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A PROOFS AND THEORETICAL ANALYSIS

A.1 CONTINUOUS VERSIONS OF TSD AND DASGUPTA

Our probabilistic hierarchy model enables us to replace the discrete parent assignments in the
Dasgupta cost and TSD with the parent probabilities from the relaxed adjacency matrices A and B.
This, in turn, leads to LCA probabilities which are consistent under the tree-sampling procedure. For
the first time, this allows us to directly and efficiently optimize for hierarchical clustering quality
metrics in an end-to-end fashion instead of proxy losses or heuristic algorithms.

Hence, we propose the soft Dasgupta cost (Soft-Das) by replacing the cardinality of the lowest
common ancestor |vi ^ vj | by the expected cardinality under the probabilistic model, i.e. c(z) =P

v panc(z|v).

Soft-Das(PA,B(T )) =
X

vi,vj2V

P (vi, vj)
X

z

p(z = vi ^ vj)c(z)

In the same way, we propose a differentiable version of the soft Tree Sampling Divergence (Soft-
TSD). To this end, we replace the discrete assignments in the distributions p(z) and q(z) with
probabilistic assignments, i.e.

Soft-TSD(PA,B(T )) = KL(p(z)||q(z)) =
X

z

p(z) log
p(z)
q(z)

where p(z) =
X

vi,vj

p(z = vi ^ vj)P (vi, vj)

q(z) =
X

vi,vj

p(z = vi ^ vj)P (vi)P (vj)

Note that for both metrics we recover the same score as their discrete formulations in the case of a
deterministic probabilistic model, i.e. when A and B are binary-valued.

A.2 TREE-SAMPLING PROCEDURE

Recall our assumption that the internal nodes are ordered, and that Bij = 0 if j  i. This implies
that there are no possible cycles, or equivalently that B is a strictly upper-triangular matrix, i.e., it
describes a directed acyclic graph (DAG). Combined with the fact that each node in a tree (except the
root) has exactly one parent, we see that the sampled discrete hierarchy is indeed a tree. We denote
this tree-sampling process by T = (Â, B̂) ⇠ PA,B(T ). We can also compute the probability of any
tree T under the sampling procedure described above:

PA,B(T = (Â, B̂)) =
Y

i,j

A
Âi,j

i,j

Y

i0,j0

B
B̂i0,j0

i0,j0 (10)

Note that Ai,j and Bi0,j0 are the probabilities of internal nodes zj and zj0 to be a parent of leaf and
internal nodes vi and zi0 respectively while Âi,j and B̂i0,j0 are equal to 1 if these connections exist in
the tree T , else 0.

A.3 PROOF OF THEOREM 1

Proof. For M to be absorbing (i) it must have at least one absorbing state, and (ii) at least one
absorbing state must be reachable from any state in a finite number of steps. For (i), ! is an absorbing
state since its self-transition probability Tk,k = 1, where k = |S|+ 1 is its corresponding index in
the transition matrix T . Thus, once reached, a random walk cannot leave the state !. To show (ii), we
note that since the transient state transition matrix Q is a strictly upper-triangular matrix, any random
walk on M must lead to state zn0 . From state zn0 , the random walk transits to ! with probability
wn0 = 1. Thus, since n

0 is finite, state ! can be reached from any state in a finite number of steps.
Further, ! is the only absorbing state since all self-transition probabilities of states in S are zero as
diag(Q) = 0. Since Q is strictly upper-triangular, none of the transient states can be visited more
than once on a random walk, and therefore M is acyclic.
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A.4 PROOF OF THEOREM 2

Proof. We can arbitrarily define the order in which we sample from the categorical distributions in
A and B because of the independence of the sampling steps. We choose to start by sampling first
from Ai, i.e., the row corresponding to the leaf node vi under consideration: w(1)

⇠ Cat(Ai). Next,
we sample from the row corresponding to w

(1), and repeat until we reach zk, i.e.

w
(t)

⇠ Cat(Bw(t�1)) for 1 < t  T,

where w
(T ) = zk. For the remaining entries, we continue in arbitrary order. Observe that

(w(1)
, . . . , w

(T )) are the ancestors of leaf vi in T . Further observe that this sampling procedure is
identical to how the path r̂i is generated in the random walk W(vi), completing the proof.

