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ABSTRACT

Nearest-neighbor search in large vector databases is crucial for various machine
learning applications. This paper introduces a novel method using tensor-train
(TT) low-rank tensor decomposition to efficiently represent point clouds and en-
able fast approximate nearest-neighbor searches. We propose a probabilistic in-
terpretation and utilize density estimation losses like Sliced Wasserstein to train
TT decompositions, resulting in robust point cloud compression. We reveal an in-
herent hierarchical structure within TT point clouds, facilitating efficient approxi-
mate nearest-neighbor searches. In our paper, we provide detailed insights into the
methodology and conduct comprehensive comparisons with existing methods. We
demonstrate its effectiveness in various scenarios, including out-of-distribution
(OOD) detection problems and approximate nearest-neighbor (ANN) search tasks.

1 INTRODUCTION

Nearest-neighbor search in large vector databases (clouds of high-dimensional points) constitutes
a fundamental component in numerous computer science applications, like local or global image
matching, semantic search, out-of-distribution and anomaly detection, among others.

In this paper, we propose to use tensor-train (TT) Oseledets (2011) low-rank tensor decomposition
to represent point clouds and to facilitate fast approximate nearest-neighbor search. The TT decom-
position method has gained prominence in deep learning, primarily to compress large tensors of
neural network parameters. When representing point clouds as matrices, we artificially order vec-
tors and thus direct application of TT to compress this matrix with standard tensor approximation
algorithms (such as TT-SVD Oseledets (2011); Cichocki et al. (2016), TT-cross approximation Os-
eledets & Tyrtyshnikov (2010) or ALS Holtz et al. (2012)) would result in very poor quality. To
address this issue, we propose probabilistic interpretation of the point cloud. Specifically, we sug-
gest training TT to compress a point cloud using loss functions from density estimation, notably
Sliced Wasserstein loss, through standard gradient descent method: Section 2.

Moreover, we observe the ability of the TT point cloud to implicitly contain inner hierarchical struc-
ture of points: we can consider it as a hierarchical KMeans clustering and TT format allows fast
computation of centroids of different levels. This observation allows us to build a highly efficient
approximate nearest-neighbors search algorithm on top of the compressed TT point cloud: Section 2.

Due to the nature of the proposed method, points inside the compressed TT point cloud do not have
a direct correspondence with points in original point cloud. However, in out-of-distribution (OOD)
detection methods that use distance to the normal point cloud as a score, this is not a problem. The
state-of-the-art method that builds upon this methodology is PatchCore Roth et al. (2022). Patchcore
utilizes greedy coreset subsampling to reduce redundancy in the point cloud and required storage
memory. We demonstrate how to use TT point cloud compression in this setting in Section 2 and
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Figure 1: Diagram of the TT point cloud in Penrose graphical notation. Each tensor is depicted as
a vertex, and each vertex has as many edges as the dimensionality of the corresponding tensor. Two
tensors are connected with a common edge if these two tensors are contracted along the correspond-
ing dimension.

show that our method can significantly outperform coreset-based point cloud subsampling in Sec-
tions 2 and 3.2.

For the case of nearest-neighbor search, where the output of the search should be from the original
point cloud we suggest to use TT as a search index structure as a replacement for indexes like
FAISS Johnson et al. (2017), IMI Babenko & Lempitsky (2015), (G)NO-IMI Babenko & Lempitsky
(2016), as detailed in Sections 2 and 3.3.

2 METHOD

Point Cloud Tensorization. In the context of the OOD detection based on normal (in-distribution)
points or ANN problems requiring k-nearest-neighbor search, we begin by considering a set of D-
dimensional vectors Y =

{
yi ∈ RD

}N

i=1
. It is a natural approach to store this set as a matrix

Y ∈ RN×D, such that yi corresponds to the i-th row of matrix Y .

Low-rank tensor methods are widely popular in tensor compression and representation. We chose
tensor-train (TT) decomposition due to its efficiency and computational synergies with our method.
TT decomposition of a matrix Y starts with matrix tensorization, which involves reshaping the
matrix into a high-dimensional tensor. In our specific case, we factorize rows dimension (samples
dimension) of matrix Y : N = N1 ×N2 × · · · ×Nk while leaving the columns dimension (features
dimension) D unchanged:

Y reshaped = reshape(Y , [N1, · · · , Nk, D]) (1)

Low-rank decomposition of tensor Y reshaped is parameterized by k 3-dimensional tensors, referred
to as tensor-train cores. The first core, G1 ∈ RD×N1×r1 , factorizes out feature dimension D and the
first sample dimension N1. The remaining k − 1 cores, Gi ∈ Rri−1×Ni×ri , separate all remaining
sample dimensions N2, · · · , Nk:

Y reshaped[i1, · · · , ik, d] = G1[d, i1, :]G2[:, i2, :] · · ·Gk[:, ik, :]. (2)

Here, (i1, · · · , ik) represents a multi-index of a sample, which replaces the standard index i after
reshape. The dimensions r1, · · · , rk are known as tensor-train ranks (TT-ranks) and are subject to
the constraint that rk = 1. While TT-ranks are hyperparameters and in general can be different,
in our work, we take r1 = · · · = rk−1 = r. The entire TT construction is depicted in Figure 1
using Penrose notation. In the subsequent sections, we denote the matrix obtained as TT with cores
G = (G1, · · · ,Gk) as YTT(G) or simply YTT.

