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A TAXONOMY OF NON-STRATEGIC MICROECONOMICS

A.1 DECISIONS ON CONSUMPTION IN NON-STRATEGIC ENVIRONMENTS

We begin by characterizing the space of elements that test an agent’s ability to optimally allocate
their limited resources to goods and services they desire. In economics and decision theory, the
most primitive approach to describing the preferences of decision-makers is to use a function that
maps a set of possible choices to the agent’s optimal choice within that set. Under a set of intuitive
assumptions, such as transitivity (i.e., if bundle X is preferred to bundle Y , and Y is preferred to
bundle Z, then X must be preferred to Z), it becomes possible to “rationalize” preferences by instead
describing a utility function. This function assigns a real number to each bundle, and the agent selects
the bundle with the highest utility.

In this paper, we focus on these “rationalizable” preferences, where agent choice can be implemented
as utility maximization constrained by prices and income. The solution to these consumer choice
problems provides us with, among other things, individual demand functions, which describe the
choice of each good or service as a function of prices and income. The individual demand functions
for each good are essential when aggregating to the market demand in Consumer Goods Market
Aggregation, which in turn is used to find the price in a non-strategic equilibrium. In addition, we
test variations on the framework such as the agents ability to make tradeoffs between the quantity of
goods they would need to be able to purchase for an increase in the amount of work they provide for
a given wage (i.e., the elasticity of labor supply), as well as cases of choice under uncertainty where
the agent is choosing between possible lotteries under rationalizability assumptions required for von
Neuman expected utility.

A.1.1 PROPERTIES OF UTILITY FUNCTIONS

In this section, we test the ability of the agent to use utility functions as a means to compare preferences
over different “bundles” of goods or services. A key feature of economic reasoning in this context is
for agents to consider how substitution between different goods in a bundle might achieve the same
utility (i.e., map out the “indifference curves”). Key tests include correctly distinguishing between
substitutes and complements in consumption, and calculating the marginal rate of substitution at a
point on an indifference curve. This logic is essential for both agents acting as a planner as we will
see in Appendix A.4 and when fulfilling the role of choice under budget and income constraints, in
Deriving Demand.
Element A.1 (Marginal Utility). The ability to calculate marginal utility for different types of
demand curves such as quasilinear, Cobb-Douglas, and Leontief.
Element A.2 (Diminishing Marginal Utility). The ability to recognize the role of diminishing
marginal utility in consumption decisions and the role of achieving interior solutions.
Element A.3 (Marginal Rate of Substitution). The ability to calculate the marginal rate of substitu-
tion between two goods in a consumption decision.
Element A.4 (Tangency and the Marginal Rate of Substitution). The ability to calculate the
marginal rate of substitution between two goods in a consumption decision at a given point in the
budget constraint as tangent to the indifference curve.
Element A.5 (Substitutes and Complements). The ability to distinguish between substitutes and
complements in consumption decisions.

A.1.2 DERIVING DEMAND

The module in this section tests an agent’s ability to solve a constrained utility maximization problem
to derive a demand function—relying on the results of Properties of Utility Functions. We test
the canonical classes of demand functions, check the duality of Marshallian demand and Hicksian
demand, and ask the agent to derive these demand functions from first principles.
Element A.6 (Derivation of Marshallian Demand). The ability to calculate the demand curve for a
good given a utility function and a budget constraint.
Element A.7 (Derivation of Hicksian Demand from Expenditure Minimization). The ability to
calculate the demand curve for a good given a utility function and a budget constraint.
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Element A.8 (Duality of Hicksian Demand). The ability to recognize that Hicksian demand (expen-
diture minimization) is dual to maximization in Marshallian Demand.

A.1.3 COMPARATIVE STATICS OF DEMAND

This module considers how agents reason about changes in prices or income, and their effects on
the quantity of each good they would purchase. We test the classic law of demand, different types
of goods (e.g., normal, inferior, and Giffen), and derive Engel curves from first principles. The key
tests are to ensure the agent rationally responds to changes in relative prices, and investigate their
substitution between goods in a bundle. In practice, these tests involve comparative statics of the
argmax from the utility maximization of the previous section on Deriving Demand—i.e., using an
Envelope theorem and perturbing prices or income.
Element A.9 (Law of Demand). The ability to calculate the change in demand with the change in
price for normal goods.
Element A.10 (Price Elasticity of Demand). The ability to calculate the price elasticity of demand
for a good given a utility function and a budget constraint.
Element A.11 (Consumption Changes). The ability to change the relative expenditures on goods
given changes in relative prices with ordinary or Giffen goods.
Element A.12 (Engel Curves). The ability to calculate the Engel curve for a good given a utility
function and a budget constraint.
Element A.13 (Income Elasticity of Demand). The ability to calculate the income elasticity of
demand for a good given a utility function and a budget constraint.

A.1.4 LABOR SUPPLY

While the proceeding elements tested tradeoffs in choices of bundles with different goods, services
(in Deriving Demand and over lotteries in Dynamic Consumption Decisions), often agents need
to make a choice trading off between leisure and consumption. The elements in this module test
an agent’s ability to optimally make that tradeoff by balancing the consumption goods required to
compensate for decreased leisure—which leads to the labor supply elasticity central to many branches
of economics. Since goods must be purchased, agents will consider the relative wage from additional
work compared to the price of goods. This leads us to be able to test an agent’s ability to distinguish
real from nominal prices.
Element A.14 (Deriving Labor Supply). The ability to calculate the labor supply curve given
specific preference parameterizations such as separable preferences or homothetic preferences.
Element A.15 (Labor Supply Elasticity). The ability to calculate the elasticity of labor supply.
Element A.16 (Marginal Rate of Substitution in Labor Supply). The ability to calculate the
marginal rate of substitution between consumption and leisure in a labor supply decision.

