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Abstract

Graph neural networks (GNNs) have pioneered advancements in graph representa-1

tion learning, exhibiting superior feature learning and performance over multilayer2

perceptrons (MLPs) when handling graph inputs. However, understanding the3

feature learning aspect of GNNs is still in its initial stage. This study aims to4

bridge this gap by investigating the role of graph convolution within the context5

of feature learning theory in neural networks using gradient descent training. We6

provide a distinct characterization of signal learning and noise memorization in7

two-layer graph convolutional networks (GCNs), contrasting them with two-layer8

convolutional neural networks (CNNs). Our findings reveal that graph convo-9

lution significantly augments the benign overfitting regime over the counterpart10

CNNs, where signal learning surpasses noise memorization, by approximately11

factor
√
D

q−2
, with D denoting a node’s expected degree and q being the power of12

the ReLU activation function where q > 2. These findings highlight a substantial13

discrepancy between GNNs and MLPs in terms of feature learning and generaliza-14

tion capacity after gradient descent training, a conclusion further substantiated by15

our empirical simulations.16

1 Introduction17

Graph neural networks (GNNs) have recently demonstrated remarkable capability in learning node18

or graph representations, yielding superior results across various downstream tasks, such as node19

classifications [1, 2, 3], graph classifications [4, 5, 6, 7] and link predictions [8, 9, 10], etc. However,20

the theoretical understanding of why GNNs can achieve such success is still in its infancy. Compared21

to multilayer perceptron (MLPs), GNNs enhance representation learning with an added message22

passing operation [11]. Take graph convoluational network (GCN) [1] as an example, it aggregates a23

node’s attributes with those of its neighbors through a graph convolution operation. This operation,24

which leverages the structural information (adjacency matrix) of graph data, forms the core distinction25

between GNNs and MLPs. Empirical evidence from three node classification tasks, as shown in26

Figure 1, suggests GCNs outperform MLPs. Motivated by the superior performance of GNNs, we27

pose a critical question about graph convolution:28

• What role does graph convolution play during gradient descent training, and what mecha-29

nism enables a GCN to exhibit better generalization after training?30

Several recent studies have embarked on a theoretical exploration of graph convolution’s role in31

GNNs. For instance, Baranwal et al. (2021) [12] considered a setting of linear classification of32

data generated from a contextual stochastic block model [13]. Their findings indicate that graph33

convolution extends the regime where data is linearly separable by a factor of approximately 1/
√
D34

compared to MLPs, with D denoting a node’s expected degree. Baranwal et al. (2023) [14] further35
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investigated the impact of graph convolutions in multi-layer networks, showcasing improved linear36

separability. However, these examples, while insightful, operate within a linear neural network setting37

and do not account for non-linear activation, which significantly constrains the network’s capabilities.38

Additionally, these studies assume the maximum margin solution of GNNs, thereby losing a nuanced39

characterization of the GNNs’ optimization process. Consequently, there exists a notable gap between40

existing theoretical explorations and the detailed examination of GNNs incorporating non-linear41

activation, comprehensive characterization of optimization, and generalization ability.42

Figure 1: Performance (test accu-
racy) comparison between GCN and
MLP on node classification tasks.

To respond to the growing demand for a comprehensive the-43

oretical understanding of graph convolution, we delve into the44

feature learning process [15, 16, 17] of graph neural networks.45

In our study, we introduce a data generation model—termed46

SNM-SBM—that combines a signal-noise model [15, 18] for47

feature creation and a stochastic block model [19] for graph48

construction. Our analysis is centered on the convergence and49

generalization attributes of two-layer graph convolution net-50

works (GCNs) when trained via gradient descent, compared51

with the established outcomes for two-layer convolutional neu-52

ral networks (CNNs) as presented by Cao et al. (2022) [15].53

While both GCNs and CNNs demonstrate the potential to54

achieve near-zero training error, our study effectively sheds light on the discrepancies in their gen-55

eralization abilities. We emphasize the crucial contribution of graph convolution to the enhanced56

performance of GNNs. Our study’s key contributions are as follows:57

• We establish global convergence guarantees for graph neural networks training on data58

drawn from SNM-SBM model. We demonstrate that, despite the nonconvex optimization59

landscape, GCNs can achieve zero training error after a polynomial number of iterations.60

• We further establish population loss bounds of overfitted GNN models trained by gradient61

descent. We show that under certain conditions on the signal-to-noise ratio, GNNs trained62

by gradient descent will prioritize learning the signal over memorizing the noise, and thus63

achieves small test losses.64

• We delineate a marked contrast in the generalization capabilities of GCNs and CNNs65

following gradient descent training. We identify a specific regime where GCNs can attain66

nearly zero test error, whereas the performance of the model discovered by CNNs does not67

exceed random guessing. This conclusion is further substantiated by empirical verification.68

2 Related Work69

Role of Graph Convolution in GNNs. Enormous empirical studies of various GNNs models70

with graph convolution [20, 21, 22, 23, 24] have been demonstrating that graph convolutions can71

enhance the performance of traditional classification methods, such as a multi-layer perceptron (MLP).72

Towards theoretically understanding the role of graph convolution, Xu et al. (2020) [25] identify73

conditions under which MLPs and GNNs extrapolate, thereby highlighting the superiority of GNNs74

for extrapolation problems. Their theoretical analysis leveraged the concept of the over-parameterized75

networks and the neural tangent kernel [26]. Huang et al. (2021) [27] employed a similar approach76

to examine the role of graph convolution in deep GNNs within a node classification setting. They77

discovered that excessive graph convolution layers can hamper the optimization and generalization of78

GNNs, corroborating the well-known over-smoothing issue in deep GNNs [28]. Another pertinent79

work by Hou et al. (2022) [29] proposed two smoothness metrics to measure the quantity and80

quality of information derived from graph data, along with a novel attention-based framework. Some81

rent works [12, 14, 21] have demonstrated that graph convolution broadens the regime in which a82

multi-layer network can classify nodes, compared to methods that do not utilize the graph structure,83

especially when the graph is dense and exhibits homophily. Yang et al. (2022) [30] attributed the84

major performance gains of GNNs to their inherent generalization capability through graph neural85

tangent kernel (GNTK) and extrapolation analysis . As for neural network theory, these works either86

gleaned insights from GNTK [31, 27, 32] or studied the role of graph convolution within a linear87

neural network setting. Unlike them, our work extends beyond NTK and investigates a more realistic88

setting concerning the convergence and generalization of neural networks in terms of feature learning.89
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Feature learning in neural networks. This work builds upon a growing body of research on90

how neural networks learn features. Allen-Zhu et al. (2020) [18] formulated a theory illustrating91

that when data possess a “multi-view” feature, ensembles of independently trained neural networks92

can demonstrably improve test accuracy. Further, Allen-Zhu et al. (2022) [16] demonstrated that93

adversarial training can purge certain small dense mixtures from the hidden weights during the training94

process of a neural network, thus refining the hidden weights. Ba et al. (2022) [33] established95

that the initial gradient update contains a rank-1 ‘spike’, which leads to an alignment between the96

first-layer weights and the linear component feature of the teacher model. Cao et al. (2022) [15]97

investigated the benign overfitting phenomenon in training a two-layer convolutional neural network98

(CNN), illustrating that under certain conditions related to the signal-to-noise ratio, a two-layer CNN99

trained by gradient descent can achieve exceedingly low test loss through feature learning. Alongside100

related works [34, 35, 17, 36, 37, 38, 39, 40], all these studies have underscored the existence of101

feature learning in neural networks during gradient descent training, forming a critical line of inquiry102

that this work continues to explore. However, the neural tangent kernel (NTK) theory [41, 42, 43, 44],103

also known as “lazy training” [45], where the neural network function is approximately linear in its104

parameters, cannot demonstrate feature learning. Thus, the optimization and generalization analysis105

in our study extends beyond the NTK regime.106

3 Problem Setup and Preliminary107

3.1 Notations108

We use lower bold-faced letters for vectors, upper bold-faced letters for matrices, and non-bold-faced109

letters for scalars. For a vector v = (v1, v2, · · · , vd)⊤, its ℓ2-norm is denoted as ∥v∥2 ≜
√∑d

i=1 v
2
i .110

For a matrix A = (aij) ∈ Rm×n, we use ∥A∥2 to denote its spectral norm and ∥A∥F for its111

Frobenius norm. When comparing two sequences {an} and {bn}, we employ standard asymptotic112

notations such as O(·), o(·), Ω(·), and Θ(·) to describe their limiting behavior. Specifically, we113

write an = O(bn) if there exists a positive real number C1 and a positive integer N such that114

|an| ≤ C1|bn| for all n ≥ N . Similarly, we write an = Ω(bn) if there exists C2 > 0 and N > 0115

such that |an| > C2|bn| for all n ≥ N . We say an = Θ(bn) if an = O(bn) and an = Ω(bn).116

Besides, if limn→∞ |an/bn| = 0, we express this as an = o(bn). We use Õ(·), Ω̃(·), and Θ̃(·) to117

hide logarithmic factors in these notations respectively. Moreover, we denote an = poly(bn) if118

an = O((bn)
p) for some positive constant p and an = polylog(bn) if an = poly(log(bn)). Lastly,119

sequences of integers are denoted as [n] = {1, 2, . . . , n} and [m] = {1, 2, . . . ,m}.120

3.2 Data model121

In our approach, we utilize a signal-noise model for feature generation, combined with a stochastic122

block model for graph structure generation. Specifically, we define the feature matrix as X ∈ Rn×2d,123

with n representing the number of samples and 2d being the feature dimensionality. Each feature124

associated with a data point is generated from a signal-noise model, conditional on the Rademacher125

random variable y ∈ −1, 1, and a latent vector µ ∈ Rd:126

x = [x(1),x(2)] = [y · µ, ξ], (1)

where x(1),x(2) ∈ Rd, and ξ ∼ N (0, σ2
p · (I − µµ⊤ · ∥µ∥−2

2 )) consists of independent standard127

normal entries with σ2
p as the variance. The term I−µµ⊤ · ∥µ∥−2

2 is employed to guarantee that the128

noise vector is orthogonal to the signal vector µ. It’s worth mentioning that a series of recent works129