Utilizing the TT point cloud representation allows for a substantial reduction in memory consump-
tion, shifting from O(ND) to O(DN1r1 +

∑
i ri−1Niri). By defining Nmax as Nmax = maxi Ni

this can be expressed as O(DN1r + kr2Nmax), showcasing a potential exponential memory ad-
vantage depending on the hyperparameters {Ni}ki=1 and r. Achieving accurate training for such
point cloud compression poses a significant challenge: there exist efficient methods to obtain a
TT approximation with a given rank for a given matrix (such as SVD-based methods Oseledets
(2011) and optimization-based methods Oseledets & Tyrtyshnikov (2010); Holtz et al. (2012)), the

2



Published as a conference paper at ICOMP 2024

immediate application of such methods to the matrix Y can yield variable results. This is because
rearranging the rows of matrix Y can influence its TT-rank. This implies that for some row orders
(enumerations of vectors in the set Y), a more accurate compression of the matrix Y into TT format
with a low rank may be achieved, while for other row orders, compression can be highly inaccurate.

To address the sensitivity of TT approximation to row ordering in the matrix Y , we propose a new,
probabilistic interpretation of the point cloud compression. We consider matrix Y (set Y) as the
first point cloud, with elements drawn from a probability distribution pY . The vectors, encoded
in TT format within the matrix YTT, represent the second point cloud, defining a discrete finite
distribution pYTT

. Now, we interpret compression of original point cloud Y as approximation of
distribution pY with distribution pYTT

, where the latter depends on parameters of TT decomposition
– cores (G1, · · · ,Gk). This way thus, approximation no longer depend on the particular numbering
order of the points in the original cloud when structuring it as a matrix. To closely approximate the
distribution pY , we adapt density estimation losses and optimize them using standard SGD methods.
In our work, we employ a combination of Sliced Wasserstein Loss Deshpande et al. (2018) and
Nearest-Neighbor Distance Loss Hennig & Latecki (2003).

Sliced Wasserstein Loss. In our work, we utilize the Sliced Wasserstein Loss to train TT pa-
rameters. The Wasserstein Distance, defined between two probability distributions, exhibits many
appealing properties, making it suitable for scenarios involving discrete distributions and distribu-
tions with different supports, which is particularly important in our case. However, for the general
D-dimensional case, analytical computation of Wasserstein Distance becomes intractable. In the
one-dimensional case, Wasserstein Distance has a simple closed-form solution and can be easily
calculated for distributions defined by samples:

W1({xi}Ni=1, {yj}Nj=1) =
∑
k

|xik − yjk |, (3)

where ik and jk are the indices that sort the sequences xi and yj , correspondingly:

xik < xik+1
; yjk < yjk+1

. (4)

The Sliced Wasserstein Loss is Wasserstein Distance calculated for random one-dimensional projec-
tion of the data. This approach combines the best from both worlds by providing a tractable distance
measure for high-dimensional distributions.

LSW({xi}Ni=1, {yi}Nj=1) = (5)

E
u∈U [SD−1]

W1({uTxi}Ni=1, {uTyj}Nj=1). (6)

Here, {xi}Ni=1 and {yj}Nj=1 are samples from two distributions. SD−1 denotes a unit sphere in the
D-dimensional space, and U [SD−1] is a uniform distribution on this unit sphere. During training,
we estimate the expectation on the right-hand side of Equation (5) using Monte Carlo estimation.

SW loss works very effectively in the initial optimization stages, capturing the overall similarity in
the shapes of two point clouds and achieving strong alignment at a macroscopic level. However,
it may struggle to establish precise point-to-point correspondence between the two point clouds
at smaller scales. For this reason, we use it in combination with another loss: Nearest-Neighbor
Distance loss.