A.1.5 DYNAMIC CONSUMPTION DECISIONS

Individuals often face decisions about how to trade off more consumption today at the cost of
additional debt and less consumption in the future, and how best to plan for consumption with various
contingencies with the future is uncertain. Among other applications, this provides a formal model
of how to best choose a mixture of financial assets—i.e., portfolios. Consequently, this subsection
tests intertemporal consumption choices, optimal portfolio choice—which involves selecting a mix
of assets that maximizes expected utility given the risks and returns associated with each asset.
Understanding portfolio choice helps explain how consumers manage risk and make investment
decisions, which is vital for financial planning and economic stability.
Element A.17 (Price of Risk with Mean-Variance Utility). The ability to calculate the price of risk
for a mean-variance utility function.
Element A.18 (State-Contingent Consumption). The ability to calculate the optimal consumption
given a utility function and a set of state-contingent consumption bundles.
Element A.19 (Arbitrage). The ability to recognize and execute arbitrage opportunities given two
goods and prices you can resell.
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Element A.20 (Optimal Portfolio Choice with Bid-Ask Spreads). The ability to calculate the
optimal portfolio given bid-ask spreads.
Element A.21 (Exponential Discounting). The ability to exponentially discount future rewards or
costs.
Element A.22 (Intertemporal Consumption Smoothing). The ability to calculate a smoothed
consumption path and determine whether it is preferred to a non-smoothed path.

A.2 DECISIONS ON PRODUCTION IN NON-STRATEGIC ENVIRONMENTS

In the previous section, we derived how an agent facing a set of prices would choose the quantity
demanded of each good or service to maximize their utility function. We also tested the amount of
time that an agent might choose to wok (i.e., the quantity of labor supplied) given market wages—
where the agent trades off the additional goods they might purchase against the lost leisure time
they must forgo. Here, we look at the other side of the market and test an agent’s ability to operate
a production technology to maximize profits. Facing market prices for all production factors (e.g.,
wages and the capital) and the market price of the good or service they produce, the agent chooses the
quantity of each factor of production and the total output. Parallel to DECISIONS ON CONSUMPTION
IN NON-STRATEGIC ENVIRONMENTS, in Properties of Production Functions we first test general
properties of production functions to ensure the agent can reason about substitution between factors,
economies of scale in production, etc. Then in Deriving Factor Demand we solve the firms optimal
profit maximization problem to determine the optimal choice of factors of production and output
given a set of market prices. Finally, in Comparative Statics with Production we test the agents ability
to reason about comparative statics on prices and their impact on factor demand and firm output.

A.2.1 PROPERTIES OF PRODUCTION FUNCTIONS

Production functions in these environments take continuous inputs of each factor, which lets us test an
agent’s ability to conduct marginal thinking when choosing the composition of inputs. For example,
by knowing the hourly wage of hiring an additional worker, the additional output the worker might
produce using the particular production process, and the price they can sell the firm’s output, they
can decide whether hiring the additional worker is profitable. In the absence of prices, this section
tests basic decision making of the agent for understanding substitution between factor of production,
marginal products for each input, and the understanding of the returns to scale of a production process.
Element A.23 (Marginal Products). The ability to calculate separate marginal products for a
production function with multiple inputs (e.g., labor and capital).
Element A.24 (Input Price Elasticity). The ability to calculate the responsiveness of output to a
proportional change in a specific input’s cost, holding all other inputs constant.
Element A.25 (Output Elasticity). The ability to calculate the output elasticity of an input in a
production function.
Element A.26 (Elasticity of Substitution). The ability to calculate the marginal elasticity of substi-
tution between inputs in a production function.
Element A.27 (Diminishing Marginal Products). The ability to calculate the diminishing marginal
products for a production function with multiple inputs.
Element A.28 (Average and Marginal Costs). The ability to calculate average and marginal costs
given a production function and input prices, and use them to determine scale.
Element A.29 (Returns to Scale). The ability to determine the proportional change in output
resulting from a proportional change in all inputs in a production function.

A.2.2 DERIVING FACTOR DEMAND

This module tests the agent’s ability to act in the role of a profit maximizer in non-strategic situations
where they take as given the price which they could sell goods they produce, and must pay for inputs
to their production process at market rates (e.g., a competitive wage). Whereas in Deriving Demand,
the agent was solving a utility maximization problem subject to a budget constraint, here they solve a
profit maximization problem constrained by a production function. We test decisions on the quantity
and composition of inputs, and the quantity of output for canonical production functions such as
Cobb-Douglas and Leontief production functions given the agent’s understanding of production
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functions from Properties of Production Functions. The agent is asked to derive the factor demand
functions from first principles from profit maximization and test their ability to reason with the dual
cost-minimization formulation—analogous to the Hicksian vs. Marshallian demand of Deriving
Demand.
Element A.30 (Profit Maximization). The ability to calculate the optimal input bundle for a firm
given a production function and input prices. Examples of given production functions: Cobb-Douglas,
Leontief, Perfect Substitutes, CES production, CRS production, fixed costs.
Element A.31 (Expenditure Minimization). The ability to calculate the optimal input bundle for a
firm given a production function and input prices.
Element A.32 (Duality of Profit Maximization and Expenditure Minimization). The ability to
recognize that profit maximization is dual to expenditure minimization in production decisions and
achieve consistent solutions.