[18, 15, 35, 46] have explored similar signal-noise models to illustrate the feature learning process130

and benign overfitting of neural networks.131

Following this, we implement a stochastic block model with inter-class edge probability p and intra-132

class edge probability s, devoid of self-loops. Specifically, the adjacency matrix A = (aij)n× n133

is Bernoulli distributed, with aij ∼ Ber(p) when yi = yj , and aij ∼ Ber(s) when yi = −yj .134

The combination of a stochastic block model with the signal-noise model (1) is represented as135

SNM− SBM(n, p, s,µ, σp, d). Consequently, the raw feature and graph structure are generated136

as (A,X,y) ∼ SNM − SBM(n, p, s,µ, σp, d), allowing the data model (1) used in MLP to be137

considered as a special case where p = s = 0.138
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3.3 Neural network model and training method139

In this section, we present two distinct types of neural network models: a two-layer convolutional140

neural network (CNN), which falls under the category of a multilayer perceptron (MLP), and a Graph141

Convolutional Neural Network (GCN) [1].142

CNN. We introduce a two-layer CNN model, denoted as f , which utilizes a non-linear activation143

function, σ(·). Specifically, we employ a polynomial ReLU activation function defined as σ(z) =144

max{0, z}q, where q > 2 is a hyperparameter. Note that the use of a polynomial ReLU activation145

function aligns with related studies [18, 16, 15, 35, 47] that investigate neural network feature146

learning. Mathematically, given the input data x, the CNN’s output is represented as f(W,x) =147

F+1(W+1,x)− F−1(W−1,x), where F+1(W+1,x) and F−1(W+1,x) are defined as follows:148

Fj(Wj ,x) =
1

m

m∑
r=1

[
σ(w⊤

j,rx
(1)) + σ(w⊤

j,rx
(2))
]
, (2)

where the second layer parameters are fixed as either +1 or −1, We assume a poly-logarithmic149

network width in relation to the training sample size, i.e., m = polylog(n), where m signifies the150

network’s width, and wj,r ∈ Rd refers to the weight of the first layer’s r-th neuron connected to151

the second layer’s j class. The symbol W collectively represents the model’s weights. Moreover,152

each weight in the first layer is initialized from a random draw of a Gaussian random variable,153

wj,r ∼ N (0, σ2
0 · Id×d) for all r ∈ [m] and j ∈ {−1, 1}, with σ0 regulating the initialization154

magnitude for the first layer’s weight.155

Upon receiving training data S ≜ {xi, yi}ni=1 drawn from SNM− SBM(n, p = 0, s = 0,µ, σp, d),156

we aim to learn the network’s parameter W by by minimizing the empirical cross-entropy loss157

function:158

LCNN
S (W) =

1

n

n∑
i=1

ℓ(yi · f(W,xi)), (3)

where ℓ(y · f(W,x)) = log(1 + exp(−f(W,x) · y)). The update rule for the gradient descent used159

in the CNN is then given as:160

w
(t+1)
j,r = w

(t)
j,r − η · ∇wj,r

LCNN
S (W(t))

= w
(t)
j,r −

η

nm

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r, ξi⟩) · jyiξi −
η

nm

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r, yiµ⟩) · jµ, (4)

where we define the loss derivative as ℓ′i ≜ ℓ′(yi · fi) = − exp(−yi·fi)
1+exp(−yi·fi) . It’s important to clarify that161

the model we use for the MLP part is a two-layer CNN network. We categorize it as an MLP for162

comparison purposes with the graph neural network.163

GCN. Graph neural network (GNNs) fuse graph structure information and node features to learn164

representation of nodes. Consider a two-layer GCN f with graph convolution operation on the165

first layer. The output of the GCN is given by f(W, x̃) = F+1(W+1, x̃)− F−1(W−1, x̃), where166

F+1(W+1, x̃) and F−1(W+1, x̃) are defined as follows:167

Fj(Wj , x̃) =
1

m

m∑
r=1

[
σ(w⊤

j,rx̃
(1)) + σ(w⊤

j,rx̃
(2))
]
. (5)

Here, X̃ ≜ [x̃1, x̃2, · · · , x̃n]
⊤ = D̃−1ÃX ∈ Rn×2d with Ã = A+ In representing the adjacency168

matrix with self-loop, and D̃ is a diagonal matrix that records the degree of each node, namely,169

D̃ii =
∑

j Ãij . For simplicity we denote Di ≜ D̃ii. Therefore, in contrast to the CNN model (2),170

the GCNs (5) incorporate the normalized adjacency matrix D̃−1Ã, also termed as graph convolution,171

which serves as a pivotal component.172

With the training data S ≜ {xi, yi}ni=1 and A ∈ Rn×n drawn from SNM− SBM(n, p, s,µ, σp, d),173

we consider to learn the network’s parameter W by optimizing the empirical cross-entropy loss174

function:175

LGCN
S (W) =

1

n

n∑
i=1

ℓ(yi · f(W, x̃i)). (6)
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The gradient descent update for the first layer weight W in GCN can be expressed as:176

w
(t+1)
j,r = w

(t)
j,r − η · ∇wj,r

LGCN
S (W(t))

= w
(t)
j,r −

η

nm

n∑
i=1

ℓ
′(t)
i σ′(⟨w(t)

j,r, ξ̃i⟩) · jyiξ̃i −
η

nm

n∑
i=1

ℓ
′(t)
i σ′(⟨w(t)

j,r, ỹiµ⟩) · jỹiµ, (7)

where we define “aggregated label” ỹi = D−1
i

∑
k∈N (i) yk and “aggregated noise vector ” ξ̃i =177

D−1
i

∑
k∈N (i) ξk, with N (i) being a set that contains all the neighbor of node i. In this study, our178

primary objective is to demonstrate the enhanced feature learning capabilities of GNNs in comparison179

to CNNs. This is achieved by examining the generalization ability of the GNN model through the180

lens of population loss, which can be formulated as follows:181

LGCN
D (W) = Ex,y∼D=SNM−SBMℓ(y · f(W, x̃)). (8)

4 Thereotical Results182

In this section, we introduce our key theoretical findings that elucidate the optimization and general-183

ization processes of feature learning in GCNs. Through the application of the gradient descent rule184

outlined in Equation (7), we observe that the gradient descent iterate w
(t)
j,r is a linear combination of185

its random initialization wr(0), the signal vector µ and the noise vectors in the training data ξi
1 for186

i ∈ [n]. Consequently, for r ∈ [m], the decomposition of weight vector iteration can be expressed:187

w
(t)
j,r = w

(0)
j,r + γ

(t)
j,r · ∥µ∥

−2
2 · µ+

n∑
i=1

ρ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi. (9)

where γ(t)
j,r and ρ

(t)
j,r,i serve as coefficients. We refer to Equation (9) as the signal-noise decomposition188

of w(t)
j,r. The normalization factors ∥µ∥−2

2 and ∥ξi∥−2
2 are introduced to ensure that γ(t)

j,r ≈ ⟨w(t)
j,r,µ⟩,189

and ρ
(t)
j,r,i ≈ ⟨w(t)

j,r, ξi⟩. We employ γ
(t)
j,r to characterize the process of signal learning and ρ

(t)
j,r,i to190

characterize the noisy represent. From an intuitive standpoint, if, for some iteration certain γ
(t)
j,r values191

are sufficiently large while all |ρ(t)j,r,i| are relatively small, this indicates that the neural network is192

primarily learning the label through feature learning. This scenario can lead to benign overfitting,193

characterized by both minimal training and test errors. Conversely, if some |ρ(t)j,r,i| values are relatively194

large while all γ(t)
j,r are small, the neural network will achieve a low training loss but a high test loss.195

This occurs as the neural network attempts to generalize by memorizing noise, resulting in a harmful196

overfitting regime.197

To facilitate a fine-grained analysis for the evolution of coefficients, we introduce the notations198

ρ
(t)
j,r,i ≜ ρ

(t)
j,r,i1(ρ

(t)
j,r,i ≥ 0), ρ(t)

j,r,i
≜ ρ

(t)
j,r,i1(ρ

(t)
j,r,i ≤ 0). Consequently, we further express the vector199

weight decomposition (9) as:200

w
(t)
j,r = w

(0)
j,r + j · γ(t)

j,r · ∥µ∥
−2
2 · µ+

n∑
i=1

ρ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi +

n∑
i=1

ρ(t)
j,r,i

· ∥ξi∥−2
2 · ξi. (10)

Our analysis will be made under the following set of assumptions:201

Assumption 4.1. Suppose that202

1. The dimension d is sufficiently large: d = Ω̃(m2∨[4/(q−2)]n4∨[(2q−2)/(q−2)]).203

2. The size of training sample n and width of GCNs m adhere to n,m = Ω(polylog(d)).204

3. The learning rate η satisfies η ≤ Õ(min{∥µ∥−2
2 , σ−2

p d−1}).205

1By referring to Equation (7), we assert that the gradient descent update moves in the direction of ξ̃i for each
i ∈ [n]. Then we can apply the definition of ξ̃i = D−1

i

∑
k∈N (i) ξk.
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4. The edge probability p, s = Ω(
√
log(nd)/n) and Ξ ≜ p−s

p+s is a positive constant.206

5. The standard deviation of Gaussian initialization σ0 is chosen such that σ0 ≤207

Õ(m−2/(q−2)n−[1/(q−2)]∨1 ·min{(σp

√
d/(n(p+ s)))−1,Ξ−1∥µ∥−1

2 } .208

Remark 4.2. (1) The requirement for the dimension d ensures that the learning process operates in209

a suitably over-parameterized environment [48, 15] when the second layer remains fixed. (2) It’s210

necessary for the sample size and neural network width to be at least polylogarithmic in the dimension211

d. This condition ensures certain statistical properties of the training data and weight initialization212

hold with a probability of at least 1− d−1. (3) The condition on η is to ensure that gradient descent213

can effectively minimize the training loss. (4) The assumption regarding edge probability guarantees214

a sufficient level of concentration in the degree and an adequate display of homophily of graph data.215