Nearest-Neighbor Distance loss is a classical loss commonly used in applications like KMeans
clustering. In this loss, for each point in the first cloud, we find its nearest neighbor in the second
cloud and then summat such distances:

LNN =

N∑
i=1

min
j
∥Y [i]− YTT[j]∥2 . (7)

In this way, each point in YTT moves towards the centroid of its nearest neighbors in Y . Since the
point cloud Y can be very large, making the computation of LNN computationally intensive, we use
an unbiased estimation of it by considering only a random subset of Y (indexed as i in Equation (7)).
We do not subsample YTT (indexed as j in Equation (7)).
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Points in YTT that do not have any assigned nearest neighbors (corresponding clusters are empty)
are not be affected by the loss. While these points are covered by the Sliced Wasserstein loss, we
can consider the inverse situation: for each point in YTT, we find its nearest neighbor among Y and
calculate the average of such distances:

Linv
NN =

N∑
j=1

min
i
∥Y [i]− YTT[j]∥2 (8)

and take linear combination of this two losses with some coefficient α:

Ltotal
NN = αLNN + (1− α)Linv

NN. (9)

OOD Detection with TT Point Cloud. TT point cloud compression is well-suited for OOD detec-
tion methods that determine the in-distribution or out-of-distribution status of a query point based on
its distance to the nearest neighbor in the normal point cloud (a databank of in-distribution samples).
That means, that if the normal point cloud originates from some unknown probability distribution
ptrue, then replacing it with another point cloud that comes from the same (or very close) distribution
will not degrade the quality of OOD detection. Therefore, replacing the normal point cloud with
TT-compressed point cloud in this setting is straightforward. In comparison to standard techniques
where the normal cloud is simply subsampled, either randomly or using methods like coresets, mem-
ory gain is achieved due to a more parameter-efficient point cloud representation.

Approximate Nearest-Neighbor Search. TT-point clouds cannot be directly applied to the ap-
proximate nearest-neighbor search (ANN) problem, as the points contained within them do not have
a direct correspondence with the original vectors. Instead, they are “resampled“ from an approxi-
mation of the unknown underlying distribution ptrue. To efficiently address the ANN problem, many
approaches first construct an index structure on top of the vector database. These index structures
serve as sparsifications with a significantly lower number of vectors. All vectors from the database
are organized into buckets corresponding to the nearest point from the index structure. For each
query vector, one must first find the K nearest neighbors from the index structure and then perform
an exhaustive search within their respective buckets.

We propose adapting this approach and using TT-compressed point clouds as an index structure.
This approach allows for a much larger in-memory index with better coverage of the vector database.
Consequently, this results in more evenly distributed bucket sizes, fewer empty buckets, and overall
improved search performance.

Hierarchical Structure. The TT format of point cloud representation allows rapid computation
of mean vectors along any suffix of indices, forming a hierarchical clustering structure. This hier-
archical structure can be represented as a tree of depth k with N1 × · · · × Ni vertices at level i.
All N1 × · · · × Nk leaves in that tree are points from the TT point cloud, and non-leaf vertices are
centroids (mean vectors) of the corresponding subtrees. This allows for a beam search-like greedy
approach to ANN, where we iteratively select the top K nearest neighbors from cluster centroids at
each level, progressively refining the search candidates. The detailed explanation and the complete
algorithm, including pseudocode, are provided in Appendix B.

3 EXPERIMENTS

3.1 TOY EXAMPLES

To provide some intuition about TT point clouds, consider the toy examples shown in Figure 2. Each
toy point cloud consists of 8192 vectors, and we compress it with a TT representation consisting of
two cores with sample dimensions 64 and 128 and a TT-rank of 8. For each toy point cloud, you
can observe the centroids of the first and second levels (see Equation (13)) in the first and second
columns, respectively. In the third column of Figure 2, you can see the probability density of the
original point cloud, and in the fourth column, the probability density of the TT point cloud. The
trained vectors reconstruct the original point clouds very well, capturing all important details. They
are able to approximate both one- and two-dimensional manifolds: the first point cloud consists of a
one-dimensional semicircle, the second point cloud consists of 16 one-dimensional circles arranged
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Figure 2: Three toy point clouds (blue points) consisting of 8192 vectors each, and its compressed
TT-point cloud approximation (orange points).

in a two-dimensional grid, and the third point cloud consists of three sub-clouds: one with a uniform
distribution, one with a normal distribution, and one with a one-dimensional curve featuring a non-
uniform distribution (see details in Appendix D).

3.2 MVTEC DATASET

MVTec AD Bergmann et al. (2019) is an anomaly detection benchmark that contains 15 different
datasets. Each contains training set of anomaly-free images and a test set that contains both images
with and without anomalies. Each anomaly has a mask, so per-pixel metrics can be evaluated.

To reduce the memory consumption of the feature databank, the PatchCore method employs coreset
subsampling, which greedily solves the following optimization problem over subsampled indices
I = {ik}N

′

k=1 for databank Y = {yi}:

argmin
I

{
max
y∈Y

min
i∈I
∥y − yi∥

}
.