A.2.3 COMPARATIVE STATICS WITH PRODUCTION

This module considers how agents reason about changes in the prices at which they can sell their
goods, as well as changes in the costs of producing those goods. In particular, we can test how
this affects their optimal choice of inputs to their production process (e.g., how many people to
hire or robots to lease). We test comparative statics on the prices of inputs to the production
function, changes to the underlying production technology, and substitution between goods for classic
production functions such as Cobb-Douglas and Leontief. Analogous to the relationship between
Deriving Demand and Comparative Statics of Demand, these tests involve comparative statics of the
argmax from the profit maximization of Deriving Factor Demand—i.e., using an Envelope theorem
and perturbing factor prices.
Element A.33 (Price Elasticity of Supply). The ability to calculate the price elasticity of supply for
a good given a production function and input prices.
Element A.34 (Shephard’s Lemma). The ability to calculate factor demands given a cost function
using the derivatives with respect to prices.
Element A.35 (Input Price Elasticity). The ability to calculate how the optimal input bundle changes
with changes in input prices for a given production function.
Element A.36 (Total Factor Productivity). The ability to calculate total factor productivity given a
production function and input prices

A.2.4 DYNAMIC PRODUCTION DECISIONS

While Deriving Factor Demand tested the ability of agents to make static (i.e., within-period) decisions
on the mix of input factors to maximize profits, many producer problems are inherently dynamic.
For example, we can test if an agent can optimally choose the amount of capital to purchase given
forecasts of future consumer demand and prices or choose how much to adjust the labor force in
cases when labor is difficult to relocate due to frictions such as hiring and firing costs. Finally, agents
are tested on their ability to make optimal entry and exit decisions based on their forecasted profits in
an evolving market.
Element A.37 (Dynamic Profit Maximization). The ability to calculate the optimal investment
decision given a production function and input prices.
Element A.38 (Entry and Exit Decisions). The ability to calculate the optimal entry and exit
decisions given a production function and fixed costs.

A.3 DECISIONS IN MULTI-AGENT NON-STRATEGIC ENVIRONMENTS

This setting tests the core logic of the relationship between supply-and-demand and prices, building
on the tests of optimal behavior in appendix A.2 and appendix A.1. Economists refer to “general
equilibrium” as the process where equilibrium prices and quantities emerge with a large number
of non-strategic, price-taking market participants interact. Unlike the strategic models found in
STEER, the assumption is that the market interactions that lead to this equilibrium occur through an
unspecified process that clears markets (i.e., a “Walrasian auctioneer” or “invisible hand”).
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In particular, for non-strategic settings, all market participants take prices as given and choose the
quantity demanded or supplied in each market. For example, consumers jointly decide on the quantity
demanded of goods and services given relative prices, and the quantity of labor supplied given a wage.
Simultaneously, producers choose the quantity supplied of the good and the demand of each factor of
production. With a large number of non-strategic market participants we can test the agents ability
aggregate all of their supply and demand functions to calculate a market-level supply and demand.
Finally, given the aggregated supply and demand functions for each market, we can test whether an
agent can find the market clearing price where supply is equal to demand in equilibrium—given their
internal model of all the market participants.

In this section, we organize by markets rather than by the role of a decision maker, as in the previous
sections. For example, in the goods market we first ensure agents understand how individual demand
functions from Deriving Demand aggregate to a market demand function for the good given a price,
then that the agent understands how to aggregate the output from each producer at a given price from
Comparative Statics with Production, and finally that the agent is able to calculate the price which
would equate demand and supply and clear the market in a non-strategic setting. Factor markets are
treated similarly.

Finally, given a system of equations that defines an equilibrium price we can perturb primitives (e.g.,
technological factors, distortions on decisions such as tax rates, or exogenous prices not determined
in equilibrium) to see how the market clearing price would respond. That is an essential tool for
agents to be able to reason about the impact of interventions and distortions in Appendix A.4.

A.3.1 CONSUMER GOODS MARKET AGGREGATION

The market clearing prices in general equilibrium arise from the separate market-level demand and
supply curves, which sums the demand or supply across all market participants at a given price. Here
we test the aggregation of demand functions derived from individual preferences, as in Deriving
Demand and Comparative Statics of Demand, to a market demand function that summarizes the total
quantity demanded across all agents at a given price. Central to the tests is to verify that the agent
can aggregate the demands of market participants with heterogeneous preferences. On the other side
of the market, we test if the agent can aggregate the “supply functions” resulting from the optimal
choice of factors in Deriving Factor Demand and Comparative Statics with Production.
Element A.39 (Aggregation of Consumer Demand). The ability to calculate the aggregate demand
for a good given primitives of demand into expenditure shares.
Element A.40 (Aggregation of Offer Curve for the Good). The ability to calculate the aggregate
supply of a good given primitives of supply into production functions.