(5) Lastly, the conditions imposed on initialization strength σ0 are intended to guarantee that the216

training loss can effectively converge to a sufficiently small value and to discern the differential217

learning speed between signal and noise.218

Given the above assumptions, we present our main result on feature learning of GCNs in the following219

theorem.220

Theorem 4.3. Suppose ϵ > 0, and let T = Θ̃(η−1mσ
−(q−2)
0 Ξ−q∥µ∥−q

2 + η−1ϵ−1m3∥µ∥−2
2 ).221

Under Assumption 4.1, if n · SNRq ·
√
n(p+ s)

q−2
= Ω̃(1), where SNR ≜ ∥µ∥2/(σp

√
d) is the222

signal-to-noise ratio, then with probability at least 1− d−1, there exists a 0 ≤ t ≤ T such that:223

• The GCN learns the signal: maxr γ
(t)
j,r = Ω(1) for j ∈ {±1}.224

• The GCN does not memorize the noises in the training data: maxj,r,i |ρ(T )
j,r,i| =225

Õ(σ0σp

√
d/n(p+ s)).226

• The training loss converges to ϵ, i.e., LGCN
S (W(t)) ≤ ϵ.227

• The trained GCN achieves a small test loss: LGCN
D (W(t)) ≤ c1ϵ+ exp(−c2n

2).228

where c1 and c2 are positive constants.229

Theorem 4.3 outlines the scenario of benign overfitting for GCNs. It reveals that, provided n ·230

SNRq ·
√
n(p+ s)

q−2
= Ω̃(1), the GCN can learn the signal by achieving maxr γ

(t)
j,r = Ω(1)231

for j ∈ {±1}, and on the other hand, the noise memorization during gradient descent training232

is suppressed by maxj,r,i |ρ(T )
j,r,i| = Õ(σ0σp

√
d/n(p+ s)), given that σ0σp

√
d/n(p+ s) ≪ 1233

according to assumption 4.1. Because the signal learned by the network is large enough and much234

stronger than the noise memory, it can perfectly predict the label in the test sample according to the235

learned signal when it generalizes. Consequently, the learned neural network can attain small training236

and test losses.237

To illustrate the pronounced divergence between GNN and CNN in terms of generalization capa-238

bility post-gradient descent training, we show that, under identical conditions, a GCN engages in239

signal learning while a CNN emphasizes noise memorization, and thus diverges in the ability of240

generalization:241

Corollary 4.4 (Informal). Under assumption 4.1, if n · SNRq ·
√

n(p+ s)
q−2

= Ω̃(1) and n−1 ·242

SNR−q = Ω̃(1), then with probability at least 1− d−1, then there exists a t such that:243

• The trained GNN achieves a small test loss: LGCN
D (W(t)) ≤ c1ϵ+ exp(−c2n

2).244

• The trained CNN has a constant order test loss: LCNN
D (W(t)) = Θ(1).245

Corollary 4.4 clearly provides a condition that GNNs learn the signal and achieves a small test loss246

while the CNNs can only memorize noises and will have a Θ(1) test loss. The CNN results are derived247

from the work of Cao et al. (2022) [15]. The improvement in benign overfitting regime is facilitated248

by graph convolution, a process that will be elaborated on in the subsequent section. Through the249

precise characterization of neural network feature learning from optimization to generalization, we250

have successfully demonstrated that the graph neural network can gain superiority with the help of251

graph convolution.252
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5 Proof Sketches253

In this section, we discuss the primary challenges encountered during the study of GNN training, and254

illustrate the key techniques we employed in our proofs to overcome these challenges:255

• Graph convolution aggregates information from neighboring nodes to the central node, which often256

leads to the loss of statistical stability for the aggregated noise vectors and labels. To overcome257

this challenge, we utilize a dense graph input, achieved by setting the edge probability as per258

Assumption 4.1.259

• Graph convolution can potentially cause erratic iterative dynamics of coefficients during the feature260

learning process. To mitigate this issue, we introduce the concept of homophily into the graph261

input, which helps in stabilizing the coefficient iterations.262

• Lastly, for the generalization analysis, depicting the generalization ability of graph neural networks263

poses a significant challenge. To address this issue, we introduce an expectation over the distribution264

for a single data point and develop an algorithm-dependent test error analysis.265

These main techniques are further elaborated upon in the following sections, and detailed proofs for266

all the results can be found in the appendix.267

5.1 Iterative analysis of the signal-noise decomposition under graph convolution268

To analyze the feature learning process of graph neural networks during gradient descent training, we269

introduce an iterative methodology, based on the signal-noise decomposition in decomposition (10)270

and gradient descent update (7). The following lemma offers us a means to monitor the iteration of271

the signal learning and noise memorization under graph convolution:272

Lemma 5.1. The coefficients γ(t)
j,r , ρ

(t)
j,r,i, ρ

(t)
j,r,i

in decomposition (10) adhere to the following equa-273

tions:274

γ
(0)
j,r , ρ

(0)
j,r,i, ρ

(0)
j,r,i

= 0, (11)

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm
·

n∑
i=1

ℓ
′(t)
i σ′(⟨w(t)

j,r, ỹiµi⟩)yiỹi∥µ∥22, (12)

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
·
∑

k∈N (i)

D−1
k · ℓ′(t)k · σ′(⟨w(t)

j,r, ξ̃k⟩) · ∥ξi∥
2
2 · 1(yk = j), (13)

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
·
∑

k∈N (i)

D−1
k · ℓ′(t)k · σ′(⟨w(t)

j,r, ξ̃k⟩) · ∥ξi∥
2
2 · 1(yk = −j). (14)

Lemma 5.1 simplifies the analysis of the feature learning in GCNs by reducing it to the examination275

of the discrete dynamical system expressed by equations (11)-(14). Our proof strategy emphasizes an276

in-depth evaluation of the coefficient values γ(t)
j,r , ρ

(t)
j,r,i, ρ

(t)
j,r,i

throughout the training. We present the277

following bounds of the coefficients and loss derivative, which persist throughout the training period:278

Proposition 5.2. Under Assumption 4.1, for any T ∗ = η−1poly(ϵ−1, ∥µ∥−1
2 , d−1σ−2

p , σ−1
0 , n,m, d),279

the following bounds hold for t ∈ [0, T ∗]:280

• 0 ≤ γ
(t)
j,r , ρ

(t)
j,r,i ≤ 4 log(T ∗) for all j ∈ {±1}, r ∈ [m] and i ∈ [n].281

• 0 ≥ ρ(t)
j,r,i

≥ −4 log(T ∗) for all j ∈ {±1}, r ∈ [m] and i ∈ [n].282

• ∥∇LGCN
S (W(t))∥2F ≤ O

(
max

{
Ξ2∥µ∥22, σ2

pd/(n(p+ s))
})

LGCN
S (W(t)).283

The proof of Proposition 5.2 is provided in Appendix B.2. As suggested by Proposition 5.2, both the284

coefficients related to signal learning and noise memorization can reach a logarithmic order relative285

to training time T ∗. Furthermore, the training objective function LGCN
S (W) maintains dominance286

over the gradient norm ∥∇LGCN
S (W(t))∥F along the gradient descent trajectory. This observation287

sets the preliminary for our convergence analysis. We then propose a two-stage dynamics analysis to288

elucidate the behavior of these coefficients. Subsequently, we can depict the generalization ability of289

GCN with the learned weight.290
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5.2 A two-phase dynamics analysis291

Stage 1. Intuitively, the initial neural network weights are small enough so that the neural network292

at initialization has constant level cross-entropy loss derivatives on all the training data: ℓ
′(0)
i =293

ℓ′[yi · f(W(0), x̃i)] = Θ(1) for all i ∈ [n]. This is guaranteed under Condition 4.1 on σ0. Motivated294

by this, the dynamics of the coefficients in (12) - (14) can be greatly simplified by replacing the295

ℓ
′(t)
i factors by their constant upper and lower bounds. The following lemma summarizes our main296

conclusion at stage 1 for signal learning:297

Lemma 5.3. Under the same conditions as Theorem 4.3, there exists T1 = Õ(η−1mσ2−q
0 Ξ−q∥µ∥−q

2 )298

such that299

• maxr γ
(T1)
j,r = Ω(1) for j ∈ {±1}.300

• |ρ(t)j,r,i| = O
(
σ0σp

√
d/
√
n(p+ s)

)
for all j ∈ {±1}, r ∈ [m], i ∈ [n] and 0 ≤ t ≤ T1.301

The proof can be found in Appendix C.1. Lemmas 5.3 leverages the period of training when the302

derivatives of the loss function are of a constant order. It’s important to note that graph convolution303

plays a significant role in diverging the learning speed between signal learning and noise memoriza-304

tion in this first stage. Originally, the learning speeds are roughly determined by ∥µ∥2 and ∥ξ∥2305

respectively. However, after applying graph convolution, the learning speeds are approximately306

determined by |ỹ| · ∥µ∥2 and ∥ξ̃∥2 respectively. Here, |ỹ| · ∥µ∥2 is close to ∥µ∥2, but ∥ξ̃∥2 is much307

smaller than ∥ξ∥2. This means that graph convolution can slow down the learning speed of noise308

memorization, thus enabling GNNs to focus more on signal learning in the initial training stage.309

Stage 2. Building on the results from the first stage, we then move to the second stage of the training310

process. In this stage, the loss derivatives are no longer constant, and we demonstrate that the training311

loss can be minimized to an arbitrarily small amount. Importantly, the scale differences established312

during the first stage of learning continue to be maintained throughout the training process:313

Lemma 5.4. Let T, T1 be defined in Theorem 4.3 and Lemma 5.3 respectively and W∗ be the314

collection of GCN parameters w∗
j,r = w

(0)
j,r + 2qm log(2q/ϵ) · j · ∥µ∥−2

2 · µ. Then under the same315

conditions as Theorem 4.3, for any t ∈ [T1, T ], it holds that:316

• maxr γ
(T1)
j,r ≥ 2,∀j ∈ {±1} and |ρ(t)j,r,i| ≤ σ0σp

√
d/(n(p+ s)) for all j ∈ {±1}, r ∈ [m]317

and i ∈ [n].318

• 1
t−T1+1

∑t
s=T1

LGCN
S (W(s)) ≤ ∥W(T1)−W∗∥2

F

(2q−1)η(t−T1+1) +
ϵ

(2q−1) .319

Here we denote ∥W∥F ≜
√
∥W+1∥2F + ∥W−1∥2F .320

Lemma 5.4 presents two primary outcomes related to feature learning. Firstly, throughout this training321

phase, it ensures that the coefficients of noise vectors, denoted as ρ(t)j,r,i, retain a significantly small322

value while coefficients of feature vector, denoted as γ(t)
j,r can achieve large value. Furthermore, it323

offers an optimization-oriented outcome, indicating that the optimal iterate within the interval [T1, T ].324