Here, N ′ = cN , where N is the size of the original feature databank, and c is a subsampling factor.
Instead of using coreset subsampling, we compress the point cloud Y into a TT Point Cloud YTT.
We use TT representation with two cores: the first one of size 1024×N1 × r and the second of size
r×N2. In all our experiments, for a given subsample factor c, we choose hyperparameters for the TT
point cloud, namely the number of sample factors N1 and N2 and the rank r, so that the total number
of parameters in the TT (1024N1r +N2r) equals to the total parameters in the coreset-subsampled
feature databank (1024cN). We choose the same hyperparameters for all MVTec datasets to avoid
possible hyperparameter overfitting and to demonstrate the stability of our method, which can be
highly desirable in real-world use cases where the method may be applied to related but previously
unseen domains.

The standard comparison metrics include pixel-level and image-level AUROC. While we report
these values, we found that they are not sufficiently representative. For most of the subdatasets in the
MVTec benchmark, the AUROC values are extremely close to 1, often exceeding 0.99. Instead, we
also report the area under the precision-recall curve and a specific value, P@R90, which represents
precision when recall is 90%. This metric is much more challenging for the MVTec benchmark, as
some datasets show P@R90 values as low as 0.19 for the full (not subsampled) PatchCore feature
databank.
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In Table 1, we present results for 1% subsampling (corresponding to a 100x compression ratio) and
0.1% subsampling (corresponding to a 1000x compression ratio). All pixel-level metrics heavily
favor TT Point Cloud, and as the compression ratio increases, the gap only widens. Image-level
metrics are quite competitive with coreset subsampling, with TT Point Cloud showing a slight ad-
vantage.

3.3 APPROXIMATE NEAREST NEIGHBORS

ANN is a very well-developed and competitive field, with highly optimized solutions, both algorith-
mically and in terms of implementation. There are many state-of-the-art libraries and frameworks
like FAISS git (a) or NGT git (b), which have undergone extensive low-level optimizations. We
acknowledge that it is challenging to compete with such high-end solutions. Instead, we propose
a proof-of-concept solution for using TT point cloud as an index structure. In our evaluation, we
focus on indirect characteristics such as the quality of dataset coverage, rather than providing actual
queries-per-second values.

We conduct our experiments on the Deep1B Babenko & Lempitsky (2016) – dataset, that contains
one billion 96-dimensional vectors, that was produced as an outputs from last fully-connected layer
of ImageNet-pretrained GoogLeNet Szegedy et al. (2015) model, then compressed by PCA to 96
dimensions and l2-normalized. In our experiments we use only subset of size 10M vectors.

We build proof-of-concept ANN system based on TT point cloud, where we use TT point cloud as
an indexing tree structure, which plays a role of first-stage database filtration. During training step,
each vector in the database is distributed to the bucket of the closest to it point from TT point cloud.
During inference, for the query vector q we first search for K nearest points from TT point cloud,
using efficient hierarchical search technique, described in Section 2. Then look for nearest neighbor
only inside short-list, that consists of the corresponding buckets.

We compare with similar technique (G)NO-IMI Babenko & Lempitsky (2016). It uses the same idea
with two-level indexing tree structure of the form

{Si + αi,jTj} , (10)

where Si and Tj represent two sets of vectors, first and second-level, respectively. α is an additional
weight matrix that is used only in GNO-IMI modification (for NO-IMI αi,j = 1∀i, j), that adds
more flexibility for the construction with the cost of more memory. In the greedy search approach of
GNO-IMI, the algorithm initially seeks the top K candidates among Si and subsequently explores
the best K candidates among Si + αi,jTj for the indices i determined in the preceding step. In
their work Babenko & Lempitsky (2016), it is suggested to utilize sets {Si} and {Tj} of equal size
214. However, given that we are working with a subset of the Deep1B dataset, we have adjusted this
quantity to 210. This adaptation results in a total of 220 vectors in the index structure, encompassing
2 · 96 · 210 + 220 = 1.2 million parameters.

We compare this structure with a TT point cloud containing three cores, with sample dimensions of
64, 64, and 256, resulting in the same number of buckets. To match the memory consumption of the
TT point cloud and GNO-IMI, we can use a TT-rank as large as 96.