A.3.2 FACTOR MARKET AGGREGATION

As with the case of the goods market in Consumer Goods Market Aggregation the market demand
and supply for factors of production are essential to find the market clearing price. For example,
we test whether the agent can aggregate the individual labor supply curve decisions from market
participants who work at a particular wage, following Labor Supply, into a market labor supply curve.
On the other side of the market, we test whether the agent can aggregate the labor demand in Deriving
Factor Demand from producers into a market labor demand curve. The same tests are essential for all
factors of production, including capital.
Element A.41 (Aggregation of Labor Demand). The ability to calculate the aggregate demand for
labor given primitives of demand into expenditure shares.
Element A.42 (Aggregation of Capital Demand). The ability to calculate the aggregate demand for
capital given primitives of demand into expenditure shares.
Element A.43 (Aggregation of Labor Supply). The ability to calculate the aggregate supply of
labor given primitives of supply into production functions.
Element A.44 (Aggregation of Fixed Factor Supply). The ability to calculate the aggregate supply
of capital given primitives of supply into production functions.
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A.3.3 PRICES IN STATIC MARKET EQUILIBRIUM

In this setting we test the agent’s ability to reason about how prices emerge in non-strategic setting
as a process of equating supply and demand, which in turn relies on their ability to aggregate those
market demand functions from consumer and producer behavior.

More specifically, the core logic of general equilibrium is to find the equilibrium price by taking the
aggregated demand and supply functions for each market and find the prices which would equate
demand and supply. For example, the supply and demand functions for the good, as a function of
the price, in Consumer Goods Market Aggregation; or the supply and demand functions for factors
of production, as a function of factor prices in Factor Market Aggregation. This is done market by
market, taking all other prices as given—which requires the agent reason through comparative statics
of the solution to a system of equations while keeping everything else fixed.
Element A.45 (Find Equilibrium Price). The ability to calculate the equilibrium prices given a
production function and a demand function.
Element A.46 (Factor Shares in Equilibrium). The ability to calculate the factor shares in a
competitive equilibrium given a production function and input prices.

A.3.4 COMPARATIVE STATICS OF EQUILIBRIUM PRICES

Here, we test whether agents can reason about how prices and allocations (e.g., labor, capital, and
goods) would respond to changes in the environment. The canonical tests are to see how changes in
model primitives (e.g., productivity of the production process) or exogenous forces from outside the
model (e.g., impact of weather), change the equilibrium price and allocations of labor, capital, etc.
that would clear the market and equate demand and supply.
Element A.47 (Comparative Statics with Total Factor Production Shocks). The ability to calculate
how equilibrium prices change with changes in input prices for a Cobb-Douglas production function.
Element A.48 (Comparative Statics with Inelastic or Perfectly Elastic Supply). The ability to
calculate how equilibrium prices change with changes in input prices for a production function with
inelastic or perfectly elastic supply.

A.4 EVALUATING EQUILIBRIA AND EXTERNALITIES

In DECISIONS IN MULTI-AGENT NON-STRATEGIC ENVIRONMENTS, we tested an agents ability
to reason about equilibrium prices and quantities arising from supply and demand decisions in a
non-strategic setting. Although preferences were reflected in the underlying supply and demand
functions themselves (i.e., utility maximization in the consumption decisions of DECISIONS ON
CONSUMPTION IN NON-STRATEGIC ENVIRONMENTS and profit maximization in the production
decisions of DECISIONS ON PRODUCTION IN NON-STRATEGIC ENVIRONMENTS), the equilibria
in DECISIONS IN MULTI-AGENT NON-STRATEGIC ENVIRONMENTS do not necessarily reflect
broader social preferences.

However, we can still ask whether the resulting “allocations” (i.e., the physical goods produced and
how they are distributed to individuals, the amount of hours worked, and the physical capital installed)
from the “invisible hand” in DECISIONS IN MULTI-AGENT NON-STRATEGIC ENVIRONMENTS
compare to a alternative ways of allocating resources which may directly take social preferences
into account. A central result of economics in non-strategic settings is that absent market imperfec-
tions and market power (i.e., when self-interested agents cannot directly manipulate prices because
they are too small) the competitive equilibria of DECISIONS IN MULTI-AGENT NON-STRATEGIC
ENVIRONMENTS typically yields the same allocations a benevolent planner might choose.

In this section, we consider how a social planner would evaluate the underlying welfare, efficiency,
and inequality that comes about in non-strategic equilbria with prices derived from equating supply
and demand. This leads to testing the ability of the agent to evaluate Pareto efficiency, consider
the welfare theorems, evaluate Pigouvian externalities, and weigh the welfare impact of various
market interventions which change the equilibria derived in DECISIONS IN MULTI-AGENT NON-
STRATEGIC ENVIRONMENTS.
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A.4.1 WELFARE AND DECENTRALIZATION

In this section, we test whether the agent can determine cases where the the competitive equilibrium
they calculate would yield the same distribution of resources and consumer welfare as that of a
benevolent social planner directly making the consumption and production decisions of all agents
directly (also known as the “Welfare Theorems"). In cases where the supply-and-demand relationships
lead to the same results as those of a planner, the competitive equilibrium and its prices are said to
“decentralize” the problem of a social planner. We then test that the agent recognizes cases where the
welfare theorems fail, and can calculate the degree of welfare loss due to the distortions.
Element A.49 (First Welfare Theorem). The ability to recognize that a competitive equilibrium is
Pareto efficient.
Element A.50 (Second Welfare Theorem). The ability to recognize that any Pareto efficient alloca-
tion can be achieved as a competitive equilibrium with prices.
Element A.51 (Consumer Surplus). The ability to calculate consumer surplus given a demand
curve and a price.
Element A.52 (Producer Surplus). The ability to calculate producer surplus given a supply curve
and a price.
Element A.53 (EFficient Surplus). The ability to calculate the total surplus in a competitive
equilibrium and recognize that it is maximized in the competitive equilibrium.
Element A.54 (Deadweight Loss of a Monopoly). The ability to calculate the deadweight loss of a
monopoly given a demand curve and a supply curve.