A.5 PROOF OF THEOREM 3

Proof. First, recall that all paths end in the root node, such that ri necessarily ends in zn0 = r
(T )
i .

When reasoning about the lowest common ancestors, it is no longer sufficient to consider the ancestors
(or, equivalently, path to the root) of a single leaf node in isolation. Instead, we need to consider pairs
of dependent paths (ri, rj), i 6= j rooted in vi and vj , respectively. Note that ri and rj necessarily
converge at some internal node zk = vi ^ vj — the latest at the root node zn0 .

Thus, we denote with ri = (r(1)i , . . . , vi ^ vj) the first part of the path ri until (and including) its

lowest common ancestor with rj , i.e., vi ^ vj . Analogously, ri = (r
(|ri|+1)
i , . . . , zn0), such that

ri = (ri, ri). Further, note that the paths ri and rj are on the same underlying hierarchy T , thus
ri = rj , as both paths have the same trajectory to the root once they have reached their lowest
common ancestor, i.e., they are dependent.

The probability of observing the pair of paths (ri, rj) under the tree-sampling perspective is

p
(T )((ri, rj)) = p(r(1)i |vi) ·

|ri|Y

t=2

p(r(t)i |r
(t�1)
i ) · p(r(1)j |vj) ·

|rj |Y

t=2

p(r(t)j |r
(t�1)
j ) ·

|ri|Y

t=|ri|+1

p(r(t)i |r
(t�1)
i )

(11)
More compactly,

p
(T )((ri, rj)) = p(ri) · p(rj) · p(ri) = p((ri, rj)) · p(ri) = p((ri, rj)) · p(rj) (12)

Importantly, we can see from Eq. (12) that, in general, p(T )((ri, rj)) 6= p(ri) · p(rj) i.e., the paths
ri and rj are not independent. We denote p

(T )
anc (zk|vi, vj) the probability of the internal node zk to

be the ancestor of leaf nodes vi and vj under the tree-sampling perspective. Hence, the probability
of the internal node zk to be the ancestor of leaf nodes vi and vj under dependent and independent
random walks are different i.e. p(T )

anc (zk|vi, vj) 6= panc(zk|vi) ·panc(zk|vj). This makes intuitive sense
because knowing that zk0 is an ancestor of vi and vj in a tree T , additional knowledge that zk, k > k

0

is an ancestor of vi implies that zk is also an ancestor of vj .

However, for the parts of ri and rj before they converge, Eq. (12) shows that p((ri, rj)) = p(ri)·p(rj).
This is because all transitions in ri and rj are disjoint thus independent. This is an important insight
because it means that the probability of observing two paths both converging at an internal node zk
factorizes.

A.6 PROOF OF THEOREM 4

Proof. We start by reorganizing Eq. (5):

(i)
z }| {
panc(zk|vi)panc(zk|vj) =

(ii)
z }| {
p
(M)(zk = vi ^ vj)+

(iii)
z }| {
k�1X

k0=1

p
(M)(zk0 = vi ^ vj)panc(zk|zk0)2

(13)

In words, we can split the event “zk is an ancestor of vi and vj” (i) into two mutually exclusive events:
(ii) zk is the lowest common ancestor of vi and vj ; or (iii) some internal node lower in the topological
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order is the LCA of vi and vj , and further, both random walks also traverse through zk. (ii) and (iii)
are mutually exclusive since exactly one internal node is the LCA for vi and vj on any two random
walks.

Since the two random walks are independent, the probability of zk being traversed on both walks
factorizes. Thus, p(M)

anc (zk|vi, vj) = panc(zk|vi)panc(zk|vj) and therefore (i) is the probability of zk
being an ancestor of vi and vj in our Markov chain M.

The events in (iii) can indeed be expressed:

p
(M) (zk0 = vi ^ vj , zk 2 anc (vi, vj)) = p

(M) (zk0 = vi ^ vj) · p(M) (zk|zk0 2 anc (vi, vj))
(14)

where in the last step we exploit that zk0 = vi ^ vj implies zk0 2 anc (vi, vj) as well as the Markov
property of the random walks. Further, note that

p
(M)
anc (zk|zk0 2 anc(vi, vj)) = panc(zk|zk0 2 anc(vi)) · panc(zk|zk0 2 anc(vj))

= panc(zk|zk0)2,
(15)

where we first exploit factorization due to independence and in the last step again the Markov property
of the random walks.