In this process, graph convolution and gradient descent will continue to maintain the speed gap325

between signal learning and noise memory, and when the time is large enough, the training loss will326

tend to receive an arbitrarily small value.327

5.3 Test error analysis328

Finally, we consider a new data point (x, y) drawn from the distribution SNM-SBM. The lemma329

below further gives an upper bound on the test loss of GNNs post-training:330

Lemma 5.5. Let T be defined in Theorem 4.3. Under the same conditions as Theorem 4.3, for any331

t ≤ T with LGCN
S (W(t)) ≤ 1, it holds that LGCN

D (W(t)) ≤ c1 · LGCN
S (W(t)) + exp(−c2n

2).332

The proof is presented in the appendix. Lemma 5.5 demonstrates that GNNs achieve benign overfitting333

and completes the last step of feature learning theory.334
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6 Experiments335

In this section, we validate our theoretical findings through numerical simulations using synthetic336

data, specifically generated according to the SNM-SBM model. We set the signal vector, µ, to337

drawn from a standard normal distribution N (0, I). The noise vector, ξ, is drawn from a Gaussian338

distribution N (0, σ2
pI). We train a two-layer CNN defined as per equation (2) and a two-layer GNN339

as per equation (5) with polynomial ReLU q = 3.340

Feature learning dynamics. Firstly, we display the training loss, test loss, training accuracy, and341

test accuracy for both the CNN and GNN in Figure 2. In this case, we further set the training data size342

to n = 250, input dimension to d = 500, noise strength to σp = 20, and edge probability to p = 0.5,343

s = 0.08. We observe that both the GNN and CNN can achieve zero training error. However, while344

the GNN obtains nearly zero test error, the CNN fails to generalize effectively to the test set. This345

simulation result serves to validate our theoretical results in Theorem 4.3 and Corollary 4.4.

Figure 2: Training loss, testing loss, training accuracy, and testing accuracy for both CNN and GNN
over a span of 100 training epochs.

346
Phase diagram. We then explore a range of Signal-to-Noise Ratios (SNRs) from 0.045 to 0.98,347

and a variety of sample sizes, n, ranging from 200 to 7200. Based on our results, we train the neural348

network for 200 steps for each combination of SNR and sample size n. After training, we calculate349

the test accuracy for each run. The results are presented as a heatmap in Figure 3. Compared to350

CNNs, GCNs demonstrate a perfect accuracy score of 1 across a more extensive range in the SNR351

and n plane, indicating that GNNs have a broader benign overfitting regime. This further validates352

our theoretical findings.353

Figure 3: Test accuracy heatmap for CNNs and GCNs after training.

7 Conclusion and Limitations354

This paper utilizes a signal-noise decomposition to study the signal learning and noise memorization355

process in training a two-layer GCN. We provide specific conditions under which a GNN will356

primarily concentrate on signal learning, thereby achieving low training and testing errors. Our357

results theoretically demonstrate that GCNs, by leveraging structural information, outperform CNNs358

in terms of generalization ability across a broader benign overfitting regime. As a pioneering work359

that studies feature learning of GNNs, our theoretical framework is constrained to examining the role360

of graph convolution within a specific two-layer GCN and a certain data generalization model. In361

fact, the feature learning of a neural network can be influenced by a myriad of other factors, such as362

activation function, optimization algorithm, and data model [47, 35, 37]. Future work can extend our363

framework to consider the influence of a wider array of factors on feature learning within GCNs.364
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A Preliminary Lemmas502

In this section, we present preliminary lemmas which form the foundation for the proofs to be detailed503

in the subsequent sections. The proof will be developed after the lemmas presented.504

A.1 Preliminary Lemmas on Sample Properties505

Lemma A.1. Suppose that δ > 0 and n ≥ 8 log(4/δ). Then with probability at least 1− δ,506

|{i ∈ [n] : yi = 1}|, |{i ∈ [n] : yi = −1}| ≥ n/4.

Proof of Lemma A.1. By Hoeffding’s inequality, with probability at least 1− δ/2, we have507 ∣∣∣∣∣ 1n
n∑

i=1

{yi = 1} − 1

2

∣∣∣∣∣ ≤
√

log(4/δ)

2n
.

Therefore, as long as n ≥ 8 log(4/δ), we have508

|{i ∈ [n] : yi = 1}| =
n∑

i=1

{yi = 1} ≥ n

2
− n ·

√
log(4/δ)

2n
≥ n

4
.

This proves the result for |{i ∈ [n] : yi = 1}|. The proof for |{i ∈ [n] : yi = −1}| is exactly the509

same, and we can conclude the proof by applying a union bound.510

A.2 Preliminary Lemmas on Noise Vector Properties511

Lemma A.2. Suppose that δ > 0 and d = Ω(log(4n/δ)). Then with probability at least 1− δ,512

σ2
pd/2 ≤ ∥ξi∥22 ≤ 3σ2

pd/2,

|⟨ξi, ξi′⟩| ≤ 2σ2
p ·
√

d log(4n2/δ),

for all i, i′ ∈ [n].513

Proof of Lemma A.2. By Bernstein’s inequality, with probability at least 1− δ/(2n) we have514 ∣∣∥ξi∥22 − σ2
pd
∣∣ = O(σ2

p ·
√
d log(4n/δ)).

Therefore, as long as d = Ω(log(4n/δ)), we have515

σ2
pd/2 ≤ ∥ξi∥22 ≤ 3σ2

pd/2.

Moreover, clearly ⟨ξi, ξi′⟩ has mean zero. For any i, i′ with i ̸= i′, by Bernstein’s inequality, with516

probability at least 1− δ/(2n2) we have517

|⟨ξi, ξi′⟩| ≤ 2σ2
p ·
√

d log(4n2/δ).

Applying a union bound completes the proof.518

Lemma A.3. Suppose that δ > 0 and d = Ω(n2(p+ s)2 log(4n2/δ)). Then with probability at least519

1− δ,520

σ2
pd/(4n(p+ s)) ≤ ∥ξ̃i∥22 ≤ 3σ2

pd/(4n(p+ s)),

for all i ∈ [n].521

Proof of Lemma A.3. It is known that:522

∥ξ̃i∥22 =
1

D2
i

d∑
j=1

(
Di∑
k=1

ξjk

)2

=
1

D2
i

d∑
j=1

Di∑
k=1

ξ2jk +
1

D2
i

d∑
j=1

Di∑
k ̸=k′

ξjk′ξjk.
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By Bernstein’s inequality, with probability at least 1− δ/(2n) we have523 ∣∣∣∣∣∣
d∑

j=1

Di∑
k=1

ξ2jk − σ2
pdDi

∣∣∣∣∣∣ = O(σ2
p ·
√
dDi log(4n/δ)).

Therefore, as long as d = Ω(log(4n/δ)/(n(p+ s))), we have524

3σ2
pdDi/4 ≤

d∑
j=1

Di∑
k=1

ξ2jk ≤ 5σ2
pdDi/4.

By Lemma A.4, we have,525

2σ2
pd/(4n(p+ s)) ≤ 1

D2
i

d∑
j=1

Di∑
k=1

ξ2jk ≤ 6σ2
pd/(4n(p+ s)).

Moreover, clearly ⟨ξk, ξk′⟩ has mean zero. For any k, k′ with k ̸= k′, by Bernstein’s inequality, with526

probability at least 1− δ/(2n2) we have527

|⟨ξk, ξk′⟩| ≤ 2σ2
p ·
√

d log(4n2/δ).

Applying a union bound we have that with probability at least 1− δ,528

|⟨ξk, ξk′⟩| ≤ 2σ2
p ·
√

d log(4n2/δ).

Therefore, as long as d = Ω(n2(p+ s)2 log(4n2/δ)), we have529

σ2
pd/(4n(p+ s)) ≤ ∥ξ̃i∥22 ≤ 3σ2

pd/(4n(p+ s)).

530

A.3 Preliminary Lemmas on Graph Properties531

Lemma A.4 (Degree concentration). Let p, s = Ω

(√
log(n/δ)

n

)
and δ > 0, then with probability at532

least 1− δ, we have533

n(p+ s)/4 ≤ Di ≤ 3n(p+ s)/4.

Proof. It is known that the degrees are sums of Bernoulli random variables.534

Di = 1 +

n∑
j ̸=i

aij ,

where aij = [A]ij . Hence, by the Hoeffding’s inequality, with probability at least 1− δ/n535

|Di − E[Di]| <
√
log(n/δ)(n− 1).

Note that aii = 1 is a fixed value, which means that it is not a random variable, thus the denominator536

in the exponential part is n− 1 instead of n. Now we calculate the expectation of degree:537

E[Dii] = 1 +
n

2
s+ (

n

2
− 1)p = n(p+ s)/2 + 1− p,

then we have538

|Di − n(p+ s)/2 + 1− p| ≤
√
n log(n/δ).

Because that p, s = Ω

(√
log(n/δ)

n

)
, we further have,539

n(p+ s)/4 ≤ Di ≤ 3n(p+ s)/4.

Applying a union bound over i ∈ [n] conclude the proof.540
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Lemma A.5. Suppose that δ > 0 and n ≥ 8 p+s
(p−s)2 log(4/δ). Then with probability at least 1− δ,541

1

2

p− s

p+ s
|yi| ≤ |ỹi| ≤

3

2

p− s

p+ s
|yi|.

Proof of Lemma A.5. By Hoeffding’s inequality, with probability at least 1− δ/2, we have542 ∣∣∣∣∣ 1Di

∑
k∈N (i)

yk − p− s

p+ s
yi

∣∣∣∣∣ ≤
√

log(4/δ)

2n(p+ s)
.

Therefore, as long as n ≥ 8 p+s
(p−s)2 log(4/δ), we have:543

1

2

p− s

p+ s
|yi| ≤ |ỹi| ≤

3

2

p− s

p+ s
|yi|.

