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A IMPLEMENTATION DETAILS

A.1 FINDING SPURIOUS ATTRIBUTES

We delve into our manual identification process for spurious attributes as described in Section 3.2.
Following the approach outlined in (Singla & Feizi, 2021), we present a simplified version. For
each category, we randomly select 5 images from the training set and generate the corresponding
heatmap. We also reference external sources like Wikipedia and seek advice from ChatGPT. Using
this information, we assess whether an attribute belongs to the main object or a separate background
element, with options: ”Yes”, ”No”, or ”Unsure”. Finally, attributes categorized as ”No” are deemed
spurious attributes. It is important to mention that unlike (Singla & Feizi, 2021), we do not conduct
crowd studies. All supervision tasks are performed by the authors.

A.2 PROMPTING LLMS

We conduct a naive attempt to modify the prompting technique of LLMs to avoid generating spurious
attributes in Section 3.2. We try three variant prompt templates by appending or inserting additional
instructions as follows:

T1: Only focus on itself.
T2: Imagine you are an expert of .
T3: Do not describe other than .

For each instruction, we position it at either the beginning or the end, yielding six combinations.
Then, we employ existing attribute-based methods, e.g., ArGue (Tian et al., 2024), to derive results,
averaging them across all combinations.

A.3 QUERYING MLLMS

In addition to the techniques and parameters introduced in the main paper, we believe a crucial step
in dealing with MLLMs is managing their outputs. Given a specified temperature, the output vari-
ance of an MLLM, particularly GPT-4V, for the same input can be significant. The responses may
range from a single word to a complete paragraph, and the model may fail to follow the demon-
strated formats or refuse to respond. Similar challenges have been noted in recent studies, such as
DCLIP (Menon & Vondrick, 2023) and CuPL (Pratt et al., 2023), when using MLLMs or LLMs
to generate attributes. In this work, we employ a simple regular expression to retain responses of
suitable length and exclude those that are not formatted with bullet points. Additionally, we filter out
duplicate or similar attributes. For example, between ice surface and glacier we typically randomly
select only one.

A.4 CONSTRUCTING PSEUDO CATEGORIES

Here, we describe the process of constructing images targeting spurious attributes using SD (Rom-
bach et al., 2022) or LAION-5B (Schuhmann et al., 2022). For the former, following Sus-X (Udan-
darao et al., 2022), we use the common checkpoint stable-diffusion-v1-4, with a guidance scale of
7.0. The diffusion step is set to 100, with a fixed output resolution of 512x512. Additionally, to
ensure the diversity of the images, we use ChatGPT to generate multiple SD prompts. Specifically,
we provide a vanilla prompt as an example, e.g., a photo of a mouse, and then ask GPT to rephrase
the prompt in different formats. Some example generated prompts are displayed below.

P1: a 3D realistic photo of a
P2: a high-quality natural image of .
P3: a intriguing portray of .

It is worth noting that the prompts mentioned above are also applicable for pre-training retrieval.
For LAION-5B, we select the matches with the highest average semantic similarity to these GPT-
generated prompts to construct pseudo categories. This approach ensures the diversity of the re-
trieved images while also enhancing the reliability of semantic matching.
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Figure 6: The per-category out-of-distribution accuracy on domain generalization. In this set-
ting, based on the strong baseline CPL, we remove spurious attributes identified by manual inspec-
tion (Man.) or SAP for a specific category and compare the accuracy change on the category in the
out-of-distribution datasets. All results are averaged over 4 ImageNet variants.

Category name Spurious attributes Average weights
Personal laptop mouse, coffee, charger, worktable 77.34% / 46.73%
Freight truck road, traffic light, trees, street 82.16% / 54.69%
Mountain bike trees, road, mountain, swamp 74.81% / 43.02%
Apple pie fork, plates, dining car, tablecloth 67.29% / 37.44%

Table 6: The spurious attributes identified by SAP. For each example category, we pinpoint its
spurious attributes and determine the average attribute weights on model predictions using CBMs
across identified spurious attributes (Left) and all generated attributes (Right).

B MORE EVALUATION

B.1 EXAMPLE SPURIOUS ATTRIBUTES

SAP quantifies the identification of spurious attributes without human supervision, offering a more
precise measure of spurious correlation. This aids in effectively pinpointing attributes favored by
VLMs. Table 6 showcases typical spurious attributes found by SAP, including instances like mouse
frequently appearing with laptop, or fork being closely associated with apple pie. Additionally, we
assess their weights on model predictions, along with the average weights of all generated attributes
for reference. Notably, spurious attributes carry substantially higher weights in model decision-
making compared to overall attributes, further underscoring the biased nature of VLMs.

B.2 SAP VS HUMAN SUPERVISION

Finding spurious attributes through human supervision (Singla & Feizi, 2021; Wong et al., 2021),
while comprehensive, has significant drawbacks: 1) it incurs extremely high labor costs; 2) its strong
subjectivity easily introduces false positives, where identified attributes are only present by chance.
Here, we compare the performance of the proposed automatic identification method, SAP, with
human supervision. We adopt domain generalization as the task and select CPL (Zhang et al., 2024b)
as the baseline. For better interpretation, we remove spurious attributes from individual categories
one at a time and record the change in per-category accuracy on out-of-distribution datasets. Fig. 6
depicts the results in CPL, as well as the results after removing spurious attributes through the two
identification approaches. It can be seen that SAP’s performance is comparable or even outperforms
human supervision.

B.3 QUERYING WITH SAP AT SCALE

In the main paper, we address a challenging setting, specifically few-shot scenarios where training
data is limited. This leads to a pertinent question: is a small number of images truly adequate
for SAP to identify spurious attributes within categories? In other words, would querying more
images further enhance SAP’s performance? To investigate the potential of scaling up, we expand

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

# Query Images 1 2 4 8 16 32 64

CoCoOp 75.62 76.06 76.84 77.56 78.10 78.24 78.28

MaPLe 81.98 82.55 83.47 84.01 84.49 84.60 84.53

PromptSRC 82.59 83.35 84.13 84.72 85.46 85.63 85.68

Table 7: The evaluation on base-to-new generalization while querying different number of
images per-category. The results are averaged across 11 datasets.