A.7 PROOF OF THEOREM 5

Proof. Let r̂i 2 P(vi), r̂j 2 P(vj) be two independent random walks on M rooted in vi and vj ,
respectively. Then,

p
(M)(zk = vi ^ vj) =

X

(r̂i,r̂j):zk=vi^vj

p((r̂i, r̂j)), (16)

where r̂i = (r̂(1)i , . . . , zk) is the first part of r̂i until it reaches zk. Note that the second part of the
paths, r̂i and r̂j , which are theoretically independent under our Markov chain model, are marginalized
out in the LCA formula.

However, due to the independence of the first part of the paths r̂i and r̂j under both models (see
Eq. (4)), we can write:

p
(M)(zk = vi ^ vj) =

X

(r̂i,r̂j):zk=vi^vj

p((r̂i, r̂j))

=
X

(r̂i,r̂j):zk=vi^vj

p(r̂i) · p(r̂j)

= p
(T )(zk = vi ^ vj).

(17)

A.8 NUMBER OF PAIRS OF LCA PATHS.

Theorem 7. Let M be a Markov chain as defined in Definition 1. The number of pairs of paths from
two leaves vi, vj for which an internal node zk is the lowest common ancestor is 3k�1.

Proof. Proof by induction over k. For the base case k = 1 we have one pair of paths for which zk is
the LCA, i.e. directly from vi to zk and vj to zk. Assume that for internal node zk there are 3k�1

unique pairs of paths for which zk is the LCA. For each of these paths we can generate three unique
paths for which zk+1 is the LCA. (1) rewire the last transition of vi’s path to go to zk+1 instead of zk.
(2) do the same but for vj . (3) rewire both vi’s and vj’s last transition to go to zk+1 instead of zk.
Thus, the number of pairs of paths from vi and vj to zk+1 is 3 · 3k�1 = 3k.

A.9 PROOF OF THEOREM 6

We provide here the proof for the fast vectorized computation of P LCA
vi,vj in Theorem. 6.
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Proof. We start by reorganizing Eq. (9):

P
anc
vi � P

anc
vj = P

LCA
vi,vj + P

LCA,T
vi,vj · P̃

anc
� P̃

anc (18)

Note that the inverse (I + P̃
anc

� P̃
anc)�1 is guaranteed to exist and is efficient to compute because

P̃
anc

� P̃
anc is a strictly upper triangular and therefore nilpotent matrix. The k-th entry is thus:

h
P

anc
vi � P

anc
vj

i

k
= P

LCA
vi,vj ,vk +

n0X

k0=1

P
LCA
vi,vj ,vk0 ·

h
P̃

anc
� P̃

anc
i

k0,k
.

Plugging in the definitions of Eq. (8), using Theorem 2, and observing that due to the upper triangular
structure P̃

anc
k0,k = 0 for k0 > k we obtain

panc(zk|vi) · panc(zk|vj) =p(zk = vi ^ vj) +
k�1X

k0=1

p(zk0 = vi ^ vj) · panc(zk|zk0)2.

A.10 VECTORIZED COMPUTATIONS

All quantities involved in Soft-Das and Soft-TSD can be computed in closed-form based on the
Markov chain M and its fundamental matrix. However, their computation should not be done naively,
as this involves unnecessary computations. Constructing the full tensor of LCA probabilities is
expensive since P

LCA
2 Rn⇥n⇥n0

. Note, however, that to compute the Soft Dasgupta loss or the
distribution p(z) in TSD we only require the LCA probabilities p(z = vi ^ vj) for pairs of leaves
connected by an edge (i.e., P (vi, vj) > 0). That is, we only need to construct an LCA probability
matrix of shape Rm⇥n0

. Thus, we can exploit the sparsity of real world graphs, as typically m ⌧ n
2.