This proves the result for the stability of sign of graph convoluted label.544

A.4 Preliminary Lemmas on Initialization Properties545

Lemma A.6. Suppose that d = Ω(n(p+ s) log(nm/δ)), m = Ω(log(1/δ)). Then with probability546

at least 1− δ,547

|⟨w(0)
j,r ,µ⟩| ≤

√
2 log(8m/δ) · σ0∥µ∥2,

|⟨w(0)
j,r , ξi⟩| ≤ 2

√
log(8mn/δ) · σ0σp

√
d,

|⟨w(0)
j,r , ξ̃i⟩| ≤ 4

√
log(8mn/δ) · σ0σp

√
d/(n(p+ s)),

for all r ∈ [m], j ∈ {±1} and i ∈ [n]. Moreover,548

σ0∥µ∥2/2 ≤ max
r∈[m]

j · ⟨w(0)
j,r ,µ⟩ ≤

√
2 log(8m/δ) · σ0∥µ∥2,

σ0σp

√
d/4 ≤ max

r∈[m]
j · ⟨w(0)

j,r , ξi⟩ ≤ 2
√
log(8mn/δ) · σ0σp

√
d,

σ0σp

√
d/(n(p+ s))/4 ≤ max

r∈[m]
j · ⟨w(0)

j,r , ξi⟩ ≤ 2
√
log(8mn/δ) · σ0σp

√
d/(n(p+ s)),

for all j ∈ {±1} and i ∈ [n].549

Proof of Lemma A.6. It is clear that for each r ∈ [m], j · ⟨w(0)
j,r ,µ⟩ is a Gaussian random variable550

with mean zero and variance σ2
0∥µ∥22. Therefore, by Gaussian tail bound and union bound, with551

probability at least 1− δ/4,552

j · ⟨w(0)
j,r ,µ⟩ ≤ |⟨w(0)

j,r ,µ⟩| ≤
√
2 log(8m/δ) · σ0∥µ∥2.

Moreover, P (σ0∥µ∥2/2 > j · ⟨w(0)
j,r ,µ⟩) is an absolute constant, and therefore by the condition on553

m, we have554

P
(
σ0∥µ∥2/2 ≤ max

r∈[m]
j · ⟨w(0)

j,r ,µ⟩) = 1− P (σ0∥µ∥2/2 > max
r∈[m]

j · ⟨w(0)
j,r ,µ⟩

)
= 1− P

(
σ0∥µ∥2/2 > j · ⟨w(0)

j,r ,µ⟩
)2m

≥ 1− δ/4.

By Lemma A.2, with probability at least 1− δ/4, σp

√
d/

√
2 ≤ ∥ξi∥2 ≤

√
3/2 ·σp

√
d for all i ∈ [n].555

Therefore, the result for ⟨w(0)
j,r , ξi⟩ follows the same proof as j · ⟨w(0)

j,r ,µ⟩.556

By Lemma A.3, with probability at least 1 − δ/4, σp

√
d/(n(p+ s))/

√
2 ≤ ∥ξ̃i∥2 ≤

√
3/2 ·557

σp

√
d/(n(p+ s)) for all i ∈ [n]. Therefore, the result for ⟨w(0)

j,r , ξ̃i⟩ follows the same proof as558

j · ⟨w(0)
j,r ,µ⟩.559

560
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B General Lemmas for Iterative Coefficient Analysis561

In this section, we deliver lemmas that delineate the iterative behavior of coefficients under gradient562

descent. We commence with proving the coefficient update rules as stated in Lemma 5.1 in Section563

B.1. Subsequently, we establish the scale of training dynamics as declared in Proposition 5.2, in564

Section B.2.565

B.1 Coefficient update rule566

Lemma B.1 (Restatement of Lemma 5.1). The coefficients γ(t)
j,r , ρ

(t)
j,r,i, ρ

(t)
j,r,i

defined in Eq. (10) satisfy567

the following iterative equations:568

γ
(0)
j,r , ρ

(0)
j,r,i, ρ

(0)
j,r,i

= 0,

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm
·

n∑
i=1

ℓ
′(t)
i σ′(⟨w(t)

j,r, ỹiµi⟩)yiỹi∥µ∥22,

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
·
∑

k∈N (i)

D−1
k · ℓ′(t)k · σ′(⟨w(t)

j,r, ξ̃k⟩) · ∥ξi∥
2
2 · 1(yk = j),

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

− η

nm
·
∑

k∈N (i)

D−1
k · ℓ′(t)k · σ′(⟨w(t)

j,r, ξ̃k⟩) · ∥ξi∥
2
2 · 1(yk = −j),

for all r ∈ [m], j ∈ {±1} and i ∈ [n].569

Proof of Lemma B.1. Considering our data model and the Gaussian initialization of the GCN weights,570

it becomes clear that the vectors are linearly independent with a probability of 1. Consequently, the571

decomposition expressed in (10) is guaranteed to be unique. Now, let’s consider γ̂(0)
j,r , ρ̂

(0)
j,r,i = 0 and572

γ̂
(t+1)
j,r = γ̂

(t)
j,r −

η

nm
·

n∑
i=1

ℓ
′(t)
i σ′(⟨w(t)

j,r, ỹiµi⟩)yiỹi∥µ∥22,

ρ̂
(t+1)
j,r,i = ρ̂

(t)
j,r,i −

η

nm
·
∑

k∈N (i)

D−1
k · ℓ′(t)k · σ′(⟨w(t)

j,r, ξ̃k⟩) · ∥ξi∥
2
2 · yk,

It is then easy to check by (7) that573

w
(t)
j,r = w

(0)
j,r + j · γ̂(t)

j,r · ∥µ∥
−2
2 · µ+

n∑
i=1

ρ̂
(t)
j,r,i∥ξi∥

−2
2 · ξi.

Hence by the uniqueness of the decomposition we have γ(t)
j,r = γ̂

(t)
j,r and ρ

(t)
j,r,i = ρ̂

(t)
j,r,i. Then we have574

that575

ρ
(t)
j,r,i = −

t−1∑
s=0

∑
k∈N (i)

D−1
k

η

nm
· ℓ′(s)k · σ′(⟨w(s)

j,r , ξ̃k⟩) · ∥ξi∥
2
2 · jyk.

Moreover, note that ℓ′(t)i < 0 by the definition of the cross-entropy loss. Therefore,576

ρ
(t)
j,r,i = −

t−1∑
s=0

η

nm
·
∑

k∈N (i)

D−1
k · ℓ′(t)k · σ′(⟨w(t)

j,r, ξ̃k⟩) · ∥ξi∥
2
2 · 1(yk = j), (15)

ρ(t)
j,r,i

= −
t−1∑
s=0

η

nm
·
∑

k∈N (i)

D−1
k · ℓ′(t)k · σ′(⟨w(t)

j,r, ξ̃k⟩) · ∥ξi∥
2
2 · 1(yk = −j). (16)

Writing out the iterative versions of (15) and (16) completes the proof.577
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B.2 Scale of training dynamics578

Our proof hinges on a meticulous evaluation of the coefficient values γ(t)
j,r , ρ

(t)
j,r,i, ρ

(t)
j,r,i

throughout the579

entire training process. In order to facilitate a more thorough analysis, we first establish the following580

bounds for these coefficients, which are maintained consistently throughout the training period.581

We will now show that the parameter of the signal-noise decomposition will stay a reasonable582

scale during a long time of training. Let us consider the learning period 0 ≤ t ≤ T ∗, where583

T ∗ = η−1poly(ϵ−1, ∥µ∥−1
2 , d−1σ−2

p , σ−1
0 , n,m, d) is the maximum admissible iterations. Note that584

we can consider any polynomial training time T ∗.585

Denote α = 4 log(T ∗). Here we list the exact conditions for η, σ0, d required by the proofs in this586

section, which are part of Condition 4.1:587

η = O
(
min{nm/(qσ2

pd), nm/(q2q+2αq−2σ2
pd), nm/(q2q+2αq−2∥µ∥22)}

)
, (17)

σ0 ≤ [16
√

log(8mn/δ)]−1 min
{
Ξ−1∥µ∥−1

2 , (σp

√
d/(n(p+ s)))−1

}
, (18)

d ≥ 1024 log(4n2/δ)α2n2. (19)

Denote β = 2maxi,j,r{|⟨w(0)
j,r , ỹi ·µ⟩|, |⟨w

(0)
j,r , ξ̃i⟩|}. By Lemma A.6 and Lemma A.5 with probabil-588

ity at least 1− δ, we can upper bound β by 4
√

log(8mn/δ) · σ0 ·max{Ξ∥µ∥2, σp

√
d/(n(p+ s))}.589

Then, by (18) and (19), it is straightforward to verify the following inequality:590

4max

{
β, 8n

√
log(4n2/δ)

d
α

}
≤ 1. (20)

Assuming that the conditions detailed in (17), (18), and (19) are satisfied, we assert that the following591

property is maintained for 0 ≤ t ≤ T ∗.592

Proposition B.2. Under Condition 4.1, for 0 ≤ t ≤ T ∗, where T ∗ =593

η−1poly(ϵ−1, ∥µ∥−1
2 , d−1σ−2

p , σ−1
0 , n,m, d), we have that594

0 ≤ γ
(t)
j,r , ρ

(t)
j,r,i ≤ α, (21)

0 ≥ ρ(t)
j,r,i

≥ −α, (22)

for all r ∈ [m], j ∈ {±1} and i ∈ [n], where α = 4 log(T ∗).595

To establish Proposition B.2, we will employ an inductive approach. Before proceeding with the596

proof, we need to introduce several technical lemmas that are fundamental to our argument.597

Lemma B.3. For any t ≥ 0, it holds that ⟨w(t)
j,r −w

(0)
j,r ,µ⟩ = j · γ(t)

j,r for all r ∈ [m], j ∈ {±1}.598

Proof of Lemma B.3. For any time t ≥ 0, we have that599

⟨w(t)
j,r −w

(0)
j,r ,µ⟩ = j · γ(t)

j,r +

n∑
i′=1

ρ
(t)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ ,µ⟩+

n∑
i′=1

ρ(t)
j,r,i′

∥ξi′∥−2
2 · ⟨ξi′ ,µ⟩

= j · γ(t)
j,r ,

where the equation is by our orthogonal assumption between feature vector and noise vector.600

Lemma B.4. Under Condition 4.1, suppose (21) and (22) hold at iteration t. Then601