A.4.2 WELFARE ANALYSIS OF MARKET EQUILIBRIUM

In this section, we focus on the agent’s ability to evaluate welfare implications of various forms of
market equilibrium, particularly how different policies and distortions impact overall efficiency and
resource allocation. The agent is tested on their understanding of how different interventions—such
as taxes, subsidies, and price controls—affect welfare outcomes, and their ability to distinguish
between distortionary and non-distortionary policies.
Element A.55 (Identify Non-Distortionary Taxes). The ability to identify taxes which do not distort
the allocation of resources.
Element A.56 (Irrelevance of Tax Incidence). The ability to recognize that the incidence of a tax
does not depend on who is legally responsible for paying the tax.
Element A.57 (Labor Supply Distortions). The ability to determine the extent that labor taxes will
distort labor supply and change aggregates and prices.
Element A.58 (Capital Market Distortions). The ability to identify that taxing a fixed factor is
non-distortionary, but distorts with dynamic accumulation.

B MITIGATING DATA CONTAMINATION WITH AUTO-STEER

Data contamination, where training data inadvertently includes information from test sets, poses
significant challenges in machine learning, leading to overestimated model performance and compro-
mised generalization capabilities. To address this, we implemented a structured dataset generation
methodology incorporating human oversight, controlled data generation, and style transfer techniques.
This appendix details our approach and its alignment with best practices in the literature.

The auto-STEER methodology provides a systematic approach to generating datasets that mitigates
the risk of data contamination, ensuring the integrity of benchmarks and the validity of results. Below,
we outline the key aspects of auto-STEER that address this issue:

Challenging Models with Rephrasings:
Rephrasings are known to cause significant variance in model performance, as demonstrated in the
GSM-Symbolic dataset Mirzadeh et al. (2024) and other studies (e.g., Zhu et al., 2024; Wang et al.,
2023) highlighting how syntactic or stylistic changes can challenge generalization. In Appendix G,
we also show that much of the observed variance in LLM performance arises from these rephrasings,
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underscoring their role in robust evaluations. auto-STEER leverages this phenomenon to craft
diverse rephrased questions that test beyond rote learning.

Systematic Question Generation:
auto-STEER generates new questions through a structured process that balances diversity and
consistency. Questions are systematically rephrased or style-transferred to ensure they are different
enough from the original templates to prevent memorization while retaining the same core meaning.
This approach reduces the risk of overlap with pre-trained data while preserving the focus of the
assessment.

The rapid advancement of large language models necessitates benchmarks that can evolve just
as quickly. To address this, auto-STEER incorporates a user interface (UI) that allows users to
regenerate entire datasets with minimal effort. By modifying domains, seeds, or even resampling
numerical values, users can quickly produce a new dataset tailored to the latest needs. This adaptability
ensures that benchmarks remain fresh and resistant to contamination as models advance.

Through these features, auto-STEER provides a robust mechanism for creating datasets that challenge
models in meaningful ways while maintaining a high degree of control over data integrity. The
systematic generation of diverse, rephrased questions and the ability to regenerate datasets on demand
make it a powerful tool for addressing data contamination in an era of rapidly evolving AI capabilities.

C TECHNICAL DESCRIPTIONS OF ADAPTATIONS

C.1 RPM (CONDITIONING):

Given the LLM’s output distribution over all possible tokens, filter to include only those that cor-
respond to valid options. For example, if a question has four options then get the probabilities
corresponding to ‘A’, ‘B’, ‘C’, and ‘D’. Then, compute softmax over the valid options to normalize
the filtered probabilities into a distribution.

C.2 RPM (MIXING):

Alternatively, we restrict the output distribution to only valid option tokens O as follows: ↵ · p(o) +
(1 � ↵)1/|O|, where o 2 O, p(o) is the probability the LLM assigns to each token it outputs, and
↵ =

P
o2O

p(o). We then compute the softmax to normalize the resulting probabilities into a
distribution.

In the mixing approach, if an LLM is confident in a valid option token the resulting distribution will
place high probability on that token, but if an LLM places negligible probability on the valid option
tokens then the resulting distribution will more closely resemble a uniform distribution.

C.3 PROMPT FOR GETTING ANSWERS FROM FREE-TEXT QA

User Message:

Report the answer that the following reasoning ended up with. Do not solve the question just
look at the explanation text and report the answer if it exists or None if not. Just report the
number or None.
Q: {question_text}
Explanation: {model_response}

D TECHNICAL DESCRIPTIONS OF METRICS

D.1 ACCURACY.

Accuracy is the most broadly used metric for evaluating LLMs. We define accuracy metrics as metrics
that only look at the top token that the LLM outputs.
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D.1.1 EXACT-MATCH ACCURACY

This is the fraction of questions answered correctly.

D.1.2 NORMALIZED ACCURACY

Elements can differ in their number of multiple choice options, leading to differences in the exact-
match accuracy of random guessing. We can compensate for this by reporting the gap between the
LLM’s exact-match accuracy and random guessing (Budescu & Bar-Hillel, 1993). We compute
normalized accuracy for an element as follows:

P
N

i=1 ai(ti) �
1�ai(ti)
|Oi|�1 , where ti is the top token

the LLM outputs for question i, ai is the indicator describing whether the top token is correct or not,
N the number of questions in the element, and |Oi| the number of options in the question. In other
words, normalized accuracy rewards an LLM with 1 point for every correct answer and penalizes an
LLM by 1 over the number of options minus 1 for each incorrect answer.