MLLM BLIP-2 LLaVA InternVL GPT-4V

CoCoOp 72.28 72.79 73.14 73.50
MaPLe 76.20 76.83 77.25 77.69
PromptSRC 76.43 77.01 77.37 77.88

Table 8: The evaluation on base-to-new generalization with various MLLMs.

the training dataset from 16-shot to 256-shot and have GPT-4V query 1, 2, 4, 8, 16, 32, and 64
randomly selected images from the training shots. We evaluate the average new category accuracy
on base-to-new generalization tasks across 11 datasets, comparing three typical baselines: CoCoOp,
MaPLe, and PromptSRC. As shown in Table 7, despite the availability of additional shots during
training, the results tend to plateau when querying with 16 images. This indicates that even with an
expanded training dataset, MLLMs require only around 16 query images to capture sufficient and
effective spurious attributes.

B.4 EFFECT OF CHOICES OF MLLMS

In previous experiments, we default our MLLM to GPT-4V. Here, we attempt to use more open-
sourced MLLMs to comprehensively evaluate the robustness of our proposed method. We con-
sider three recently popular MLLMs: BLIP-2 (Li et al., 2023), LLaVA (Liu et al., 2024), and In-
ternVL (Chen et al., 2024). Table 8 presents the performance of these different MLLMs on base-
to-new generalization tasks with 16-shot. As expected, GPT-4V, the proprietary model, achieves the
best results. The next best performance is from InternVL. Conversely, BLIP-2 shows the poorest
performance, which we attribute to its tendency to produce a limited vocabulary that results in overly
broad core and spurious attributes.

B.5 SYNTHETIC GENERATION VS PRE-TRAINING RETRIEVAL

In previous experiments, our default approach is to utilize Stable Diffusion for constructing pseudo
categories. Here, we explore an alternative method: retrieving image samples from the pre-training
dataset. Table 9 illustrates the results of both approaches across several baselines. Notably, Stable
Diffusion consistently outperforms retrieval from LAION-5B. This unexpected result is intriguing,

(A) prediction (B) SD (C) LAION

Figure 7: Constructed images.
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CoCoOp KgCoOp MaPLe PromptSRC CPL

SD 76.93 78.51 80.06 80.57 82.87
LAION 76.46 78.45 79.32 80.85 82.35

Table 9: The comparison between synthetic generation and pre-training dataset retrieval. We
select 5 strong baselines. The results are harmonic mean of accuracy on base and new categories for
base-to-new generalization.

λ 0 1 2 5 10 20

Base 83.23 83.73 83.64 83.15 82.41 81.53

New 74.82 76.00 77.36 77.73 76.60 76.89

HM 78.80 79.68 80.38 80.35 79.40 79.14

Table 10: The effect of Lpse with different λ on base-to-new generalization.

considering that pre-training images predominantly consist of real data, which one would expect
to better match the style of the target category. However, the results suggest otherwise. We spec-
ulate that the complexity of real image distributions, coupled with noise attributes, may contribute
to this disparity. For instance, in Fig. 7, when associating the spurious attribute snowforest with
snowmobile, the top-1 match retrieved using LAION-5B includes elements such as tent and bag.
These noise attributes could potentially introduce new shortcuts, complicating the model’s ability to
differentiate spurious attributes from the target category.

B.6 BALANCING THE EFFECT OF SAS

Table 10 examines the balancing effect between Lpse and primary learning objectives in existing
work in terms of λ. The best trade-off is observed at around λ = 2. As λ increases further, it
begins to neglect the primary objectives of the baselines, leading to a decline in base accuracy.
Notably, these results are averaged across multiple baselines. In fact, for distinct baselines, we
suggest exploring optimal values individually due to their respective learning characteristics.

B.7 QUANTITATIVE COMPARISON WITH RELATED WORK

In the main text, we primarily demonstrate the effectiveness of SAS in complementing existing PEFT
methods. Here, we further substantiate the advantages of SAS by comparing it with other state-of-
the-art spurious correlation mitigation approaches. We evaluate a typical property of VLMs, group
robustness, which indicates the invariance of VLMs under different associations between labels and
attributes. For the baselines, we consider C-Adapter (Zhang & Ré, 2022) and CFR (You et al., 2024),

Method Waterbirds CelebA BREEDS CIFAR-10.02

Accuracy (%) WG Avg Gap WG Avg Gap WG Avg Gap WG Avg Gap

Zero-shot 25.7 87.3 61.6 62.1 71.9 9.8 4.0 86.6 82.6 72.0 93.2 21.2
RoboShot 45.2 79.9 34.7 82.6 85.5 2.9 56.4 80.3 23.9 79.1 95.6 16.5

Linear Probe 65.9 97.6 31.7 28.3 94.7 66.4 84.0 98.6 14.6 87.5 96.1 8.6
C-Adapter 86.9 96.2 9.3 84.6 90.4 5.8 80.0 97.5 17.5 82.2 96.1 13.9
DISC 88.7 93.8 5.1 82.0 92.5 10.5 86.3 95.8 9.5 84.7 94.3 9.6
CFR 88.2 96.7 8.5 84.7 87.8 3.1 85.0 96.1 11.1 89.1 92.5 3.4
SAS 89.7 96.3 6.6 87.4 91.1 3.7 87.8 96.4 8.6 88.5 95.2 6.7

Table 11: The group robustness evaluation of SAS and other spurious correlation mitigation
methods. We report worst-group accuracy (WG), average-group accuracy (Avg) and the gap be-
tween. Note that RoboShot is a zero-shot calibration method, while other approaches are training-
required.
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Figure 8: The results varying shots on base-to-new generalization and few-shot classifcation.

where spurious attributes are assumed to be unknown. We also include RoboShot (Adila et al., 2023)
and DISC (Wu et al., 2023), where, similar to our approach, spurious concepts are identified and
used for precise mitigation. By default, we configure SAS to optimize only the learnable textual
prompt, i.e., CoOp (Zhou et al., 2022a). It is worth noting that RoboShot (Adila et al., 2023) is
a zero-shot approach that calibrates pre-trained embeddings. Following Zhang & Ré (2022), we
consider four datasets with group annotations: Waterbirds (Sagawa et al., 2019), CelebA (Liu et al.,
2018), BREEDS Living-17 (Santurkar et al., 2020), and CIFAR-10.02 (Krizhevsky et al., 2009).
In Table 11, average-group accuracy, worst-group accuracy, and their gap are reported. It can be
observed that SAS achieves a new state-of-the-art in worst-group accuracy across most datasets
without excessively compromising average-group accuracy.