In a similar way, the computation of the distribution q(z) does also not require the expensive explicit
computation of p(zk = vi ^ vj) for all pairs of leaf nodes. Instead, we can again exploit insights from
the Markov chain M. First, observe that the equation of q(z) in Soft-TSD describes an expectation:

q(z) = Evi,vj⇠P (v) [p(z = vi ^ vj)] . (19)

Defining p̂
anc = p

T
· P

anc, the computation of this expectation can be vectorized similarly to
Theorem 6 (see derivation in App. A.11): q = (p̂anc

� p̂
anc)T · (I + P̃

anc
� P̃

anc)�1.

A.11 VECTORIZED q COMPUTATION.

We provide here the proof for the fast vectorized computation of q in Eq. 19.

Proof. We first rewrite the expectation Eq. 19 in vectorized form:

q =
X

i,j

pviP
LCA
vi,vjpvj

where we denote P (vi) = pvi . Subsequently, we can plug the P
LCA formula Eq.. (9) and pull pvi

into the Hadamard product which is done over the internal node dimension:

q =
X

i,j

pvipvj (P
anc
vi � P

anc
vj )T · (I + P̃

anc
� P̃

anc)�1

=
X

i

pvi

0

@P
anc
vi �

X

j

pvjP
anc
vj

1

A
T

· (I + P̃
anc

� P̃
anc)�1

=

0

@
X

i

pviP
anc
vi �

X

j

pvjP
anc
vj

1

A
T

· (I + P̃
anc

� P̃
anc)�1

= (p̂anc
� p̂

anc)T · (I + P̃
anc

� P̃
anc)�1

.

where p̂
anc = p

T
· P

anc.
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A.12 COMPLEXITY ANALYSIS.

Both Dasgupta and TSD computations require to compute the ancestor probabilities (Eq. 8) which can
be done in O(n⇥n

02) (i.e. inverse of triangular matrix (I�B) 2 Rn0
⇥n0

, plus matrix multiplication
with A 2 Rn⇥n0

). Then, Soft-Das. or the distribution p(z) for the Soft-TSD loss require the LCA
probabilities (Eq. 9) for all leaves connected by an edge only, amounting to O(m⇥ n

02) operations,
where m is the number of edges in the graph. Note that similarly to Eq. (8), the inverse computation in
Eq. (9) can be done in O(n02). Additionally, Soft-TSD requires the computation of q(z) ( complexity
O(n⇥ n

02)). Both Soft-Das. and Soft-TSD computations are dominated by the O(m⇥ n
02) term.

This leads to an efficient time complexity as long as we assume a small number of internal nodes
n
0
⌧ n, which is reasonable in practice.

A.13 CONVEXITY OF SOFT-TSD

Theorem 8. Let H 2 [0, 1]n
0
⇥n⇥n be a tensor whose elements Hkij = p(zk = vi ^ vj) are the

LCA probabilities of internal nodes w.r.t. pairs of leaf nodes. Soft-TSD(H) is convex in H .

Proof. Let H(1), H(2) be two LCA probability tensors defined as above, and 0  ↵  1. We first
compute the distribution p induced by the edge distribution. We have that

p(↵H(1)
k + (1� ↵)H(2)

k ) =
X

vi,vj

P (vi, vj)(↵H
(1)
kij + (1� ↵)H(2)

kij)

= ↵

X

vi,vj

P (vi, vj)H
(1)
kij + (1� ↵)

X

vi,vj

P (vi, vj)H
(2)
kij

= ↵ · p(H(1)
k ) + (1� ↵) · p(H(2)

k ).

(20)

Analogously we compute the distribution q induced by the independent ndoe distribution. We have
that

q(↵H(1)
k + (1� ↵)H(2)

k ) = ↵ · q(H(1)
k ) + (1� ↵) · q(H(2)

k ). (21)
We combine this with the well-known fact that KL-divergence is convex w.r.t. pairs of distributions,
i.e.,

KL(↵p1(z)+(1�↵)p2(z),↵q1(z)+(1�↵)q2(z))  ↵KL(p1(z), q1(z))+(1�↵)KL(p2(y), q2(z)),

to obtain the desired result:

Soft-TSD(↵H(1) + (1� ↵)H(2))  ↵ · Soft-TSD(H(1)) + (1� ↵) · Soft-TSD(H(2)). (22)