The complexity of ANN search with an indexing structure consists of two factors. First, how fast
and efficiently we can search for bucket candidates, and second, how good these buckets are. Even
if the indexing structure somehow manages to store many vectors using a small amount of memory,
if most of the corresponding buckets are empty and only a few of them contain the full vector
database, then the second stage of the search will still be required to exhaustively search through a
large proportion of the database. If the indexing structure has M buckets, with i-th bucket of size Ni,
then the minimum number of points that need to be searched to find the nearest neighbor of vector
q is given by:

M∑
i=1

piNi, (11)

where pi is the probability that the nearest neighbor of q is among the i-th bucket. We can estimate
pi based on the size of the i-th bucket itself as Ni

N , where N =
∑M

i=1 Ni is the total number of
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Figure 3: (a, b, c, d): Comparison of different characteristics of the index search structure for GNO-
IMI and TT-point cloud with varying TT-ranks. On the x-axis, we plot TT-rank (upper value) and
the fraction of parameters of the TT point cloud relative to the number of parameters in GNO-IMI
(bottom value). (e, f): Two-dimensional PCA projections of the original point cloud (e) and TT-point
cloud (f).

vectors in the database. Then, the expected number of points to be searched through is:

M∑
i=1

piNi =

M∑
i=1

Ni

N
Ni ∝

M∑
i=1

N2
i (12)

On Figures 3e and 3f you can see two-dimensional PCA projections of the original point cloud
(which has shape 10M×96) and TT-compressed point cloud (representing point cloud of size 1M×
96 but taking only 671K parameters).

Figure 3d compares dependence of Equation (12) and Figure 3a compares number of empty buckets
for GNO-IMI and TT with different ranks. TT point cloud has significantly less empty buckets:
almost×6 less for all ranks. Expected bucket size Equation (12) is lower already with TT-rank = 32
(only 21% of GNO-IMI size).

Figure 3b illustrates Recall@R for different values of R – rate of queries for which true nearest
neighbor is present in a short-list of length R. As the curves are quite similar, we built a plot of
curve difference with GNO-IMI as a baseline: we plot original Recall@R curve minus GNO-IMI
Recall@R curve on Figure 3c. All TT-ranks starts with quite high advantage over GNO-IMI and
the larger the rank – the longer and bigger this advantage continues. Although at the end for recalls
very close to one there is a small period of time when GNO-IMI is better.

4 RELATED WORK

TT Point Cloud is built upon tensor-train low-rank decomposition, which has a rich history of appli-
cations in Machine Learning and Deep Learning. Tensor-Train Matrix decomposition, a specialized
form of TT decomposition, shares common principles with our decomposition approach. It has been
employed to compress large weight matrices of linear classification layers in fully-convolutional
networks Novikov et al. (2015), vocabulary embedding layers in language models Hrinchuk et al.
(2020), and linear layers in transformer-based networks Chekalina et al. (2023) and others Phan
et al. (2020). TT decomposition has demonstrated its efficiency in parameterizing high-dimensional
distributions Novikov et al. (2021); Kuznetsov et al. (2019).
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(a) ×100 compression ratio.
dataset pixel p@r=90

Our
pixel p@r=90
Coreset

pixel AUROC
Our

pixel AUROC
Coreset

pixel AUPRC
Our

pixel AUPRC
Coreset

image
p@r=90
Our

image
p@r=90
Coreset

image AU-
ROC Our

image AU-
ROC Coreset

image
AUPRC
Our

image
AUPRC
Coreset

Bottle 0.780 0.777 0.990 0.988 0.904 0.901 1.000 1.000 1.000 1.000 1.000 1.000
Cable 0.545 0.396 0.986 0.971 0.830 0.792 0.993 0.991 0.995 0.994 0.997 0.996
Capsule 0.366 0.339 0.988 0.979 0.661 0.646 0.993 0.994 0.990 0.988 0.998 0.998
Carpet 0.496 0.474 0.986 0.985 0.805 0.802 1.000 0.995 0.982 0.981 0.995 0.994
Grid 0.398 0.294 0.986 0.976 0.757 0.734 1.000 1.000 0.987 0.990 0.996 0.997
Hazelnut 0.634 0.610 0.989 0.987 0.843 0.834 1.000 1.000 1.000 1.000 1.000 1.000
Leather 0.478 0.479 0.995 0.995 0.735 0.734 1.000 1.000 1.000 1.000 1.000 1.000
Metal Nut 0.809 0.710 0.981 0.965 0.929 0.909 1.000 1.000 0.999 0.998 1.000 1.000
Pill 0.365 0.265 0.967 0.952 0.810 0.792 0.991 0.990 0.975 0.975 0.996 0.996
Screw 0.155 0.075 0.984 0.961 0.562 0.574 0.959 0.963 0.952 0.962 0.979 0.985
Tile 0.645 0.641 0.972 0.970 0.801 0.810 1.000 1.000 1.000 1.000 1.000 1.000
Toothbrush 0.541 0.459 0.991 0.981 0.812 0.785 0.923 0.908 0.929 0.902 0.967 0.953
Transistor 0.260 0.135 0.949 0.896 0.673 0.630 1.000 0.997 0.993 0.994 0.991 0.992
Wood 0.386 0.367 0.956 0.953 0.706 0.706 1.000 0.999 0.988 0.989 0.996 0.997
Zipper 0.520 0.512 0.987 0.985 0.784 0.786 1.000 0.996 0.996 0.993 0.999 0.998
Mean 0.492 0.435 0.980 0.970 0.774 0.762 0.991 0.989 0.986 0.984 0.994 0.994