ρ̂
(t)
j,r,i − 8n

√
log(4n2/δ)

d
α ≤ ⟨w(t)

j,r −w
(0)
j,r , ξ̃i⟩ ≤ ρ̂

(t)
j,r,i + 8n

√
log(4n2/δ)

d
α,

where ρ̂j,r,i ≜
∑

k∈N (i) D
−1
i

∑
i′ ̸=k ρ

(t)
j,r,i′ , for all r ∈ [m], j ∈ {±1} and i ∈ [n].602
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Proof of Lemma B.4. It is known that,603

⟨w(t)
j,r −w

(0)
j,r , ξ̃i⟩ =

n∑
i′=1

ρ
(t)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ , ξ̃i⟩+

n∑
i′=1

ρ(t)
j,r,i′

∥ξi′∥−2
2 · ⟨ξi′ , ξ̃i⟩

=

n∑
i′=1

∑
k∈N (i)

D−1
i ρ

(t)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ , ξk⟩

+

n∑
i′=1

∑
k∈N (i)

D−1
i ρ(t)

j,r,i′
∥ξi′∥−2

2 · ⟨ξi′ , ξk⟩

≤ 4

√
log(4n2/δ)

d

∑
k∈N (i)

D−1
i

∑
i′ ̸=k

|ρ(t)j,r,i′ |

+ 4

√
log(4n2/δ)

d

∑
k∈N (i)

D−1
i

∑
i′ ̸=k

|ρ(t)
j,r,i′

|

+
∑

k∈N (i)

D−1
i

∑
i′ ̸=k

ρ
(t)
j,r,i′ +

∑
k∈N (i)

D−1
i

∑
i′ ̸=k

ρ(t)
j,r,i′

≤ ρ̂
(t)
j,r,i + 8n

√
log(4n2/δ)

d
α,

where we define ρ̂j,r,i ≜
∑

k∈N (i) D
−1
i

∑
i′ ̸=k ρ

(t)
j,r,i′ the second inequality is by Lemma A.2 and the604

last inequality is by |ρ(t)j,r,i′ |, |ρ
(t)
j,r,i′ | ≤ α in (21).605

Similarly, we can show that:606

⟨w(t)
j,r −w

(0)
j,r , ξ̃i⟩ =

n∑
i′=1

ρ
(t)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ , ξ̃i⟩+

n∑
i′=1

ρ(t)
j,r,i′

∥ξi′∥−2
2 · ⟨ξi′ , ξ̃i⟩

=

n∑
i′=1

∑
k∈N (i)

D−1
i ρ

(t)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ , ξk⟩

+

n∑
i′=1

∑
k∈N (i)

D−1
i ρ(t)

j,r,i′
∥ξi′∥−2

2 · ⟨ξi′ , ξk⟩

≥ −4

√
log(4n2/δ)

d

∑
k∈N (i)

D−1
i

∑
i′ ̸=k

|ρ(t)j,r,i′ |

− 4

√
log(4n2/δ)

d

∑
k∈N (i)

D−1
i

∑
i′ ̸=k

|ρ(t)
j,r,i′

|

+
∑

k∈N (i)

D−1
i

∑
i′ ̸=k

ρ
(t)
j,r,i′ +

∑
k∈N (i)

D−1
i

∑
i′ ̸=k

ρ(t)
j,r,i′

≥ ρ̂
(t)
j,r,i − 8n

√
log(4n2/δ)

d
α,

where the first inequality is by Lemma A.1 and the second inequality is by |ρ(t)j,r,i′ |, |ρ
(t)
j,r,i′ | ≤ α in607

(21), which completes the proof.608

Lemma B.5. Under Condition 4.1, suppose (21) and (22) hold at iteration t. Then609

⟨w(t)
j,r, ỹiµ⟩ ≤ ⟨w(0)

j,r , ỹiµ⟩,

⟨w(t)
j,r, ξ̃i⟩ ≤ ⟨w(0)

j,r , ξ̃i⟩+ 8n

√
log(4n2/δ)

d
α,

for all r ∈ [m] and j ̸= yi. If max{γ(t)
j,r , ρ

(t)
j,r,i} = O(1), we further have that Fj(W

(t)
j , x̃i) = O(1).610
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Proof of Lemma B.5. For j ̸= yi, we have that611

⟨w(t)
j,r, ỹiµ⟩ = ⟨w(0)

j,r , ỹiµ⟩+ ỹi · j · γ(t)
j,r ≤ ⟨w(0)

j,r , ỹiµ⟩, (23)

where the inequality is by γ
(t)
j,r ≥ 0 and Lemma A.5 stating that sign(yi) = sign(ỹi) with a high612

probability. In addition, we have613

⟨w(t)
j,r, ξ̃i⟩ = ⟨w(0)

j,r , ξ̃i⟩+
∑

k∈N (i)

D−1
i

n∑
i′=1

ρj,r,i′⟨ξk, ξi′⟩∥ξi′∥−2
2

≤ ⟨w(0)
j,r , ξ̃i⟩+D−1

i

∑
yk ̸=j

ρ(t)
j,r,i

+
∑
yk=j

ρ
(t)
j,r,i

+ 8n

√
log(4n2/δ)

d
α

≤ ⟨w(0)
j,r , ξ̃i⟩+ 8n

√
log(4n2/δ)

d
α, (24)

where the first inequality is by Lemma B.4 and the second inequality is due to ρ̂
(t)
j,r,i ≤ 0 based on614

Lemma A.5. Then we can get that615

Fj(W
(t)
j , x̃i) =

1

m

m∑
r=1

[σ(⟨w(t)
j,r, ỹi · µ⟩) + σ(⟨w(t)

j,r, ξ̃i⟩)]

=
1

m

m∑
r=1

[σ(⟨w(t)
j,r, ỹi · µ⟩) + σ(⟨w(t)

j,r, D
−1
i

∑
k∈N (i)

ξk⟩)]

=
1

m

m∑
r=1

[σ(⟨w(0)
j,r , ỹi · µ⟩) + σ(⟨w(0)

j,r , ξ̃i⟩+ ⟨w(t)
j,r −w

(0)
j,r , D

−1
i

∑
k∈N (i)

ξk⟩)]

≤ 1

m

m∑
r=1

[σ(⟨w(0)
j,r , ỹi · µ⟩) + σ(⟨w(0)

j,r , ξ̃i⟩+ 8n

√
log(4n2/δ)

d
α+ ρ̂

(t)
j,r,i)]

≤ 2q+1 max
j,r,i

{
|⟨w(0)

j,r , ỹi · µ⟩|, |⟨w
(0)
j,r , ξ̃i⟩|, 8n

√
log(4n2/δ)

d
α

}q

≤ 1,

where the first inequality is by (23), (24) and the second inequality is by (20) and max{γ(t)
j,r , ρ

(t)
j,r,i} =616

O(1).617

Lemma B.6. Under Condition 4.1, suppose (21) and (22) hold at iteration t. Then618

⟨w(t)
j,r, ỹiµ⟩ = ⟨w(0)

j,r , ỹiµ⟩+ γ
(t)
j,r ,

⟨w(t)
j,r, ξ̃i⟩ ≤ ⟨w(0)

j,r , ξ̃i⟩+ ρ̂
(t)
j,r,i + 8n

√
log(4n2/δ)

d
α

for all r ∈ [m], j = yi and i ∈ [n]. If max{γ(t)
j,r , ρ

(t)
j,r,i} = O(1), we further have that619

Fj(W
(t)
j , x̃i) = O(1).620

Proof of Lemma B.6. For j = yi, we have that621

⟨w(t)
j,r, ỹiµ⟩ = ⟨w(0)

j,r , ỹiµ⟩+ γ
(t)
j,r , (25)

where the equation is by Lemma B.3. We also have that622

⟨w(t)
j,r, ξ̃i⟩ ≤ ⟨w(0)

j,r , ξ̃i⟩+ ρ̂
(t)
j,r,i + 8n

√
log(4n2/δ)

d
α, (26)
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where the inequality is by Lemma B.4. If max{γ(t)
j,r , ρ

(t)
j,r,i} = O(1), we have following bound623

Fj(W
(t)
j , x̃i) =

1

m

m∑
r=1

[σ(⟨w(t)
j,r, ỹi · µ) + σ(⟨w(t)

j,r, ξ̃i⟩)]

≤ 2 · 3q max
j,r,i

{
γ
(t)
j,r , |ρ̂

(t)
j,r,i|, |⟨w

(0)
j,r , ỹi · µ⟩|, |⟨w

(0)
j,r , ξ̃i⟩|, 8n

√
log(4n2/δ)

d
α

}q

= O(1),

where ρ̂
(t)
j,r,i =

1
Di

∑
k∈N (i) ρ

(t)
j,r,k1(yk = j) + ρ

(t)
j,r,k1(yk ̸= j), the first inequality is by (25), (26).624

Then the second inequality is by (20) where β = 2maxi,j,r{|⟨w(0)
j,r , ỹi · µ⟩|, |⟨w

(0)
j,r , ξ̃i⟩|} ≤ 1 and625

condition that max{γ(t)
j,r , ρ

(t)
j,r,i} = O(1).626

Now we are ready to prove Proposition B.2.627

Proof of Proposition B.2. The proof of Proposition B.2 relies on induction. At t = 0, the results are628

straightforward, given that all coefficients are zero. We assume that there is a time T̃ ≤ T ∗ for which629

the Proposition B.2 is valid for all moments 0 ≤ t ≤ T̃ − 1. Our goal is to demonstrate that the630

proposition also stands true for t = T̃ .631

We first prove that (22) holds for t = T̃ , i.e., ρ(t)
j,r,i

≥ −β − 16n
√

log(4n2/δ)
d α for t = T̃ , r ∈ [m],632

j ∈ {±1} and i ∈ [n]. Notice that ρ(t)
j,r,i

= 0,∀j = yi. Therefore, we only need to consider the case633

that j ̸= yi. When ρ(T̃−1)
j,r,i

≤ −0.5β − 8n
√

log(4n2/δ)
d α, by Lemma B.4 we have that634

⟨w(T̃−1)
j,r , ξ̃i⟩ ≤ ρ̂

(T̃−1)
j,r,i + ⟨w(0)

j,r , ξ̃i⟩+ 8n

√
log(4n2/δ)

d
α ≤ 0,

and thus635

ρ(T̃ )
j,r,i
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where the last inequality is by induction hypothesis. When ρ(T̃−1)
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where we use ℓ
′(T̃−1)
i ≤ 1 and ∥ξi∥2 = O(σ2

pd) in the first inequality, the second inequality is by638
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Next we prove (21) holds for t = T̃ . We have640
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where the last inequality is due to Lemma B.5. Moreover, recall the update rule of γ(t)
j,r and ρ
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j,r,i,641