Theorem 9. Let HFPH = {H : 9A,B 2 �(n, n0) : H = FPH(A,B)} denote the set of probabilis-
tic hierarchies which can be represented by FPH. Here, �(n, n0) are the constraints FPH places on
A,B (see Sec. 2), and FPH (A,B) is shorthand the mapping from transition matrices to lowest
common ancestor probability tensors defined in Theorems 4 and 6. Here, Hkij = p(zk = vi ^ vj)
are the LCA probabilities of internal nodes w.r.t. pairs of leaf nodes. This set HFPH is convex.

Proof. We start by recalling form Theorems 4 and 5 that FPH computes lowest common ancestor
probabilities p(zk = vi ^ vj) from the continuous parent probability matrices A and B such that the
LCA probabilities are consistent with the expected result from the tree-sampling procedure described
in Sec. A.2. More formally,

Hkij := p(zk = vi ^ vj) = E
Ĥ⇠(A,B) [I[zk = vi ^ vj ]]

= E
Ĥ⇠(A,B)

h
Ĥkij

i
= E

h
Ĥ

i

kij
,

(23)

where Ĥ 2 {0, 1}n
0
⇥n⇥n is a discrete hierarchy obtained via tree-sampling from A and B. By

definition of the expectation we write

H = E
Ĥ⇠(A,B)

h
Ĥ

i
=

X

Ĥ2H(n,n0)

p(Ĥ|A,B) · Ĥ, (24)
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where H(n, n0) is the set of all valid discrete hierarchies with n leafs and n
0 internal nodes. Thus,

any continuous hierarchy H learned by FPH is a convex combination of discrete hierarchies Ĥ . This
completes the proof.

Theorem 10. The Soft-TSD optimization problem solved by FPH is integral. That is, the global
maximum of the Soft-TSD optimization problem solved by FPH is the same as the global optimum of
the discrete optimization problem of optimizing TSD over discrete hierarchies.

Proof. This follows from Theorems 8 and 9. Theorem 8 establishes that the Soft-TSD objective
function is convex in the hierarchy tensors H; Theorem 9 proves that the set of hierarchies FPH
optimizes over is convex. When maximizing a convex function over a convex set, we are guaranteed
to find the global optimum at a vertex of the constraint set, which are discrete hierarchies in the case
of FPH. Thus, the global maximizer is a discrete hierarchy; this discrete hierarchy must also be the
maximizer of the discrete TSD optimization problem, since our relaxation optimizes over a superset
of all discrete hierarchies.

Implications of Theorems 8, 9, and 10. In the previous theorems, we have shown that we are
maximizing a convex function over a convex set. In general, maximizing a convex function over
a convex set is NP-hard (Benson, 1995). Thus, we cannot hope to efficiently recover the global
optimum. However, our continuous relaxation brings several practical benefits for the optimization.

First, observe that directly optimizing over the convex set of continuous hierarchies described in
Theorem 9 is not practical. This is because there are exponentially many corners of the set, and
encoding the constraints of the set is very difficult. Our parameterization of (continuous) hierarchies
via A, B and being able to efficiently compute the expected lowest common ancestor probabilty
tensor enables us to optimize over a fairly low-dimensional and convex set. The constraints on A,B,
i.e., entries in [0, 1], unit row sums and upper-triangular structure of B, are easy to encode and
enforce during optimization. This comes at the cost that mapping from A and B to the LCA tensor
H is nonconvex (yet describes, as per Theorem 9, a convex set over hierarchies). Thus, we can solve
the optimization problem with off-the-shelf methods such as projected gradient descent and benefit
from the elaborate techniques from nonconvex optimization. While it is possible that FPH gets stuck
in a non-discrete local optima during optimization, we can easily obtain a discrete and valid hierarchy
given the non-discrete local optimizer via tree-sampling or selecting the most likely parent for all
leaves and internal nodes under A and B, as described in Sec. 2.2.