(b) ×1000 compression ratio.
dataset pixel p@r=90

Our
pixel p@r=90
Coreset

pixel AUROC
Our

pixel AUROC
Coreset

pixel AUPRC
Our

pixel AUPRC
Coreset

image
p@r=90
Our

image
p@r=90
Coreset

image AU-
ROC Our

image AU-
ROC Coreset

image
AUPRC
Our

image
AUPRC
Coreset

Bottle 0.755 0.627 0.989 0.976 0.896 0.864 1.000 1.000 1.000 1.000 1.000 1.000
Cable 0.375 0.151 0.976 0.925 0.769 0.641 0.941 0.913 0.969 0.955 0.982 0.975
Capsule 0.280 0.065 0.984 0.927 0.618 0.538 0.969 0.973 0.956 0.958 0.990 0.992
Carpet 0.478 0.428 0.986 0.981 0.805 0.792 0.998 0.991 0.981 0.978 0.995 0.994
Grid 0.259 0.092 0.978 0.938 0.712 0.625 0.970 0.981 0.976 0.970 0.992 0.990
Hazelnut 0.572 0.415 0.986 0.979 0.830 0.786 1.000 0.998 1.000 0.999 1.000 1.000
Leather 0.489 0.468 0.995 0.994 0.751 0.723 1.000 1.000 1.000 1.000 1.000 1.000
Metal Nut 0.644 0.400 0.970 0.933 0.900 0.818 1.000 0.996 0.992 0.976 0.998 0.995
Pill 0.314 0.136 0.962 0.920 0.785 0.708 0.976 0.965 0.959 0.946 0.993 0.990
Screw 0.064 0.028 0.962 0.913 0.298 0.252 0.792 0.800 0.735 0.774 0.894 0.916
Tile 0.635 0.583 0.970 0.962 0.797 0.792 1.000 1.000 1.000 0.999 1.000 1.000
Toothbrush 0.350 0.165 0.983 0.956 0.777 0.661 0.902 0.792 0.918 0.816 0.964 0.931
Transistor 0.156 0.083 0.903 0.805 0.587 0.495 0.977 0.961 0.956 0.969 0.965 0.971
Wood 0.390 0.335 0.957 0.948 0.709 0.692 1.000 1.000 0.989 0.990 0.997 0.997
Zipper 0.457 0.310 0.984 0.968 0.751 0.734 0.984 0.999 0.986 0.993 0.996 0.998
Mean 0.415 0.286 0.972 0.942 0.732 0.675 0.967 0.958 0.961 0.955 0.984 0.983

Table 1: Metrics for the MVTec AD benchmark comparing TT point cloud-based feature databank
subsampling and coreset-based subsampling for Patchcore feature vectors. Values are averaged
across 16 runs.

Coreset subsampling Agarwal et al. is a well-established technique with applications in various
contexts. In essence, a coreset is a subset S ⊂ A that allows for a good approximation of the
solution to a problem over the entire set A.

Patchcore Roth et al. (2022) extracts pixel-level features from a set of normal images and make a
decision whether a query point belongs to the in-distribution or out-of-distribution class based on
the distance to the nearest neighbor among this databank. To reduce memory consumption of the
databank and speed up NN search, Patchcore utilizes a specific type of coreset that is particularly
well-suited for optimizing nearest-neighbor search performance Sener & Savarese (2018). Other
methods that use pixel-level feature databank are SPADE Cohen & Hoshen (2021) and PaDiM De-
fard et al. (2020). But they do not use the full set of vectors during inference, as SPADE incorporates
a distinct initial image-level filtering procedure to operate with relatively small sets of feature vectors,
and PaDiM learns a parametric probabilistic representation of the normal class. Notably, Patchcore
exhibits significant improvements over similar methods, underscoring the effectiveness of using the
full feature databank and the importance of its efficient representation.

ANN search is a crucial problem with various solutions, employing different techniques, includ-
ing locally-sensitive hashing Jafari et al. (2021), graph-based approaches Wang et al. (2021). IV-
FADC Jégou et al. (2011) constructs a one-level indexing tree structure, effectively performing k-
means clustering. IMI Babenko & Lempitsky (2015) utilizes product quantization with two compo-
nents instead of vector quantization for the bucket centroids, resulting in an index of quadratic size
when compared to the IVFADC approach. (G)NO-IMI Babenko & Lempitsky (2016) builds upon
this concept and develops a two-level indexing structure with the capability of approximate nearest
neighbor search within it, achieving a significantly better balance between retrieval speed and recall.