D.2 CALIBRATION

It can also be useful to understand how confident an LLM is in its responses and the extent to which
these confidence levels align with accuracy.

D.2.1 EXPECTED CALIBRATION ERROR

We follow Liang et al. (2022) and Raman et al. (2024) in measuring the confidence of an LLM’s
response and computing the expected calibration error (ECE; Naeini et al., 2015; Guo et al., 2017).
ECE measures how closely the probability an LLM assigns to its top answer matches the actual
probability of the correct answer, which in our case is 1. ECE first splits the data into M equally spaced
bins, where each bin contains the probabilities the model assigned to their top token in that range:
e.g., let pmax be the set of most probable tokens for each question then if M = 2, then the first bin
B1 = {p | p 2 p

max and p 2 [0, 0.5]}. It is then defined as
P

i2[M ]
|Bi|/N · |acc(Bi)� conf(Bi)|,

where conf(Bi) is the average probability the LLM assigned to its top token in bin Bi, and acc(Bi)
denotes the exact-match accuracy in bin Bi. We allow users to choose the number of bins, however,
we set M = 10 uniformly spaced over the interval [0, 1] as is standard.

D.2.2 BRIER SCORE

The Brier Score of an element is defined as
NX

i=1

1

|Oi|
X

o2Oi

(pi(o)� ai(o))
2
,

where pi(o) is the probability the LLM assigns to option o in question i. Thus, if an LLM is overly
confident in an incorrect answer (e.g., assigns a probability of 0.9 to a wrong option), the Brier Score
will penalize it more heavily.

D.2.3 EXPECTED PROBABILITY ASSIGNMENT

EPA measures how much probability mass an LLM assigns to the correct answer option out of all
possible options. It is defined as: 1/N

P
i2[N ] p

⇤
i
, where p

⇤
i

is the predicted probability that the LLM
assigns to the correct option for question i.

D.3 ROBUSTNESS

Elements are not the lowest level of granularity in our benchmark and aggregating on an element-by-
element basis may hide where LLM performance varies. We introduce three robustness metrics that
aggregate on the component fields of an element: domains, types, and perspectives. We compute the
domain (type, perspective) robustness on each element by taking the minimum normalized accuracy
over all domains (types, perspectives).
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E EXAMPLES

E.1 GPT-4O AGGREGATION OF CONSUMER DEMAND (SHOWN)

User Message:

Q: As the owner of a premium bedding brand, I cater to a diverse group of customers. I’ve discovered
that there are 1204 potential buyers for my luxury bedding products. Out of these, 820 shoppers in urban
markets each follow the demand function 18.1� 1.51P , while 384 shoppers in suburban markets each
adhere to the demand function 75.44� 8.68P . How can I calculate the total demand for my bedding at a
price point of 8.4?
A. 2779.36
B. 1832.01
C. 5411.87 (Correct Answer)
D. 5050.03
Let’s think step by step. Explain your reasoning.

GPT-4o Message:

To calculate the total demand for your luxury bedding products at a price point of 8.4, we need to evaluate
the demand functions for both urban and suburban markets separately and then sum the results.
Step 1: Calculate the demand in the urban market
The demand function for the urban market is given by:

Qu = 18.1� 1.51P

Substitute P = 8.4 into the urban demand function:

Qu = 18.1� 1.51⇥ 8.4

Qu = 18.1� 12.684

Qu = 5.416

Since there are 820 shoppers in the urban market, the total demand in the urban market is:

Total Urban Demand = 820⇥ 5.416

Total Urban Demand = 4441.12

Step 2: Calculate the demand in the suburban market
The demand function for the suburban market is given by:

Qs = 75.44� 8.68P

Substitute P = 8.4 into the suburban demand function:

Qs = 75.44� 8.68⇥ 8.4

Qs = 75.44� 72.912

Qs = 2.528

Since there are 384 shoppers in the suburban market, the total demand in the suburban market is:

Total Suburban Demand = 384⇥ 2.528

Total Suburban Demand = 970.88

Step 3: Calculate the total demand
Now, sum the total demand from both markets:

Total Demand = Total Urban Demand + Total Suburban Demand

Total Demand = 4441.12 + 970.88

Total Demand = 5412

Therefore, the total demand for your bedding at a price point of 8.4 is approximately 5411.87.
The correct answer is:
C. 5411.87
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E.2 GPT-4O AGGREGATION OF CONSUMER DEMAND (HIDDEN)

User Message:

Q: As the owner of a premium bedding brand, I cater to a diverse group of customers. I’ve discovered
that there are 1204 potential buyers for my luxury bedding products. Out of these, 820 shoppers in urban
markets each follow the demand function 18.1� 1.51P , while 384 shoppers in suburban markets each
adhere to the demand function 75.44� 8.68P . How can I calculate the total demand for my bedding at a
price point of 8.4?
Let’s think step by step. Explain your reasoning.

GPT-4o Message:

To calculate the total demand for your luxury bedding at a price point of 8.4, we need to evaluate the
demand functions for both urban and suburban markets separately and then sum the results. Here’s a
step-by-step breakdown:
1. Identify the demand functions:
- Urban market demand function: Qu = 18.1� 1.51P
- Suburban market demand function: Qs = 75.44� 8.68P
2. Substitute the price point (P = 8.4) into each demand function:
- For the urban market:

Qu = 18.1� 1.51⇥ 8.4

Calculate the value:
Qu = 18.1� 1.51⇥ 8.4 = 18.1� 12.684 = 5.416

- For the suburban market:
Qs = 75.44� 8.68⇥ 8.4

Calculate the value:

Qs = 75.44� 8.68⇥ 8.4 = 75.44� 72.912 = 2.528

3. Sum the demands from both markets to get the total demand:

Qtotal = Qu +Qs = 5.416 + 2.528 = 7.944

Therefore, at a price point of 8.4, the total demand for your luxury bedding products from both urban and
suburban markets is approximately 7.944 units.