B EXPERIMENT INFORMATION

B.1 LINK PREDICTION WITH SOFT-TSD

The TSD can be interpreted in terms of retrieved information when reconstructing the original graph
from the tree representation (Charpentier & Bonald, 2019). In this case, the reconstruction scheme
for the edge weights of the reconstructed graph Ĝ is:

ŵ(vi, vj) = w(vi)w(vj)
p(vi ^ vj)

q(vi ^ vj)
(25)

B.2 LINK PREDICTION SETUP

For all datasets, we randomly select 10% of edges to hold out for testing while making sure that the
graph remains connected. Further, we set n0 = 256 and minimize Soft-TSD via FPH. For DC-SBM,
we use the Python package ‘graph-tool’ and follow the documentation3 with default parameters to
learn the model. For VGAE, we use the default hyperparameters by the authors (one hidden layer,
latent dimensions [32, 16], learning rate 0.01, training for 200 epochs). We use the variant described
in the paper which replaces the node attributes by the n⇥ n identity matrix. For DeepWalk, we set
the embedding dimension to 10.

3https://graph-tool.skewed.de/static/doc/demos/inference/inference.html
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Dataset Nodes (LCC) Edges (LCC) MI (LCC) License

PolBlogs, (Adamic & Glance, 2005) 1,222 16,715 2.39 n/a
Brain, Amunts et al. (2013) 1,770 8,957 3.37 n/a
Citeseer, Sen et al. (2008) 2,110 3,694 5.69 n/a
Genes, Cho et al. (2014) 2,194 2,688 6.12 n/a
Cora-ML, McCallum et al. (2000); Bojchevski & Günnemann (2018) 2,810 7,981 5.23 n/a
WikiPhysics, Aspert et al. (2019) 3,309 31,251 3.44 n/a
OpenFlight, Patokallio, 3,097 18,193 3.44 ODbL
Ogbn-products, Hu et al. (2020) 2,385,902 61,806,367 9.29 Amazon license
Ogbn-arxiv, Hu et al. (2020); Wang et al. (2020) 169,343 1,157,799 7,40 ODC-BY
Ogbl-collab, Hu et al. (2020); Wang et al. (2020) 232,865 961,883 9.02 ODC-BY
DBLP, Yang & Leskovec (2015) 317,080 1,049,866 9.64 n/a

Table 7: Dataset summary; we convert directed datasets to undirected and select the largest connected
component (LCC).
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Figure 3: Results on hierarchical clustering measured by Dasgupta cost (lower is better) and TSD
(higher is better).

B.3 DATASET SUMMARY

See Table 7 for an overview of the datasets we used.

B.4 ADDITIONAL RESULT FIGURES

In Fig. 3 we show results for four more datasets.

B.5 ABLATION STUDY

See Fig 4 for the comparison of different FPH model variants, and our full discussion in Sec. 4.1.

B.6 HIERARCHY VISUALIZATION

We conduct a qualitative study of the structure discovered by FPH. In Figure 5 we compare the
hierarchies learned by FPH when optimizing for TSD or Dasgupta, respectively. We cut at different
levels of the dendrogram to obtain a coarse hierarchy (10 clusters) and fine-grained structure (50
clusters). Comparing Figure 5 (a) and (d), we notice that the coarse structure learned by optimizing
Soft-Dasgupta looks more appealing, as TSD essentially splits only into the Americas and the rest
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Figure 4: Ablation study results.
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(a) Dasgupta - 10 clusters (b) Dasgupta - 50 clusters (c) Das. - Dendrogram

(d) TSD - 10 clusters (e) TSD - 50 clusters (f) TSD - Dendrogram

Figure 5: Visual comparison of trees obtained after Soft-TSD and Soft-Dasgupta optimization on
OpenFlight.

of the world. At 50 clusters, however, we observe the opposite: TSD splits the airports across the
world into meaningful, coherent geographical regions, whereas Dasgupta looks mostly unchanged
from the coarse version, highlighting the complementarity of both quality metrics. In addition,
the dendrogram learned by TSD in (f) appears to be of higher quality and more balanced than the
Dasgupta dendrogram in (c).