B.8 GENERALIZATION UNDER LIMITED SHOTS

We consider generalization capability in extreme cases, where the shots are further limited, i.e.,
1/2/4/8 shots. It is noteworthy that in this scenario, limitations arise from both the insufficient
amount of data and the impact on SAP’s precision to identify spurious attributes, further affecting
SAS performance. We select three strong baselines, encompassing PromptSRC (Khattak et al.,
2023b), TCP (Yao et al., 2024) and CPL (Zhang et al., 2024b). Fig. 8 (A) shows the results of
combining SAS on base-to-new generalization across different shot settings. It can be seen that the
results consistently outperform the original baselines, even only one shot is given.

B.9 STANDARD FEW-SHOT CLASSIFICATION

We consider the standard scenario where test and training samples originate from the same dataset
distribution. Fig. 8 (B) illustrates the results in standard few-shot classification. Notably, integrat-
ing SAS does not compromise in-distribution accuracy; instead, it shows a slight and consistent
improvement.

B.10 DISCUSSION OF HYPERPARAMETER SENSITIVITY

Although we observe the state-of-the-art performance of SAS in the main context, an important
aspect, hyperparameter sensitivity, still requires discussion. For the newly introduced hyperparam-
eters in SAS, such as λ and γ, their impact on the results has been examined in previous ablation
experiments. These experiments reveal that while an optimal value is preferred, SAS is not overly
sensitive to these hyperparameters and consistently provides stable improvements within a certain
range.

Regarding training hyperparameters such as learning rate and batch size, recent studies (Silva-
Rodriguez et al., 2024) have found that some adaptation methods heavily rely on these hyperpa-
rameters in few-shot scenarios, complicating practical deployment. In contrast, as shown in Fig.
3 of the main paper, although SAS uses different training hyperparameters for different baselines
as specified in the original papers, it consistently achieves gains, demonstrating its robustness to
hyperparameters.
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Training Data CoCoOp MaPLe PromptSRC Average
16-shot main 70.05 75.39 73.78 72.94
32-shot main 71.12 76.37 75.52 74.34
16-shot main + 16-shot pseudo main 70.34 75.80 74.46 73.53
16-shot main + 16-shot pseudo spurious (ours) 73.50 77.69 77.88 76.36

Table 12: The ablation study on the performance gains. We introduce two baselines, where
the first incorporates additional data from the training set (32-shot main), and the second involves
vanilla constructed data from pseudo categories mirroring the main categories (16-shot main + 16-
shot pseudo main). In contrast, the pseudo categories of our method feature spurious attributes
(16-shot main + 16-shot pseudo spurious)

B.11 ABLATION ON PERFORMANCE GAINS

In the main paper, we verify the effectiveness of SAS and explore the contribution of spurious at-
tributes to its performance. To further confirm that the performance gains are primarily due to the
model’s enhanced robustness to spurious attributes rather than additional data, here we conduct a
simple ablation study. Specifically, in addition to the proposed method, we design two baselines. In
the first baseline, we consider additional data directly from the original dataset featuring the main
objects, where we extend the training data from 16 shots to 32 shots (32-shot main). In the second
baseline, we involve additional data generated by pseudo categories, where instead of featuring spu-
rious attributes, these pseudo categories are the same as the main categories, i.e., vanilla constructed
data (16-shot main + 16-shot pseudo main). In contrast to the first two baselines, our approach cre-
ates pseudo categories based on spurious attributes (16-shot main + 16-shot pseudo spurious). For
fairness, we ensure that the amount of training data is identical between the two baselines and our
approach. We select three typical methods for comparison, including CoCoOp (Zhou et al., 2022b),
MaPLe (Khattak et al., 2023a), and PromptSRC (Khattak et al., 2023b), and evaluate them on the
base-to-new generalization task. All results are averaged across 11 datasets.

As shown in Table 12, generating additional data using spurious attributes significantly outper-
forms vanilla constructed data for main categories (76.36% vs 73.53%). Furthermore, our proposed
method even exceeds the performance of the 32-shot main (76.36% vs 74.34%). It is important to
note that this comparison is not entirely fair for our method, as the latter relies on more labeled data
from the original training set. This further suggests that the performance gains are primarily driven
by the model’s enhanced robustness to spurious attributes, rather than merely the increased training
data.

B.12 MORE VISUALIZATION EXAMPLES

In Fig. 5, we present the saliency maps for some typical categories with and without SAS. For com-
pleteness, we provide more examples here. As shown in Fig. 9, SAS consistently reduces VLMs’
bias towards spurious cues across various categories, enabling a greater focus on the main objects.

Original CLIP +SAS Original CLIP +SAS Original CLIP +SAS

(d) tree frog (e) airliner (f) polar bear

Original CLIP +SAS Original CLIP +SAS Original CLIP +SAS

(g) mountain bike (h) water bird (i) football

Figure 9: More saliency map visualization with and without SAS.
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Model CoCoOp MaPLe PromptSRC Average
BLIP 68.81 72.32 72.62 70.58
BLIP + SAS 70.54 74.35 73.97 72.95
CLIPA-v2 70.28 73.40 74.52 72.73
CLIPA-v2 + SAS 72.42 74.88 77.08 74.79
EVA-CLIP 72.75 77.58 76.13 75.49
EVA-CLIP + SAS 74.60 77.92 77.82 76.78
SigLIP 74.99 73.78 78.64 75.80
SigLIP + SAS 76.41 75.26 79.87 77.18

Table 13: The evaluation results of SAS on other VLMs. We consider four representative VLMs
including BLIP, CLIPA-v2, EVA-CLIP and SigLIP.

Method Flowers102 Food101 FGVCAircraft StanfordCars Average Time
CoCoOp 10m48s 18m34s 8m02s 12m46s 12m32s
+ SAS 13m14s 24m07s 13m36s 17m08s 17m01s
+ selective trick 11m03s 20m45s 10m23s 14m55s 14m16s
PromptSRC 6m25s 15m09s 5m44s 9m36s 9m13s
+ SAS 8m26s 18m21s 7m11s 12m04s 11m30s
+ selective trick 6m58s 16m22s 6m35s 10m20s 10m03s

Table 14: The training efficiency of SAS and selective optimization on other datasets.