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm
·

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)
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Let tj,r,i to be the last time t < T ∗ that ρ(t)j,r,i ≤ 0.5α. Then we have that642
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We first bound I1 as follows,643
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where the first inequality is by Lemmas B.4 and A.2, the second inequality is by β ≤ 0.1α and644
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pd).645

Second, we bound I2. For tj,r,i < t < T̃ and yk = j, we can lower bound ⟨w(t)
j,r, ξ̃k⟩ as follows,646
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where the first inequality is by Lemma B.4, the second inequality is by ρ̂
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where the first inequality is by Lemma B.4, the second inequality is by induction hypothesis ρ̂(t)j,r,i ≤ α,651

the last inequality is by β ≤ 0.1α and 8n
√

log(4n2/δ)
d α ≤ 0.1α. Thus, plugging the upper and lower652
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bounds of ⟨w(t)
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where the first inequality is by (27), the second inequality is by Lemma A.2, the third inequality is by654

η = O
(
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in (17), the fourth inequality is by our choice of α = 4 log(T ∗) and655

the last inequality is due to the fact that log(T ∗)q ≥ log(T ∗). Plugging the bound of I1, I2 into (28)656

completes the proof for ρ.657

Similarly, we can prove that γ(T̃ )
j,r ≤ α using η = O

(
nm/(q2q+2αq−2∥µ∥22)

)
in (17). Therefore658

Proposition B.2 holds for t = T̃ , which completes the induction.659

Building upon Proposition B.2, we introduce a key property of the training loss function within the660

range of 0 ≤ t ≤ T ∗. This property will be instrumental in the forthcoming proof of convergence.661

Lemma B.7. Under Condition 4.1, for 0 ≤ t ≤ T ∗, the following result holds.662
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Proof of Lemma B.7. We first prove that663
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Without loss of generality, we suppose that yi = 1 and x̃i = [ỹi · µ⊤, ξ̃i]. Then we have that664

∥∇f(W(t), x̃i)∥F ≤ 1

m

∑
j,r

∥∥∥∥[σ′(⟨w(t)
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where the first and second inequalities are by triangle inequality, the third inequality is by Jensen’s665

inequality and Lemma A.2, and the last inequality is due to Lemma B.5. Denote A = F+1(W
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Then we have that A ≥ 0, and besides, F−1(W
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where (i) is by maxz≥0 −4q2ℓ′(z−1)(z(q−1)/q+1)2 < ∞ because ℓ′ has an exponentially decaying668

tail. Now we can upper bound the gradient norm ∥∇LS(W
(t))∥F as follows,669
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where the first inequality is by triangle inequality, the second inequality is by (29), the third inequality670

is by Cauchy-Schwartz inequality and the last inequality is due to the property of the cross entropy671

loss −ℓ′ ≤ ℓ.672

C Two Stage Dynamics Analysis673

In this section, we employ a two-stage dynamics analysis to investigate the behavior of coefficient674

iterations. During the first stage, the derivative of the loss function remains almost constant due to675

the small weight initialization. In the second stage, the derivative of the loss function ceases to be676

constant, necessitating an analysis that meticulously takes this into account. Upon completion of the677

convergence analysis, we employ its results to facilitate the evaluation of the population loss.678

C.1 First stage: feature learning versus noise memorization679

Lemma C.1 (Restatement of Lemma 5.3). Under the same conditions as Theorem 4.3, in particular680

if we choose681

n · SNRq · (n(p+ s))q/2−1 ≥ C log(6/σ0∥µ∥2)22q+6[4 log(8mn/δ)](q−1)/2, (30)

where C = O(1) is a positive constant, there exists time682
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We first prove the result of noise memorization. Define Ψ(t) = maxj,r,i |ρ(t)j,r,i| =687
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for all 0 ≤ t ≤ T+
1 . By definition, clearly we have Ψ(0) = 0. Now suppose that there exists some689
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where the second inequality is by |ℓ′(t)i | ≤ 1, the third inequality is due to Lemmas A.2 and A.6,691

the fourth inequality follows by the condition that d ≥ 16Dn2 log(4n2/δ), and the last inequality692

follows by the induction hypothesis (32). Taking a telescoping sum over t = 0, 1, . . . , T̃ − 1 then693
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where the second inequality follows by T̃ ≤ T+
1 in our induction hypothesis. Therefore, by induction,695

we have Ψ(t) ≤ σ0σp
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Now, without loss of generality, let us consider j = 1 first. Denote by T1,1 the last time for t697
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Denote γ̂
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where the second inequality is by the lower bound on the number of positive data in Lemma A.1, the704

third inequality is due to the fact that A(t) is an increasing sequence, and the last inequality follows705
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where the second inequality is due to the fact that 1 + z ≥ exp(z/2) for z ≤ 2 and our condition708

of η and σ0 listed in Condition 4.1, and the last inequality follows by Lemma A.6 and A(0) =709
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where the inequality holds due to our SNR condition in (30). Therefore, by the definition of T1,1, we713

have T1,1 ≤ T1 ≤ T+
1 /2, where we use the non-decreasing property of γ. The proof for j = −1 is714

similar, and we can prove that maxr γ
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717

C.2 Second stage: convergence analysis718

After the first stage and at time step T1 we know that:719
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And at the beginning of the second stage, we have following property holds:720
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Based on the above definition of W∗, we have the following lemma.725
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Lemma C.2. Under the same conditions as Theorem 4.3, we have that ∥W(T1) − W∗∥F ≤726

Õ(m3/2∥µ∥−1
2 ).727

Proof of Lemma C.2. We have728
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where the first inequality is by triangle inequality, the second inequality is by our decomposition of729

W(T1) and the definition of W∗, the third inequality is by Proposition B.2 and Lemma C.1, and the730

last inequality is by our condition of σ0 in Condition 4.1.731

Lemma C.3. Under the same conditions as Theorem 4.3, we have that yi⟨∇f(W(t), x̃i),W
∗⟩ ≥732

q log(2q/ϵ) for all i ∈ [n] and T1 ≤ t ≤ T ∗.733

Proof of Lemma C.3. Recall that f(W(t), x̃i) = (1/m)
∑

j,rj ·
[
σ(⟨wj,r, ỹi · µ⟩) + σ(⟨wj,r, ξ̃i⟩)

]
,734

so we have735
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∗
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j,r, ỹiµ⟩)2qmỹiyi log(2q/ϵ) +

1

m

∑
j,r

σ′(⟨w(t)
j,r, ỹiµ⟩)ỹiyi⟨µ, jw

(0)
j,r ⟩

+
1

m

∑
j,r

σ′(⟨w(t)
j,r, ξ̃i⟩)⟨yiξ̃i, jw

(0)
j,r ⟩

≥ 1

m

∑
j,r

σ′(⟨w(t)
j,r, ỹiµ⟩)2qmΞ log(2q/ϵ)− 1

m

∑
j,r

σ′(⟨w(t)
j,r, ỹiµ⟩)Õ(σ0Ξ∥µ∥2)

− 1

m

∑
j,r

σ′(⟨w(t)
j,r, ξ̃i⟩)Õ(σ0σp

√
d/(n(p+ s))), (34)

where the inequality is by Lemma A.6. Next we will bound the inner-product terms in (34) respec-736

tively. By Lemma B.6, we have that for j = yi737

max
r

{⟨w(t)
j,r, ỹiµ⟩} = max

r
{γ(t)

j,r + ⟨w(0)
j,r , ỹiµ⟩} ≥ 2− Õ(σ0Ξ∥µ∥2) ≥ 1. (35)

We can also get the upper bound of the inner products between the parameter and the signal (noise)738

as follows,739

|⟨w(t)
j,r, ỹi · µ⟩|

(i)

≤ |⟨w(0)
j,r , ỹi · µ⟩|+ |γ(t)

j,r |
(ii)

≤ Õ(1)

|⟨w(t)
j,r, ξ̃i⟩|

(iii)

≤ |⟨w(0)
j,r , ξ̃i⟩|+ |ρ̂(t)j,r,i|+ 8n

√
log(4n2/δ)

d
α

(iv)

≤ Õ(1), (36)

where (i) is by Lemma B.3, (iii) is by Lemma B.4, (ii) and (iv) are due to Proposition B.2. Plugging740

(35) and (36) into (34) gives,741

yi⟨∇f(W(t), x̃i),W
∗⟩ ≥ 2q log(2q/ϵ)− Õ(σ0Ξ∥µ∥2)− Õ(σ0σp

√
d/(n(p+ s)))

≥ q log(2q/ϵ),

where the last inequality is by σ0 ≤ Õ(m−2/(q−2)n−1) ·min{(σp

√
d/(n(p+ s)))−1,Ξ−1∥µ∥−1

2 }742

in Condition 4.1. This completes the proof.743
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Lemma C.4. Under the same conditions as Theorem 4.3, we have that744

∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F ≥ (2q − 1)ηLS(W
(t))− ηϵ

for all T1 ≤ t ≤ T ∗.745

Proof of Lemma C.4. It is known that:746

∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F
= 2η⟨∇LS(W

(t)),W(t) −W∗⟩ − η2∥∇LS(W
(t))∥2F

=
2η

n
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ℓ
′(t)
i [qyif(W

(t), x̃i)− ⟨∇f(W(t), x̃i),W
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(t))∥2F

≥ 2η
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(t), x̃i)− q log(2q/ϵ)]− η2∥∇LS(W
(t))∥2F

≥ 2qη

n

n∑
i=1

[ℓ
(
yif(W

(t), x̃i)
)
− ϵ/(2q)]− η2∥∇LS(W

(t))∥2F

≥ (2q − 1)ηLS(W
(t))− ηϵ,

where the first inequality is by Lemma C.3, the second inequality is due to the convexity of the cross747

entropy function, and the last inequality is due to Lemma B.7.748

Lemma C.5 (Restatement of Lemma 5.4). Under the same conditions as Theorem 4.3, let T =749

T1 +
⌊
∥W(T1)−W∗∥2

F

2ηϵ

⌋
= T1 + Õ(m3η−1ϵ−1∥µ∥−2

2 ). Then we have maxj,r,i |ρ(t)j,r,i| ≤ 2β̂ =750

σ0σp

√
d/(n(p+ s)) for all T1 ≤ t ≤ T . Besides,751

1
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t∑
s=T1

LS(W
(s)) ≤ ∥W(T1) −W∗∥2F

(2q − 1)η(t− T1 + 1)
+

ϵ

2q − 1

for all T1 ≤ t ≤ T , and we can find an iterate with training loss smaller than ϵ within T iterations.752

Proof of Lemma C.5. By Lemma C.4, for any t ∈ [T1, T ], we have that753

∥W(s) −W∗∥2F − ∥W(s+1) −W∗∥2F ≥ (2q − 1)ηLS(W
(s))− ηϵ

holds for s ≤ t. Taking a summation, we obtain that754

t∑
s=T1

LS(W
(s)) ≤ ∥W(T1) −W∗∥2F + ηϵ(t− T1 + 1)

(2q − 1)η
(37)

for all T1 ≤ t ≤ T . Dividing (t− T1 + 1) on both side of (37) gives that755

1
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t∑
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LS(W
(s)) ≤ ∥W(T1) −W∗∥2F

(2q − 1)η(t− T1 + 1)
+

ϵ

2q − 1
.