B.7 HYPERPARAMETERS

We use the hyperparameters for models and baselines described in Tab. 8. Note that we train FPH
for 1,000 epochs and restore the best hierarchy after training. For ogbn-products we train for
2,000 epochs. Further, to ensure convergence we reduce the learning rate to 0.02 and introduce
weight decay of 1e-5 for FPH (Das.) for n0

� 128 on Polblogs, Cora-ML, and Brain, and train for
2,000 epochs. Similarly, we use different learning rates for A and B for FPH (Das.) on ogbn-arxiv,
ogbl-collab, and DBLP (lrA = 1e� 2, lrB = 1e� 5).

B.8 COMPUTING INFRASTRUCTURE

We train all models on a single GPU (NVIDIA GTX 1080 Ti or NVIDIA GTX 2080 Ti, 11 GB
memory) in our own in-house compute cluster. The machines have 10-core Intel CPUs. We use
Python 3 and PyTorch for all our experiments.

B.9 HSBM GRAPHS

We generated HSBMs with n = 100 leaf nodes and n = 1000 leaf nodes for our external evaluation.
The small HSBMs have 3 levels with edge probabilities in [.01, .1, .3, .6], a branching factor of 2
and core community sizes in [10, 15]. The large HSBMs have 3 levels with edge probabilities in
[.001, .01, .1, .4], branching factor in [2, 3, 4] and core community sizes in [30, 35]. In Fig. 6 and
Fig. 7, we plot one of the five synthetic HSBM graphs used in our experiments (right), and their
corresponding dendrograms (left). The graphs have n = 100 and n = 1000 leaf nodes and three
levels of hierarchy.

C ADDITIONAL RESULTS
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Model Hyperparameter Value

FPH (TSD)
Learning rate 150
Batch size K* 10,000
Batch cutoff C* 200,000

FPH-R (TSD) Learning rate 200

FPH (Das.)
Learning rate 0.05
Batch size K* 10,000
Batch cutoff C* 200,000

FPH Emb. Learning rate 0.1

RGHC
Routing NN dim 128
Iterations 5000
Learning rate 0.0001

HGHC
Init. method K-means + agglom. linkage
Iterations 10
Learning rate 0.1

UF
Loss Closest + cluster size
Epochs 500
Learning rate 0.1

HypHC

Num. triples 50M
Epochs 50
Learning rate 0.001
Temperature 0.1

DeepWalk Embedding dim 10
Embedding dim* 32

* Used for ogbn-products, ogbn-arxiv, ogbl-collab, DBLP.

Table 8: Hyperparameter settings.

Figure 6: Example HSBM graph with n = 100, n0 = 7, and three levels in the hierarchy.

Figure 7: Example HSBM graph with n = 1000, n0 = 53, and three levels in the hierarchy.
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Dasgupta Norm. TSD

CoraML 336.86 57.51
Citeseer 178.23 68.45
Polblogs 443.48 25.93
Brain 777.14 29.28
Genes 247.26 67.47
WikiPhysics 986.32 46.03
Openflight 633.66 51.51
Ogbn-arxiv 31,655 37.75
Ogbl-collab 20,664 46.12
DBLP 40,744 40.92

Table 9: Hierarchical clustering results for Louvain.

Dasgupta cost (lower is better) Normalized TSD (higher is better)
Alg. Ward UF HypHC HGHC RGHC Ward UF HypHC HGHC RGHC

Brain 596.73 938.49 568.18 894.87 650.53 32.43 26.28 17.68 17.31 16.54
OpenFlight 416.05 643.45 423.80 477.51 469.98 55.59 49.88 40.06 47.52 45.84
Genes 221.76 258.21 467.12 482.11 444.82 66.87 63.73 23.94 50.59 40.98
Citeseer 105.12 280.66 271.80 224.63 200.91 69.28 62.95 31.74 52.53 47.66
Cora-ML 301.47 673.27 441.21 516.87 499.49 57.22 47.96 29.10 42.10 35.19
PolBlogs 383.51 726.34 334.69 428.52 376.94 27.01 10.73 21.60 20.30 20.78
WikiPhysics 808.87 958.20 701.14 919.27 790.39 45.54 41.55 33.85 34.51 36.51
ogbn-arxiv 22,046 64,950 OOM 37,177 26,286 37.43 26.22 OOM 17.55 25.20
ogbl-collab 14,834 101,562 OOM 112,048 17,964 45.20 30.50 OOM 11.11 37.73
DBLP 33,349 160,742 OOM 171,975 41,796 38.87 22.62 OOM 5.61 29.9

Table 10: Hierarchical clustering results (n0 = 512, d = 128).