For example, for the tree frog, SAS reduces VLMs’ reliance on tree branches, while for the airliner,
the typical spurious attributes are sky or clouds, and the application of SAS alleviates the model’s
bias towards these elements.

B.13 MORE VISION-LANGUAGE MODELS

For completeness, here we extend the evaluation of SAS to additional VLMs other than CLIP. Specif-
ically, we select four typical VLMs encompassing BLIP (Li et al., 2022), CLIPA-v2 (Li et al., 2024),
EVA-CLIP (Sun et al., 2023) and SigLIP (Zhai et al., 2023). We record the results on base-to-new
generalization, where the setting is consistent with the main paper. As demonstrated in Table 13, our
proposed method, SAS, consistently yields performance gains across a range of VLMs, extending
beyond just CLIP.

B.14 COMPUTATIONAL EFFICIENCY AND COST

In this section, we present the computational and time costs of the proposed method, accompanied
by a thorough analysis.

The cost of training. In the main paper, we present the training time of SAS and the proposed
selective optimization trick on ImageNet. Here, furthermore, we provide time statistics for other
datasets. The time is measured as the runtime of the training script based on the implementation of
CoOp (Zhou et al., 2022a). As shown in Table 14, for most datasets, the integration of SAS only
increases the training time by approximately 3 to 5 minutes, while selective optimization further
reduces this time to a negligible amount. In fact, the selective optimization trick is proposed to
address large-scale datasets, such as ImageNet, which contains 1000 categories. For regular datasets
(∼ 100 categories), the time consumption of SAS is fully acceptable.

The cost of diffusion generation. Here, we provide the estimated inference time required to con-
struct pseudo categories through Stable Diffusion for each dataset. As shown in Table 15, the total
inference time is proportional to the size of the dataset, particularly the number of categories in-
volved. For most datasets, the inference time is under half an hour, and the entire inference process

8
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Dataset Caltech Pets Cars Flowers Food Aircraft SUN DTD EuroSAT UCF INet

Time 25min 10min 45min 30min 25min 30min 90min 15min 5min 25min 3h50min

Table 15: The diffusion inference time for each dataset.

Dataset Caltech Pets Cars Flowers Food Aircraft SUN DTD EuroSAT UCF INet

Time 10min 10min 25min 10min 10min 10min 35min 5min 3min 10min 1h30min

Table 16: The GPT prompting time for each dataset.

can be completed within half a day. It is important to note that this is a one-time operation, and no
additional inference is needed during subsequent training.

The cost of GPT prompting. In our method, a key step is identifying the spurious attributes within
each category, which we accomplish by prompting MLLMs, i.e., GPT. Here we provide the time cost
of this process along with a thorough analysis. Specifically, to enhance efficiency, we employ batch
inference as implemented in Menon & Vondrick (2023), where multiple queries can be processed
concurrently, which significantly reduces the inference time for GPT. As shown in Table 16, the
GPT inference time for most datasets is under 10 minutes. The complete inference process takes
approximately three hours, which is also a one-time operation that does not need to be repeated
thereafter. It is worth noting that upon obtaining the responses, we need to perform post-processing
such as filtering and selection to determine valid attributes, as detailed in Section A.3, which may
require additional time.

B.15 MORE MODALITIES AND TASKS

To assess the transferability of our method to other modalities or tasks, we explore video recog-
nition and leave more tasks, such as language reasoning, for future work. Specifically, we choose
ViFi-CLIP (Rasheed et al., 2023), a fully fine-tuned CLIP model tailored for video understanding.
ViFi-CLIP employs a training framework similar to CLIP, incorporating a temporal pooling layer
to derive video representations from multiple frames. Following the base-to-new generalization
setting in Rasheed et al. (2023), we evaluate video-level generalization performance on four video
datasets: K-400 (Kay et al., 2017), HMDB-51 (Kuehne et al., 2011), UCF-101 (Soomro, 2012),
and SSv2 (Goyal et al., 2017). As in the main paper, we select three representative baseline meth-
ods: CoCoOp (Zhou et al., 2022b), MaPLe (Khattak et al., 2023a), and PromptSRC (Khattak et al.,
2023b). Since ViFi-CLIP shares its architecture with CLIP, these methods can be easily transferred
to ViFi-CLIP, which has been implemented by Khattak et al. (2023b). We incorporate the proposed
method, SAS, into these baselines to verify its effectiveness by contrasting spurious attributes with
each frame of the video. We record the new category accuracy for each dataset which directly re-
flects the generalization performance on unseen categories. As shown in Table 17, despite the input
modalities shifting from images to videos, SAS consistently delivers performance gains across all

Method K-400 HMDB-51 UCF-101 SSv2

ViFiCLIP 61.10 53.30 67.70 12.10

CoCoOp 64.70 54.41 68.21 14.24

CoCoOp + SAS 66.39 56.64 70.40 16.01

MaPLe 64.52 58.23 70.73 14.74

MaPLe + SAS 66.42 59.32 72.66 16.40

PromptSRC 68.31 62.38 76.79 17.22

PromptSRC + SAS 70.23 64.70 79.31 18.95

Table 17: The evaluation results of SAS on four video datasets. The training is based on ViFi-
CLIP, a fully fine-tuned CLIP model for video reasoning.
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Method ImageNet Flowers102 SUN397 FGVCAircraft StanfordCars

MMA 71.00 75.93 78.57 36.33 73.10

MMA + SAS 72.61 77.27 80.19 37.85 75.46

DMN 72.28 78.49 77.32 32.60 74.22

DMN + SAS 73.34 80.17 79.74 35.38 76.30

Table 18: The evaluation of SAS on other baselines. We include two recently proposed ap-
proaches, including MMA and DMN.

Step
Flowers102 Food101 FGVCAircraft StanfordCars Average
Acc Time Acc Time Acc Time Acc Time Acc Time

25 72.24 10min 91.18 6min 27.23 8min 73.55 13min 66.05 9min
50 72.85 15min 91.96 11min 28.41 14min 74.67 23min 66.97 16min
75 72.81 22min 92.28 18min 28.19 24min 74.82 31min 67.02 24min

100 72.99 28min 92.12 26min 28.30 31min 74.96 40min 67.09 31min

Table 19: The performance of SAS and diffusion time with different number of diffusion steps.

datasets, proving it to be an effective plug-and-play method that can be generalized to more complex
modalities and tasks.