Then we can take t = T and have that756

1

T − T1 + 1
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LS(W
(s)) ≤ ∥W(T1) −W∗∥2F

(2q − 1)η(T − T1 + 1)
+

ϵ

2q − 1
≤ 3ϵ

2q − 1
< ϵ,

where we use the fact that q > 2 and our choice that T = T1 +
⌊
∥W(T1)−W∗∥2

F

2ηϵ

⌋
. Because the mean757

is smaller than ϵ, we can conclude that there exist T1 ≤ t ≤ T such that LS(W
(t)) < ϵ.758

Finally, we will prove that maxj,r,i |ρ(t)j,r,i| ≤ 2β̂ for all t ∈ [T1, T ]. Plugging T = T1 +759 ⌊
∥W(T1)−W∗∥2

F

2ηϵ

⌋
into (37) gives that760

T∑
s=T1

LS(W
(s)) ≤ 2∥W(T1) −W∗∥2F

(2q − 1)η
= Õ(η−1m3∥µ∥22), (38)
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where the inequality is due to ∥W(T1) −W∗∥F ≤ Õ(m3/2∥µ∥−1
2 ) in Lemma C.2. Define Ψ(t) =761

maxj,r,i |ρ(t)j,r,i|. We will use induction to prove Ψ(t) ≤ 2β̂ for all t ∈ [T1, T ]. At t = T1, by the762

definition of β̂, clearly we have Ψ(T1) ≤ β̂ ≤ 2β̂. Now suppose that there exists T̃ ∈ [T1, T ] such763

that Ψ(t) ≤ 2β̂ for all t ∈ [T1, T̃ − 1]. Then for t ∈ [T1, T̃ − 1], by the following expression:764
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we have765
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where the second inequality is due to Lemmas A.2 and A.6, and the last inequality follows by the766

assumption that d ≥ 16n2 log(4n2/δ). Taking a telescoping sum over t = 0, 1, . . . , T̃ − 1, we have767

that768
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≤ Ψ(T1) + Õ(m2SNR−2)β̂q−1
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(vi)

≤ 2β̂,

where (i) is by out induction hypothesis that Ψ(t) ≤ 2β̂, (ii) is by |ℓ′| ≤ ℓ, (iii) is769

by maxi
∑

k∈N (i) D
−1
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∑
i ℓ

(s)
i = nLS(W
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Õ(m2n2/q(n(p+s))1−2/q(σ0σp

√
d/(n(p+ s)))q−2) ≤ 1 by Condition 4.1. Therefore, Ψ(T̃ ) ≤ 2β̂,773

which completes the induction.774

C.3 Population loss775

Consider a new data point (x, y) drawn from the SNM-SBM distribution. Without loss of generality,776

we suppose that the first patch is the signal patch and the second patch is the noise patch, i.e.,777

x = [yµ, ξ]. Moreover, by the signal-noise decomposition, the learned neural network has parameter778

w
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for j ∈ {±1} and r ∈ [m].779

Lemma C.6. Under the same conditions as Theorem 4.3, we have that maxj,r |⟨w(t)
j,r, ξ̃i⟩| ≤ 1/2780

for all 0 ≤ t ≤ T , and i ∈ [n].781

Proof. We can get the upper bound of the inner products between the parameter and the noise as782

follows:783
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for all j ∈ {±1}, r ∈ [m] and i ∈ [n], where (i) is by Lemma B.3, (ii) is due to |⟨w(0)
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in Lemma C.5, and (iii) is due to our condition of σ0 ≤ Õ(m−2/(q−2)n−1) · (σp

√
d/(n(p+ s)))−1786

and d ≥ Ω̃(m2n4) in Condition 4.1.787

Lemma C.7. Under the same conditions as Theorem 4.3, with probability at least 1 − 4mT ·788
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0 σ−2
p d−1n(p+ s)), we have that maxj,r |⟨w(t)
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C2 = Õ(1).790

Proof of Lemma C.7. Let w̄(t)
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, then we have that ⟨w̄(t)
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where the equality is due to d ≥ Ω̃(m2n4) by Condition 4.1.792
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j,r∥2 ≤ C1σ0
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Applying a union bound over j, r, t completes the proof.796

Lemma C.8 (Restatement of Lemma 5.5). Let T be defined in Lemma 5.3 respectively. Under797

the same conditions as Theorem 4.3, for any 0 ≤ t ≤ T with LS(W
(t)) ≤ 1, it holds that798

LD(W
(t)) ≤ c1 · LS(W

(t)) + exp(−c2n
2).799

Proof of Lemma C.8. Let event E to be the event that Lemma C.7 holds. Then we can divide800

LD(W
(t)) into two parts:801
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In the following, we bound I1 and I2 respectively.802

Bounding I1: Since LS(W
(t)) ≤ 1, there must exist one (x̃i, yi) such that ℓ
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≤803
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where (i) is by z ≤ 2 log(1 + z),∀z ≤ 1. If event E holds, we have that805
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By writing f(W(t), x̃(2)), we mean that the input is x̃ = [0, x̃(2)]. The second inequality is by806
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j,r, ξ̃⟩| ≤ 1/2 in Lemma C.7 and maxj,r |⟨w(t)
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have that808
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where the first inequality is by the property of cross-entropy loss that ℓ(z) ≤ exp(−z) for all z, the809

second inequality is by (43) and Lemma A.5, and the third inequality is by (42). Dropping the event810

in the expectation gives I1 ≤ c1LS(W
(t)).811

Bounding I2: Next we bound the second term I2. We choose an arbitrary training data (xi′ , yi′)812

such that yi′ = y. Then we have813
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where the first inequality is due to Fy(W
(t), x̃) ≥ 0, the second inequality is by the property814

of cross-entropy loss, i.e., log(1 + exp(z)) ≤ 1 + z for all z ≥ 0, the third inequality is by815
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j,r, ỹµ⟩) ≤ F−y(W−y, x̃i′) = F−yi′ (W−yi′ , x̃i′), the fourth inequality is by816

F−yi′ (W−yi′ , x̃i′) ≤ 1 in Lemma B.5, and the last inequality is due to ⟨w̄(t)
j,r, ξ̃⟩ = ⟨w(t)

j,r, ξ̃⟩ ≤817

31



Figure 4: Test accuracy heatmap for GCNs after training.

∥w̄(t)
j,r∥2∥ξ̃∥2 ≤ Õ(σ0

√
d)∥ξ̃∥2 in (40). Then we further have that818
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≤ exp(−c1n
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where c1 is a constant, the first inequality is by Cauchy-Schwartz inequality, the second inequality is819

by (44), the third inequality is by Lemma C.7 and the fact that
√
4 + Õ((σ0

√
d)2q)E[∥ξ̃∥2q2 ] =820

O(poly(d)), and the last inequality is by our condition σ0 ≤ Õ(m−2/(q−2)n−1) ·821

(σp

√
d/(n(p+ s)))−1 in Condition 4.1. Plugging the bounds of I1, I2 into (41) completes the822

proof.823

D Additional Experimental Procedures and Results824

D.1 Dataset in Node Classification825

In Figure 1, we execute node classification experiments on three frequently used citation networks:826

Cora, Citeseer, and Pubmed [1]. Detailed information about these datasets is provided below and827

summarized in Table 1.828

Table 1: Details of Datasets
Dataset Nodes Edges Classes Features Train/Val/Test

Cora 2,708 5,429 7 1,433 0.05/0.18/0.37
Citeseer 3,327 4,732 6 3,703 0.04/0.15/0.30
Pubmed 19,717 44,338 3 500 0.003/0.03/0.05

• The Cora dataset includes 2,708 scientific publications, each categorized into one of seven829

classes, connected by 5,429 links. Each publication is represented by a binary word vector,830

which denotes the presence or absence of a corresponding word from a dictionary of 1,433831

unique words.832
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• The Citeseer dataset comprises 3,312 scientific publications, each classified into one of six833

classes, connected by 4,732 links. Each publication is represented by a binary word vector,834

indicating the presence or absence of a corresponding word from a dictionary that includes835

3,703 unique words.836

• The Pubmed Diabetes dataset includes 19,717 scientific publications related to diabetes,837

drawn from the PubMed database and classified into one of three classes. The citation838

network is made up of 44,338 links. Each publication is represented by a TF-IDF weighted839

word vector from a dictionary consisting of 500 unique words.840

D.2 Phase transition in GCN841

In Figure 3, we illustrated the variance in test accuracy between CNN and GCN within a chosen range842

of SNR and sample numbers, where GCN was shown to achieve near-perfect test accuracy. Here,843

we broaden the SNR range towards the smaller end and display the corresponding phase diagram844

of GCN in Figure 4. When the SNR is exceedingly small, we observe that GCNs return lower test845

accuracy, suggesting the possibility of a phase transition in the test accuracy of GCNs.846
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