5 CONCLUSION

The use of large vector databases in modern machine learning raises the question of their efficient
storage and fast vector retrieval. We propose using tensor-train low-rank tensor decomposition
to represent large point clouds with a small number of parameters. We introduce a probabilistic
interpretation of point cloud approximation to achieve a compression method that is invariant to
vector reordering in point cloud. Minimization of Sliced Wasserstein Equation (5) and Nearest-
Neighbor Distance Loss Equation (9) allows to interpret points from TT point cloud as a newly
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generated points, sampled from the same distribution as points in the original point cloud. TT
point clouds are particularly suitable for methods interested in the underlying distribution rather
than the vectors themselves, such as out-of-distribution detection based on feature databanks. We
tested the proposed OOD feature databank compression method and compared it to coreset sub-
sampling on MVTec AD benchmark. In the crucial area of approximate nearest-neighbor search,
where TT point clouds cannot be directly applied, we proposed a proof-of-concept solution: us-
ing TT Point Cloud as an indexing structure for the initial filtering of a small number of vectors,
in which the nearest neighbors can then be searched through by exhaustive search. We demon-
strated the advantages of this approach on the Deep1B dataset in comparison to another index-
ing method, GNO-IMI. All experiments and implementation of the proposed method can be found
in https://github.com/PgLoLo/tt_point_cloud.
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A APPENDIX

B HIERARCHICAL STRUCTURE

Each row index of the matrix YTT corresponds to some multi-index (i1, · · · , ik) of the tensor YTT.
The TT structure enables rapid computation of marginalization along a suffix of indices in the multi-
index. Let’s define the mean vector of tensor YTT along some suffix of indices (ia+1, · · · , ik) as
y
(a)
i1,··· ,ia :

y
(a)
i1,··· ,ia =

1

Na+1 · · ·Nk

∑
ia+1,··· ,ik

YTT[i1, · · · , ik]. (13)

The TT representation allows for the efficient evaluation of such sums. Specifically, marginalization
along the last index ik has its own TT structure:

y
(k−1)
i1,··· ,ik−1

= YTT(G1, · · · , G̃k−1)[i1, · · · , ik−1], (14)

G̃k−1 =

r,Nk∑
α=1,i=1

1

Nk
Gk−1[:, :, α]Gk[α, i]. (15)

Note that the last two cores, Gk−1 and Gk, have been contracted together to form a new core, G̃k−1.
All other cores remain unchanged. The process of marginalization over a suffix of any length can be
obtained by induction:

y
(a)
i1,··· ,ia = YTT(G1, · · · , G̃a)[i1, · · · , ia], (16)

G̃a =

r,Na+1∑
α=1,i=1

1

Na+1
Ga[:, :, α]G̃a+1[α, i]. (17)

These marginals essentially serve as centroids of clusters, where each cluster is defined by fixing
some prefix of indices in YTT and together organizes into a hierarchical clustering structure. It is
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important to note that there are no guarantees that this clustering is inherently “good“, meaning that
each cluster is well-localized and does not intersect with other clusters, however, if it is, efficient
approximate nearest-neighbor search can be employed. We consider a beam search-like greedy
search approach. For a query vector q, we select the K nearest neighbors from among the cluster
centroids at the top level:

J1 :=
{
i1j

}K

j=1
= K-argmin

i1

∥∥∥q− y
(1)
i1

∥∥∥ (18)

Then, in an iterative fashion, we continue to descend in the hierarchical clustering structure while
maintaining a set of the K best candidates for the current centroids level.

J2 :=
{(

i1j , i2j
)}K

j=1
= K-argmin

i1,i2
s.t.

i1∈J1

∥∥∥q− y
(a)
i1,i2

∥∥∥ (19)

· · · (20)

Jk :=
{(

i1j , · · · , ikj
)}K

j=1
= K-argmin

i1,··· ,ik
s.t.

(i1,··· ,ik−1)∈Jk−1

∥∥∥q− y
(a)
i1,··· ,ik

∥∥∥ . (21)

The resulting approximate nearest-neighbor is the best candidate among Jk. Both operations,
marginalization, and indexing, required for the fast ANN algorithm, can be efficiently implemented
for TT in such a way that on each iteration of Equation (19), the algorithm works with only one
core of TT representation. The complete algorithm is described in detail with a code listing in Ap-
pendix C.

C BEAM SEARCH

Algorithm 1: Beam search ANN for TT-point cloud
Data: Parameters of TT-point cloud G1, · · · ,Gk. Precomputed marginalization cores

G̃1, · · · , G̃k Equation (16). Queary vector q. Parameter K that determines how many
nearest neighbors should be found.