Model Citeseer Cora Polblogs DBLP ogbn-arxiv

RGHC 0.218 0.394 0.756 0.510 0.358
HGHC 0.304 0.362 0.604 0.655 0.385
Ward 0.363 0.445 0.436 0.587 0.402
UF 0.180 0.242 0.102 0.395 0.143
HypHC 0.285 0.390 0.740 - -

Table 11: NMI results for d = 128 DeepWalk embeddings.

Model Citeseer Cora Polblogs ogbn-arxiv DBLP

Avg. 0.367 0.420 0.507 0.216 0.526
RGHC 0.281 0.400 0.730 0.286 0.510
HGHC 0.365 0.379 0.177 0.290 0.408
Ward 0.368 0.504 0.702 0.411 0.591
UF 0.347 0.428 0.676 0.254 0.598
HypHC 0.270 0.121 0.691 OOM OOM
Louvain 0.329 0.500 0.640 0.395 0.558
FPH 0.398 0.462 0.680 0.251 0.560
FPH (Louv.) 0.380 0.507 0.614 0.399 0.564
FPH (Ward) 0.393 0.516 0.708 0.401 0.604

Table 12: NMI results on real-world datasets. FPH (Louv.) and FPH (Ward) refer to FPH initialized
from the solutions of Louvain and Ward, respectively.
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TSD standard deviation Dasgupta standard deviation
Alg. HypHC HGHC RGHC HypHC HGHC RGHC

Brain 0.53 (3%) 0.06 (<0.5%) 0.6 (3%) 19.96 (3%) 38.56 (5%) 14.18 (3%)
OpenFlight 1.15 (3%) 0.4 (1%) 0.7 (2%) 26.61 (6%) 31.14 (6%) 23.9 (5%)
Genes 0.61 (3%) 0.12 (<0.5%) 1.19 (2%) 13.3 (3%) 2.88 (1%) 17.31 (7%)
Citeseer 0.19 (1%) 0.09 (<0.5%) 1.29 (3%) 6.93 (3%) 5.56 (4%) 8.02 (6%)
Cora-ML 0.96 (3%) 0.13 (<0.5%) 0.61 (1%) 17.39 (4%) 21.78 (5%) 12.98 (4%)
PolBlogs 0.13 (1%) 0.09 (<0.5%) 0.18 (1%) 4.04 (1%) 1.92 (1%) 3.4 (1%)
WikiPhysics 0.47 (1%) 0.14 (<0.5%) 0.56 (1%) 5.77 (1%) 6.83 (1%) 30.88 (4%)
ogbn-arxiv - 0.15 (1%) 1.31 (5%) - 405 (2%) 765 (3%)
ogbl-collab - 0.16 (1%) 0.61 (2%) - 1,592 (5%) 625 (3%)
DBLP - 0.47 (3%) 0.81 (3%) - 2,482 (3%) 1,005 (2%)

Table 13: Standard deviations of non-deterministic baselines. In parentheses we report the standard
deviation in relation to the best value reported in Table 1 in percent.

23


	Introduction
	Hierarchical graph clustering preliminaries
	Internal metrics for hierarchical clustering
	Sampling discrete hierarchies

	Efficient, differentiable hierarchies via Markov chains
	Ancestor probabilities
	Lowest common ancestor probabilities
	Efficient vectorized computation
	Integral solutions
	Further considerations

	Experiments
	Results

	Conclusion
	Proofs and Theoretical Analysis
	Continuous versions of TSD and Dasgupta
	Tree-sampling procedure
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Number of pairs of LCA paths.
	Proof of Theorem 6
	Vectorized computations
	Vectorized expected LCA under the null model computation.
	Complexity analysis.
	Convexity of Soft-TSD

	Experiment Information
	Link Prediction with Soft-TSD
	Link prediction setup
	Dataset summary
	Additional result figures
	Ablation study
	Hierarchy Visualization
	Hyperparameters
	Computing infrastructure
	HSBM graphs

	Additional results