User Message:

A. 2779.36
B. 1832.01
C. 5411.87 (Correct Answer)
D. 5050.03
Answer by writing the option letter corresponding to the correct option. WRITE ONLY A SINGLE
LETTER.
A:

GPT-4o Message:

B
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E.3 GPT-4O PROFIT MAXIMIZATION

User Message:

Q: John manages a company that produces premium leather wallets. The production output depends
on the capital (K) he invests, represented by the function 3.97K0.45. At the moment, the wallets are
sold at a price of 3.64, and John has an initial capital of K1 = 3.3. He needs to decide how much
additional capital to invest for the next day’s market. John is aware of the potential price distribution for
his wallets for the next day, represented by price 2.7 with probability 0.24, price 2.14 with probability
0.42, price 3.52 with probability 0.34. There is also a cost associated with increasing his capital, given
by (K1 �K2)

2, and he applies a discount factor of 0.37 to future revenues. To maximize his profits, how
much additional capital should John invest?
A. 0.44
B. 0.14
C. 1.1
D. 0.09
Let’s think step by step. Explain your reasoning.

GPT-4o Message:

To determine how much additional capital John should invest to maximize his profits, we need to consider
the expected revenue from the different potential prices, the cost of increasing capital, and the discount
factor applied to future revenues. Let’s break this down step by step.
Step 1: Calculate the Expected Revenue
First, we need to calculate the expected price of the wallets for the next day using the given probabilities.

Expected Price = (2.7⇥ 0.24) + (2.14⇥ 0.42) + (3.52⇥ 0.34)

Expected Price = 0.648 + 0.8988 + 1.1968 = 2.7436

Step 2: Determine the Production Function
The production function is given by 3.97K0.45. We need to calculate the production output for different
levels of capital K.
Step 3: Calculate the Revenue for Different Capital Levels
Let’s denote the initial capital as K1 = 3.3. We need to consider the additional capital �K that John
might invest. The new capital K2 will be K1 +�K.
The revenue function for a given capital K is:

Revenue = Expected Price ⇥ Production Output

Revenue = 2.7436⇥ 3.97K0.45

Step 4: Calculate the Cost of Increasing Capital
The cost of increasing capital is given by (K1 �K2)

2. Since K2 = K1 +�K, the cost becomes:

Cost = (�K)2

Step 5: Calculate the Discounted Future Revenue
John applies a discount factor of 0.37 to future revenues. Therefore, the discounted future revenue is:

Discounted Revenue = 0.37⇥ Revenue
Step 6: Calculate the Net Profit
The net profit is the discounted revenue minus the cost of increasing capital:

Net Profit = 0.37⇥ (2.7436⇥ 3.97K0.45
2 )� (�K)2
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GPT-4o Message (Continued):

Step 7: Evaluate the Net Profit for Different Values of �K
We need to evaluate the net profit for the given options of additional capital investment:
Option A: �K = 0.44

K2 = 3.3 + 0.44 = 3.74

Production Output = 3.97⇥ 3.740.45

Revenue = 2.7436⇥ 3.97⇥ 3.740.45

Discounted Revenue = 0.37⇥ Revenue
Cost = (0.44)2 = 0.1936

Net Profit = 0.37⇥ Revenue � 0.1936

Option B: �K = 0.14
K2 = 3.3 + 0.14 = 3.44

Production Output = 3.97⇥ 3.440.45

Revenue = 2.7436⇥ 3.97⇥ 3.440.45

Discounted Revenue = 0.37⇥ Revenue
Cost = (0.14)2 = 0.0196

Net Profit = 0.37⇥ Revenue � 0.0196

Option C: �K = 1.1
K2 = 3.3 + 1.1 = 4.4

Production Output = 3.97⇥ 4.40.45

Revenue = 2.7436⇥ 3.97⇥ 4.40.45

Discounted Revenue = 0.37⇥ Revenue
Cost = (1.1)2 = 1.21

Net Profit = 0.37⇥ Revenue � 1.21

Option D: �K = 0.09
K2 = 3.3 + 0.09 = 3.39

Production Output = 3.97⇥ 3.390.45

Revenue = 2.7436⇥ 3.97⇥ 3.390.45

Discounted Revenue = 0.37⇥ Revenue
Cost = (0.09)2 = 0.0081

Net Profit = 0.37⇥ Revenue � 0.0081

Step 8: Compare the Net Profits
We need to compare the net profits for each option to determine which one maximizes John’s profit. After
calculating the net profits for each option, we find that:
- Option A: �K = 0.44 yields the highest net profit.
Therefore, the best option for John is to invest an additional capital of 0.44.
**Answer: A. 0.44**

User Message:

Answer by writing the option letter corresponding to the correct option. WRITE ONLY A SINGLE
LETTER.
A:

GPT-4o Message:

A
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F FIGURES

Figure 3: Heatmap of normalized accuracy of open-source models.
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Figure 4: Error analysis of claude-3-5-sonnet on the Deadweight Loss of a Monopoly element. We
further breakdown the errors by incorrectly interpreting the marginal cost.