Result: Set J =
{
(i1j , · · · , ikj)

}K

j=1
of approximate nearest neighbors of vector q among

vectors of YTT

1 Take first-level centroids y(1)
i1

= G̃1[i1, :] ;

2 Calculate distances between q and y
(1)
i1

: di =
∥∥∥y(1)

i − q
∥∥∥2 ;

3 Take indices of K closest first-level centroids: J1 ←
{
i1j

}K

j=1
= K-argmin

i
di ;

4 Take K slices of first TT-core G1 to be able to efficiently calculate higher-level centroids with
fixed prefix of indices: Lj ← G1[:, i1j , :]∀j = 1..K;

5 for current centroids level l← 2 to k do
6 Evaluate l-th level centroids with indices from Jl−1: yj,il ← y

(l)
i1j ,··· ,il−1j ,il

= L:,j,:G̃l[:, il]

;
7 Calculate distances between q and yj,il : dj,il ← ∥yj,il − q∥2 ;
8 Take top-K best candidates: J ′ = {(ja, ila)} = K-argmin

j,il

dj,il ;

9 Update set with indices of current top-K candidates: Jl =
{
(i1j , · · · , il)|(j, il) ∈ J ′} ;

10 Update state matrices L1, · · · ,LK : La ← LjaGl[:, ila, :] s.t. (ja, ila) ∈ J ′ ;
11 return Jk;

Efficient implementation of beam search over TT point cloud consists of two components:

1. Fast and efficient marginals calculation to be able to obtain centroids of various levels
2. Fast and efficient maintaining of such centroids, indices of which are already chosen by

beam search.
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For the first component, we need to precalculate surrogate TT-cores G̃1, · · · , G̃k as described
in Equation (16). This has to be done only once and then can be reused for any number of queries.

For the second component, consider calculating y
(l)
i1,··· ,il for fixed i1, · · · , il−1 and all possible il:

y
(a)
i1,··· ,il [d] = YTT(G1, · · · , G̃l)[i1, · · · , il] (22)

= G1[d, i1, :]G2[:, i2, :] · · · G̃l[:, il] (23)

= L[d, :]G̃l[:, il], (24)

where
L[d, :] = G1[d, i1, :] · · ·Gl−1[:, i2, :]. (25)

In line 1 we maintain all K such auxiliary matrices L1, · · · ,LL: first they are initialized in line 4
and updated on each for-loop iteration in line 10.

Complexity of the beam search is as follows:

1. For the first-level centroids we need to calculate distances in line 2 in O(DN1) time and
then initialize matrices L in line 4 in O(KDr) time.

2. For each other level centroids, we need to calculate centroids in line 6 in O(kdrn) time,
where n = maxi=2..k−1 Ni. Then update matrices L in line 10 in O(KDr2) time.

The total asymptotic of Alg.1 is O(DN1 + kKDrn+ kKDr2) time.

D EXPERIMENT SETUPS

D.1 TOY EXAMPLES

First toy point cloud is 16 uniform distributions over circles, arranged in 4-by-4 grid. Each circle is
chosen uniformly.

Second toy point cloud is a uniform distribution over one half of a circle.

Thirds toy point cloud is a mixture of three distributions with equal weights:

1. non-uniform distribution over 1-dimensional closed loop

2. uniform distribution over disc (blob inside closed loop)

3. normal distribution (blob above closed loop)

D.2 MVTEC AD

For all datasets in MVTec AD benchmark we used same hyperparameters.

We followed original implementation1 of Patchcore for feature extraction and coreset subsampling.
We trained TT point cloud via riemannian stochastic gradient descent Novikov et al. (2022) for 213
iterations with initial learning rate equals to 103 and exponential decay of 1

3 every 256 iterations.
Before multiplying by learning rate, we scale gradient to 1 to achieve some kind of adaptivity for
riemannian SGD.

Parameters of the loss function:

1. SW loss with coefficient 1 and batch size 32

2. NN Distance loss with α = 0.1 and coefficient 0.1, with random 211 samples from Y on
each iteration.

1https://github.com/amazon-science/patchcore-inspection
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D.3 APPROXIMATE NEAREST-NEIGHBOR

To train TT point cloud as an ANN indexing structure we performed two-stage optimization. On
the first stage we used Riemannian SGD Novikov et al. (2022) with combination of SW loss with
coefficient 1 and batch size 32, and NN Distance loss with α = 0.1 and coefficient 0.1 with random
215 samples from Y on each iteration. Initial learning rate 102 with exponential decay of 1

3 every
211 iterations. Number of iterations 213.

On the second stage we used ALS Holtz et al. (2012) with only NN Distance loss with α equals to
0.001 for 256 iterations.
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