B.16 EVALUATION ON MORE BASELINES

For completeness, here we evaluate our method on the two recently proposed works. Specifically,
we select MMA (Yang et al., 2024) and DMN (Zhang et al., 2024a). For the former, we train the
newly introduced adapters in the deep layers that bridge the text and image representations, follow-
ing their setting and implementation. For the latter, we optimize its memory projection functions
and incorporate both the static and dynamic memory networks, which is the strongest variant ac-
cording to their paper. We select the base-to-new generalization task, as illustrated in Section 4,
and record the new category accuracy, which directly reflects the generalization performance. As
shown in Table 18, SAS consistently improves performance on both methods, demonstrating its
complementarity.

B.17 ABLATION ON DIFFUSION STEPS

Considering the computations introduced by diffusion in generating images, here we perform an
ablation study on the efficiency of diffusion inference. Specifically, we vary the number of diffusion
steps, which is the key hyperparameter influencing the inference time. Intuitively, fewer steps are
more efficient yet yield lower image quality, while more steps ensure image fidelity but require more
computation. We select CoCoOp as the baseline and record the new category accuracy on base-to-
new generalization. As shown in Table 19, by default, we use 100 steps throughout the paper as
described in Section A.4, which requires an average of 31 minutes to generate images per dataset.
Here we try fewer steps, such as 50, and observe that the time required for diffusion nearly halves
(31min → 16min) with minimal degradation in performance (67.09 → 66.97). However, while the
number of steps is further reduced to 25, there is a dramatic performance drop (66.97 → 66.05),
possibly due to the decline in image quality. This suggests we may safely adjust the number of steps
from 100 to 50, which halves the required time with minimal accuracy loss, significantly improving
the efficiency of SAS.
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Method ImageNet Caltech101 OxfordPets StanfordCars DTD EuroSAT ImageNet-A Average
CLIP 66.54 94.62 90.41 64.69 44.84 47.50 49.32 65.42
DCLIP 68.52 95.48 91.88 65.70 45.52 49.08 49.88 66.58
DCLIP - SA 67.67 94.76 91.31 64.79 45.06 47.92 49.30 65.83
CuPL 69.99 96.51 92.62 66.91 47.32 50.33 50.14 67.69
CuPL - SA 68.70 95.89 92.38 65.66 46.06 49.58 49.28 66.79

Table 20: The zero-shot accuracy before and after removing spurious attributes. The model is
evaluated on 2 generic datasets (ImageNet (Deng et al., 2009), Caltech101 (Fei-Fei et al., 2004)),
2 fine-grained datasets (OxfordPets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013)), 2
specialized datasets (DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019)) and 1 adversarial
dataset (ImageNet-A (Hendrycks et al., 2021)).

C FURTHER EXPLORATION

C.1 SPURIOUS ATTRIBUTES FOR ZERO-SHOT RECOGNITION

The primary takeaway of this paper is the unbalanced treatment of various semantic attributes by
VLMs, which extends beyond the generalization task and suggests that the language encoder of
VLMs may allocate distinct attention to different tokens. We examine a typical example: zero-shot
recognition, where attributes are directly utilized to make predictions without training. We consider
three baselines: CLIP (Radford et al., 2021), DCLIP (Menon & Vondrick, 2023), and CuPL (Pratt
et al., 2023). The latter two employ LLMs to generate attributes and enhance zero-shot accuracy. In
a manner similar to the previous motivational study, we remove identified spurious attributes from
the existing baselines and record the accuracy before and after this intervention. Table 20 presents
the results before and after removal. We observe a significant drop in accuracy for the baselines
(from 63.23% to 62.49% for DCLIP and from 64.34% to 63.45% for CuPL), with DCLIP almost
reverting to the performance of vanilla CLIP (62.49% vs. 62.07%). This indicates that 1) similar
to the generalization task, zero-shot recognition is also dominated by spurious attributes, nearly
ignoring the presence of other generated attributes; and 2) spurious attributes, in a sense, improve
zero-shot performance on natural datasets by scaling up the model’s inherent bias.

C.2 SELECTIVE OPTIMIZATION TRICK

SAS introduces a subsidiary task that includes constructed pseudo categories and auxiliary learning
objectives. With an increasing number of spurious attributes, a large number of pseudo categories
are introduced, significantly increasing computational costs. To tackle this challenge, we introduce
a strategy that selectively optimizes partial target categories with a heavy bias towards spurious at-
tributes. In other words, we only mitigate the influence of spurious attributes on categories that
overly rely on them. To identify these categories, we propose Spurious Correlation Ratio (SCR).
SCR is calculated as the ratio of the average weights of spurious attributes to the average weights of
all attributes, as exemplified in the rightmost column of Table 6. A higher SCR indicates that the pre-
diction of the corresponding category relies more on spurious attributes. In implementing this trick,
we empirically select only the top 10% of categories ranked by SCR for optimization. To verify the
trick, we choose two time-intensive baselines, CoCoOp (Zhou et al., 2022b) and PromptSRC (Khat-
tak et al., 2023b), for comparison. CoCoOp’s training is slow due to its instance-conditioned mech-
anism, while PromptSRC adds three extra learning objectives to the original cross-entropy loss. To
emphasize the results, we conduct evaluation on the base-to-new generalization task using Ima-
geNet (Deng et al., 2009) and record both training time and harmonic mean accuracy. Table 5 in the
main paper illustrates the trade-off between effectiveness and efficiency with SAS and the proposed
trick. It is evident that integrated with selective optimization, the required time is significantly re-
duced compared to the original SAS. For instance, on PromptSRC, it only adds 9 minutes of training
time while preserving most of the performance gains.
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Original Masking Inpainting

Figure 10: The constructed categories with masking and inpainting. For the former, we directly
mask the primary object with SAM (Kirillov et al., 2023), whereas for the latter, we further use
RePaint (Lugmayr et al., 2022) to fill in the missing parts. We compare the performance between
the pseudo categories constructed with masking, inpainting and our synthesis method.

