TA 7.452 3.980 2.110 0.602 0.387 0.324 3.938 1.033 0.590 0.288 0.224 0.198

GDAS

BA [1] 8.098 7.568 7.554 5.774 3.301 2.396 - 2.626 2.409 2.286 1.541 1.015
Sign-OPT [3] 7.947 6.418 4.166 1.514 0.669 0.457 2.067 1.331 0.766 0.298 0.209 0.176
SVM-OPT [3] 9.138 7.242 5.090 2.103 1.043 0.673 2.043 1.230 0.674 0.302 0.211 0.183

HSJA [2] 7.687 3.061 1.383 0.435 0.298 0.254 1.905 0.674 0.429 0.232 0.185 0.168
TA 7.667 3.024 1.380 0.435 0.296 0.253 1.932 0.690 0.425 0.228 0.185 0.169

G-TA 7.728 3.104 1.385 0.430 0.298 0.253 1.883 0.665 0.428 0.226 0.182 0.167

WRN-28

BA [1] 8.317 7.789 7.764 5.493 2.199 1.293 - 3.900 3.332 3.167 1.361 0.732
Sign-OPT [3] 7.737 5.188 2.816 0.797 0.439 0.354 2.679 1.298 0.723 0.281 0.214 0.191
SVM-OPT [3] 9.054 5.697 3.317 0.981 0.511 0.398 2.627 1.279 0.627 0.288 0.218 0.198

HSJA [2] 6.446 2.064 1.005 0.443 0.339 0.306 2.497 0.697 0.442 0.264 0.224 0.208
TA 6.518 2.018 0.988 0.428 0.337 0.306 2.606 0.682 0.431 0.262 0.225 0.210

G-TA 6.444 2.060 1.000 0.439 0.341 0.306 2.538 0.682 0.444 0.261 0.223 0.209

WRN-40

BA [1] 8.181 7.760 7.722 5.482 2.193 1.363 - 3.773 3.187 3.045 1.321 0.726
Sign-OPT [3] 7.782 5.285 2.895 0.845 0.455 0.369 2.510 1.213 0.679 0.265 0.194 0.173
SVM-OPT [3] 9.042 5.835 3.400 1.030 0.549 0.420 2.500 1.251 0.611 0.272 0.198 0.179

HSJA [2] 6.578 2.183 1.040 0.439 0.338 0.305 2.470 0.702 0.453 0.256 0.214 0.198
TA 6.747 2.100 0.983 0.435 0.337 0.305 2.584 0.680 0.434 0.254 0.215 0.201

G-TA 6.514 2.069 1.014 0.438 0.339 0.306 2.453 0.695 0.441 0.255 0.213 0.199

(1) TA and G-TA perform better in attacking high-resolution images, i.e., the images of the ImageNet
dataset. The median `2 distortions of Table 8 are larger than that of Table 9, because the high-
resolution images of the ImageNet dataset lead to larger `2 distortions.

(2) TA is more effective in the targeted attacks. We speculate that it is because the adversarial region
of the target class is narrower and more scattered in the targeted attack, resulting in a smoother
decision boundary. Thus, TA is more suitable for targeted attacks.
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