C.3 VARIANTS OF SAS

In the main paper, SAS primarily constructs pseudo categories using synthetic or pre-trained data,
which has proven effective. Here, we consider two simple yet direct variants: 1) instead of utilizing
spurious attributes to create new data, we directly mask the main object in the original images
and use these as the corresponding pseudo categories, termed SAS-masking; 2) upon masking,
we fill the masked area through in-painting, termed SAS-inpainting. Fig. 10 displays some
example images of pseudo categories by these two variants. The motivation here is to enhance
VLMs’ awareness of core attributes by contrasting target categories with their corresponding images
that lack main objects. We refer to the original approach as SAS-synthesis, where pseudo
categories are constructed with SD-synthesized images. Table 21 presents the performance of the
three methods, showing that both variants perform worse than SAS-synthesis. We speculate that
this is because 1) masking or in-painting significantly reduces image fidelity; and 2) this approach
introduces excessive noise attributes, thereby forming a new set of spurious attributes for VLMs to
learn.

C.4 NON-SEMANTIC SPURIOUS ATTRIBUTE

In the evaluated datasets, including previous work on measuring group robustness (Zhang & Ré,
2022; Adila et al., 2023), most spurious attributes are semantically related, wherein the attribute
and label exhibit a natural association, e.g., water and water bird. In this study, we extend our
exploration to non-semantic attributes, where the association between the attribute and label is ar-
tificially constructed. We implement a straightforward color-shifting experiment using ColoredM-
NIST. This dataset comprises 10 classes, each representing a digit; however, instead of the stan-
dard black background in MNIST, each digit class features a distinctly colored background. Each
color demonstrates a strong spurious correlation with its corresponding digit, effectively serving as
a spurious attribute. Fig. 11 illustrates examples from ColoredMNIST. We employ GPT-4V to iden-
tify these non-semantic spurious attributes, resulting in descriptors such as green background and
pure yellow background. We evaluate SAS on the test set of ColoredMNIST, where the color back-
grounds are randomized across labels. As shown in Table 22, SAS significantly enhances VLMs’

Method CoCoOp MaPLe PromptSRC

SAS-masking 71.08 74.53 75.39

SAS-inpainting 72.95 76.81 77.04

SAS-synthesis 73.50 77.69 77.88

Table 21: The evaluation on base-to-new generalization with two SAS variants.
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Method CoCoOp MaPLe PromptSRC

w/o SAS 72.47 75.89 74.08

w/ SAS 84.70 88.27 87.48

Table 22: The evaluation on ColoredMNIST with and without SAS.

robustness to color shifting, indicating that MLLMs may capture non-semantic attributes in images,
and SAS effectively leverages these attributes to improve generalization.

C.5 LIMITATION AND FAILURE CASES

In SAP, the primary limitation stems from the necessity of having available images. Previous ap-
proaches to generating visual attributes only require textual information, e.g., category names. The
underlying assumption is that the generated attributes would be dataset-agnostic. For example, at-
tributes like headlights, doors, or wheels for the category vehicle are assumed to be consistent
across datasets. However, spurious attributes do not adhere to this assumption; they are contin-
gent on the specific characteristics of the dataset. For instance, vehicle images in different datasets
might be taken on a highway or in a parking lot, resulting in vastly different spurious attributes.
This highlights the need for visual information from the dataset itself to accurately identify spurious
attributes.

For SAS, the main concern still lies in efficiency. While the use of synthetic or pre-training images
has been employed to address data scarcity in many recent works, such as SuS-X (Udandarao et al.,
2022) and Real-Prompt (Parashar et al., 2024), these methods inevitably introduce additional com-
putational overhead. The inference of Stable Diffusion (Rombach et al., 2022), relative to its large
data requirements, is not particularly fast, and retrieval requires finding top-k matches from a huge
pre-training dataset (Schuhmann et al., 2022), both of which have efficiency bottlenecks. While
selective optimization tricks can minimize computational burdens as much as possible, they come at
the cost of accuracy.

C.6 MORE RELATED WORKS

Retrieval-Augmented Generation. RAG is proposed essentially to address the insufficiency or
lack of desired data. For example, Long et al. (2022) improves long-tail recognition performance by
retrieving text representations for tail classes. Similarly, Parashar et al. (2024) enhances VLMs’ tail
accuracy by identifying and retrieving high-frequency text synonyms corresponding to tail names
from the training set. Furthermore, Udandarao et al. (2022) mitigates data sparsity issues by retriev-
ing external images through class names for data augmentation. Sharing motivations with previous
work, we construct pseudo categories featuring spurious attributes through retrieval, thereby enhanc-
ing the model’s robustness to these attributes. Nevertheless, beyond retrieval, we also explore data
synthesis. In Section B.5, we compare the performance of our method using synthesized and re-
trieved data, empirically concluding that synthesized data yields greater accuracy gains. Compared
to retrieval, synthesis can offer more tailored and precise scenarios and objects, which may be more
suitable for our method given the diverse identified attributes.

Figure 11: ColoredMNIST.
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D BROADER SOCIETAL IMPACTS

Our work has positive societal impacts. As illustrated in Fig. 5 of the main paper, VLMs may
exhibit bias by associating harmful spurious attributes with target categories. For instance, when
recognizing street sign, VLMs often rely excessively on concepts like street and road. This non-
robust visual perception may lead to severe consequences in real-world applications, particularly
in autonomous driving. The introduction of SAP can effectively identify such harmful attributes
and even create a spurious attribute pool for specific applications, helping to determine situations
where performance is compromised. Meanwhile, SAS provides an effective approach to suppress
the influence of spurious attributes in VLMs, significantly enhancing the model’s robustness against
these attributes, including protected ones such as gender and race. Currently, we have not identified
negative societal impacts of this work. However, due to objective factors, such as the availability of
datasets and baselines’ code, this will need to be further discussed in the future.

E SUPPLEMENTARY RESULTS

E.1 CONSTRUCTED IMAGES

In Fig. 12, we provide more constructed images by SAS, with Stable Diffusion and retrieval from
LAION-5B, respectively.

E.2 SPURIOUS ATTRIBUTE STATISTICS

Here, we present the spurious attribute statistics for the evaluated datasets. Specifically, we report
the proportion of images containing one or more spurious attributes identified by SAS across 11
datasets, as shown in Table 23. The data reveals that for most datasets, over 50% of images contain
spurious attributes, highlighting the biased nature of these datasets and the consequent spurious
correlations learned by VLMs.

E.3 MOTIVATIONAL RESULTS

Given the enhanced generalization performance of VLMs before and after removing spurious at-
tributes in Table 1 of the main paper, to further illustrate the impact of spurious attributes, here we
present the improvement of the models on the counter group in Table 24. It can be observed that
the accuracy of VLMs on the counter group shows a more significant improvement, up to 9% on the
unseen categories.

E.4 NUMERICAL MAIN RESULTS

Here we quantitatively demonstrate the main results as depicted in Fig. 3 of the main paper. Table 25
and Table 26 present the numerical results of base-to-new generalization, cross-dataset transfer, and
domain generalization, respectively.
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Original SD LAION

Figure 12: More examples of generated and retrieved images with Stable Diffusion (SD) and
LAION, respectively. The category above is polar bear, with the primary spurious attribute being
snow-covered ground. The category below is chocolate cake, where one of the spurious attributes is
the dinner plate.
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Dataset Images with spurious attributes (%)

ImageNet 62.48

Caltech101 58.22

OxfordPets 73.54

StanfordCars 69.92

Flowers102 63.50

Food101 54.59

FGVCAircraft 47.97

SUN397 52.20

DTD 42.68

EuroSAT 47.90

UCF101 71.57

Table 23: The proportion of images containing one or more spurious attributes of 11 datasets.
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Method
FGVCAircraft SUN397 Flowers102 DTD Average

Base New SR Base New SR Base New SR Base New SR Base New SR

CPL 29.25 24.80 5.43 63.47 54.74 6.61 76.98 60.77 5.71 68.93 43.14 5.13 59.66 45.86 5.72

CPL - SA 32.42 31.34 — 64.81 60.35 — 78.35 69.80 — 71.26 52.65 — 61.71 53.54 —

ArGue 27.24 21.92 5.13 65.23 57.44 6.45 72.26 59.32 6.69 70.77 40.12 5.97 58.87 44.70 6.06

ArGue* 27.92 23.83 4.86 65.99 58.21 6.11 72.87 60.49 6.44 71.29 41.28 5.62 61.27 45.95 5.76

ArGue - SA 30.71 29.20 — 67.90 63.68 — 74.68 66.45 — 73.70 50.19 — 61.75 52.38 —

Table 24: The results on the counter group in base-to-new generalization before and after
removing spurious attributes (SA) from the pool. We extract the counter group for both the base
and new categories where spurious cues are removed. It can be observed that the accuracy of VLMs
improves after removing spurious attributes in this context.
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Method
ImageNet Caltech OxfordPets Cars Flowers Food Aircraft SUN DTD EuroSAT UCF

Base New Base New Base New Base New Base New Base New Base New Base New Base New Base New Base New

CLIP 72.43 68.14 96.84 94.0 91.17 97.26 63.37 74.89 72.08 77.80 90.10 91.22 27.19 36.29 69.36 75.35 53.24 59.90 56.48 64.05 70.53 77.50

CoCoOp 75.98 70.43 97.96 93.81 95.20 97.69 70.49 73.59 94.87 71.75 90.70 91.29 33.41 23.71 79.74 76.86 77.01 56.00 87.49 60.04 82.33 73.45

+ SAS 76.40 71.38 97.33 94.62 95.73 97.80 70.70 74.96 95.17 72.99 90.58 92.12 34.06 28.30 80.40 79.67 76.87 57.73 87.77 63.61 82.57 75.66

KgCoOp 75.83 69.96 97.72 94.39 94.65 97.76 71.76 75.04 95.00 74.73 90.50 91.70 36.21 33.55 80.29 76.53 77.55 54.99 85.64 64.34 82.89 76.67

+ SAS 75.78 71.24 97.96 95.40 95.43 98.67 71.46 75.93 95.51 75.86 90.69 92.03 36.93 36.20 80.80 79.02 77.89 60.30 85.78 73.73 83.38 78.94

MaPLe 76.66 70.54 97.74 94.36 95.43 97.76 72.94 74.00 95.92 72.46 90.71 92.05 37.44 35.61 80.82 78.70 80.36 59.18 94.07 73.23 83.00 78.66

+ SAS 76.69 70.82 97.92 95.35 95.88 98.47 73.16 75.46 95.93 76.74 91.41 92.47 37.87 39.68 81.30 80.72 80.78 63.21 94.38 78.45 82.89 80.24

PromptSRC 77.60 70.73 98.10 94.03 95.33 97.30 78.27 74.97 98.07 76.50 90.67 91.53 42.73 37.87 82.67 78.47 83.37 62.97 92.90 73.90 87.10 78.80

+ SAS 77.48 71.48 98.52 95.20 95.92 98.50 78.62 75.24 98.45 79.11 90.99 92.43 42.64 40.16 83.23 80.80 83.94 63.46 93.35 76.68 87.66 81.55

LASP 76.25 71.17 98.17 94.33 95.73 97.87 75.23 71.77 97.17 73.53 91.20 91.90 38.05 33.20 80.70 79.30 81.10 62.57 95.00 83.37 85.53 78.20

+ SAS 76.62 72.45 98.44 95.27 96.00 98.58 76.29 72.85 96.98 75.30 92.07 92.65 38.58 33.97 80.99 80.42 81.45 64.11 95.61 83.69 85.70 79.19

TCP 77.27 69.87 98.23 94.67 94.67 97.20 80.80 74.13 97.73 75.57 90.57 91.37 41.97 34.43 82.63 78.20 82.77 58.07 91.63 74.73 87.13 80.77

+ SAS 77.89 70.53 98.42 95.40 95.48 98.23 80.68 75.80 98.43 75.48 91.18 92.70 42.58 35.10 83.41 79.27 83.10 60.67 92.01 75.34 87.50 81.62

CLIP-Adapter 77.18 70.25 97.52 93.48 95.18 96.43 77.43 72.64 96.83 71.75 90.98 90.55 41.89 33.10 80.73 77.98 82.17 58.72 93.34 71.84 86.49 77.38

+ SAS 77.09 71.98 98.10 95.55 95.72 97.70 77.63 75.46 97.59 73.13 90.74 91.38 41.88 36.50 81.42 80.15 82.84 61.27 93.99 73.87 86.87 78.51

Tip-Adapter 78.04 71.96 98.68 94.17 96.21 98.57 80.79 73.66 98.73 74.36 92.62 91.01 43.34 35.73 81.77 79.27 84.58 59.91 94.82 74.81 86.78 78.94

+ SAS 77.89 72.58 98.89 95.72 96.65 98.43 80.84 75.42 98.81 76.73 92.84 92.81 43.27 38.31 82.36 80.13 84.77 63.38 95.51 77.54 87.42 79.77

ArGue 76.95 71.86 98.63 94.70 96.23 98.59 75.06 74.18 98.62 77.96 91.42 92.40 41.29 38.80 81.89 80.48 80.33 67.03 95.10 90.68 86.00 79.43

+ SAP 77.32 72.04 98.57 95.12 96.34 98.86 75.72 74.90 98.66 78.78 91.54 92.63 41.86 39.65 82.43 81.78 80.87 68.36 95.46 91.51 86.59 80.28

+ SAS 77.59 72.36 98.69 95.88 96.52 98.75 76.24 75.51 98.74 79.65 91.81 93.42 42.39 40.84 82.71 82.21 81.35 69.73 95.41 92.47 87.05 81.73

MAP 76.60 70.60 98.30 93.80 95.43 96.90 76.70 73.73 97.57 75.23 90.30 89.30 41.63 36.43 82.33 76.30 82.63 66.23 92.13 76.10 86.67 78.77

+ SAP 76.73 71.17 98.21 94.32 95.79 98.09 77.34 74.10 97.85 77.55 90.60 90.76 42.05 37.72 82.15 78.05 82.77 67.61 92.53 77.22 87.09 79.42

+ SAS 76.79 72.25 98.53 94.52 96.19 98.83 77.70 75.80 97.79 79.99 90.89 91.63 42.33 39.32 82.74 78.47 82.87 68.44 93.30 78.21 87.44 80.85

CPL 78.74 72.03 98.35 95.13 95.86 98.21 79.31 76.65 98.07 80.43 91.92 93.87 42.27 38.85 81.88 79.65 80.92 62.27 94.18 81.05 86.73 80.17

+ SAP 78.76 72.64 98.67 95.72 96.31 98.87 79.24 78.12 98.37 82.51 92.19 94.63 42.15 40.92 82.16 81.62 82.21 65.72 94.47 83.55 86.51 80.91

+ SAS 78.82 73.49 98.59 95.98 96.76 98.82 79.77 80.35 98.71 83.46 92.26 95.45 42.61 41.72 82.11 83.17 83.00 67.89 94.75 87.07 87.21 82.22

Table 25: The numerical results on base-to-new generalization.
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CLIP 66.54 94.62 90.41 64.69 70.30 85.63 23.73 66.12 44.84 47.50 67.42 63.20 48.35 49.32 76.57

CoCoOp 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 64.07 48.75 50.63 76.18

+SAS 71.35 95.59 90.84 66.76 72.47 86.34 23.81 68.99 47.94 46.90 70.84 64.97 49.56 51.61 77.31

KgCoOp 70.66 93.92 89.83 65.41 70.01 86.36 22.51 66.16 46.35 46.04 68.50 64.10 48.97 50.69 76.70

+SAS 70.90 94.33 89.68 67.82 71.13 88.91 24.60 67.47 47.72 48.22 68.52 64.53 49.72 51.70 77.22

MaPLe 70.72 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 64.07 49.15 50.90 76.98

+SAS 71.21 93.61 91.76 67.53 73.60 87.58 24.54 67.69 47.98 48.17 71.96 63.98 50.74 51.57 77.25

PromptSRC 71.27 93.60 90.25 65.70 70.25 86.15 23.90 67.10 46.87 45.50 68.75 64.35 49.55 50.90 77.80

+SAS 71.53 93.25 92.60 66.44 70.13 88.19 25.05 67.87 47.22 45.50 68.99 64.07 50.40 51.52 78.98
LASP 71.34 93.65 91.83 67.29 70.82 88.54 28.60 65.75 54.83 43.65 69.23 64.04 47.93 49.11 75.36

+SAS 71.62 94.62 92.98 68.89 71.18 89.89 29.68 68.47 55.74 45.80 71.63 65.24 47.91 50.80 77.08

TCP 71.40 93.97 91.25 64.69 71.21 86.69 23.45 67.15 44.35 51.45 68.73 64.60 49.50 51.20 76.73

+SAS 71.73 94.73 92.60 66.54 71.44 87.81 24.80 68.94 45.15 52.93 70.31 65.62 50.79 52.94 78.82

CLIP-Adapter 72.35 93.06 90.76 63.17 69.23 85.13 20.54 65.57 43.27 49.64 66.33 62.91 49.15 51.74 76.81

+SAS 72.53 93.12 91.72 66.65 69.18 88.10 22.27 66.60 45.69 50.38 69.80 64.50 49.70 52.39 77.75

Tip-Adapter 72.53 95.71 93.12 66.61 68.83 89.22 23.63 68.32 47.31 53.40 68.15 63.30 49.26 50.18 76.70

+SAS 72.81 95.49 94.88 67.80 68.46 91.77 25.00 69.46 49.55 54.33 68.94 64.21 50.34 50.89 77.93

ArGue 71.84 94.20 92.66 70.70 71.29 91.64 28.28 70.51 55.37 45.76 71.97 65.02 49.25 51.47 76.96

+SAP 72.14 95.74 93.75 71.80 72.48 91.87 28.53 70.88 56.54 46.86 72.96 65.47 49.94 52.48 77.38

+SAS 72.28 95.67 94.29 72.72 74.63 92.53 29.10 71.96 57.40 48.22 73.82 66.12 49.90 52.85 77.90

MAP 71.60 93.93 90.80 63.00 68.40 86.07 24.87 68.10 51.87 42.63 68.73 64.47 49.07 51.07 77.37

+SAP 71.93 95.40 92.63 64.50 68.13 87.18 26.80 69.99 51.35 44.10 70.50 65.06 49.88 51.64 77.34

+SAS 72.21 95.82 93.73 66.69 68.46 88.11 28.62 70.29 51.91 45.73 71.59 66.14 50.78 52.19 77.70

CPL 73.53 95.52 91.64 66.17 73.35 87.68 27.36 68.24 48.96 51.25 70.52 65.24 50.84 52.10 76.76

+SAP 73.75 95.83 92.92 66.69 74.32 88.33 29.58 69.64 49.81 52.72 71.35 66.45 51.93 52.61 77.74

+SAS 73.94 95.74 93.67 67.22 75.67 89.49 30.55 70.26 49.91 54.29 72.48 66.38 52.95 52.81 78.31

Table 26: The numerical results on cross-dataset transfer and domain generalization.
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