Figure 5: Error analysis of gpt-4o on the Deadweight Loss of a Monopoly element. We further
breakdown the errors by incorrectly interpreting the marginal cost.
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Figure 6: Exact-match accuracy of all closed-source models across six elements and four functional
families (Cobb-Douglas, Leontief, Linear, and Non-Linear). The results demonstrate varying type
robustness, with Cobb-Douglas being a generally more challenging functional family but not con-
sistently harder for all elements. For instance, accuracy remains high for elements such as Output
Elasticity and Marginal Rate of Substitution, even on the Cobb-Douglas functions, while elements
like Input Price Elasticity and Returns to Scale show more variability across functional types. The
red dashed line indicates the random guessing baseline for comparison.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Figure 7: This figure depicts exact-match performance on the Aggregation of Consumer Demand
element on the shown implementation of 0-CoT for the closed-source models against the number of
digits of the correct answer.
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G ANALYSIS OF REPHRASING VARIANCE

To understand the role of question rephrasings in our dataset, we conducted an analysis of variance
(ANOVA) on all other controllable features. These features include type, domain, and perspective.
The goal of this analysis was to quantify the variance in LLM performance attributable to these
features and, by exclusion, infer the contribution of rephrasings to the remaining unexplained variance.

The results for the top-performing models, summarized in Table 2 through Table 6, indicate that
the explained variance attributable to the controlled features is consistently low across all evaluated
models. This leaves approximately 56% (for claude-3-5-sonnet) and up to 91% (for o1-preview) of
the variance unexplained by the features included in the analysis. Given that question rephrasings
are a systematic element of our dataset design and were not included as a feature in this analysis,
we infer that the majority of this residual variance is due to differences in how models respond to
semantically equivalent but syntactically varied prompts.

Factor Sum of Squares Degrees of Freedom F-Statistic p-value

domain 7.5572 11.0000 3.0199 0.0823
perspective 3.4351 5.0000 3.0199 0.0823
CAR 21.1235 1.0000 92.8524 0.0000
element:type 178.6251 260.0000 3.0199 0.0823
Residual 2218.5356 9752.0000

R-squared 0.0941
Adjusted R-squared 0.0907

Table 2: ANOVA Results for o1-preview-2024-09-12

Factor Sum of Squares Degrees of Freedom F-Statistic p-value

domain 0.2619 11.0000 0.0928 0.7607
perspective 0.1190 5.0000 0.0928 0.7607
0-CoT 229.7295 1.0000 895.0635 0.0000
CAR 141.3015 1.0000 550.5338 0.0000
element:type 47.4945 1995.0000 0.0928 0.7607
Residual 16015.5015 62399.0000

R-squared 0.3368
Adjusted R-squared 0.3358

Table 3: ANOVA Results for gpt-4o-2024-05-13

Factor Sum of Squares Degrees of Freedom F-Statistic p-value

domain 0.4573 11.0000 0.1293 0.7191
perspective 0.2079 5.0000 0.1293 0.7191
0-Cot 34.0324 1.0000 105.8911 0.0000
CAR 159.1899 1.0000 495.3161 0.0000
element:type 82.9338 1995.0000 0.1293 0.7191
Residual 18642.5829 58006.0000

R-squared 0.2964
Adjusted R-squared 0.2953

Table 4: ANOVA Results for gpt-4o-mini-2024-07-18
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Factor Sum of Squares Degrees of Freedom F-Statistic p-value

domain 1.2389 11.0000 0.5004 0.6063
perspective 0.5032 5.0000 0.4472 0.5037
0-CoT 30.9486 1.0000 137.5118 0.0000
CAR 156.8135 1.0000 696.7577 0.0000
element:type 224.0990 1995.0000 0.4991 0.6071
Residual 18025.1941 80090.0000

R-squared 0.4436
Adjusted R-squared 0.4430

Table 5: ANOVA Results for claude-3-5-sonnet-20240620

Factor Sum of Squares Degrees of Freedom F-Statistic p-value

domain 1.4703 11.0000 0.3814 0.5369
perspective 0.6683 5.0000 0.3814 0.5369
0-Cot 0.2629 1.0000 0.7502 0.3864
CAR 0.4909 1.0000 1.4007 0.2366
element:type 266.6568 1995.0000 0.3814 0.5369
Residual 38842.9909 110826.0000

R-squared 0.2336
Adjusted R-squared 0.2330

Table 6: ANOVA Results for claude-3-haiku-20240307

H MODELS

Model Name Model Card Chat/
Instruction

Tuned
Closed-Source
OpenAI
gpt-4o X
gpt-4o mini X
Anthropic
claude-3-5-sonnet X
claude-3-haiku X
Huggy Llama
llama-7b huggyllama/llama-7b ⇥
llama-13b huggyllama/llama-13b ⇥
llama-30b huggyllama/llama-30b ⇥
llama-65b huggyllama/llama-65b ⇥
Meta Llama
Llama-2-7b-hf meta-llama/Llama-2-7b-hf ⇥
Llama-2-13b-hf meta-llama/Llama-2-13b-hf ⇥
Llama-2-7b-chat-hf meta-llama/Llama-2-7b-chat-hf X
Llama-2-13b-chat-hf meta-llama/Llama-2-13b-chat-hf X
Llama-3-8B meta-llama/Meta-Llama-3-8B ⇥
Llama-3-8B-Instruct meta-llama/Meta-Llama-3-8B-Instruct X
Llama-3.1-8B meta-llama/Meta-Llama-3.1-8B ⇥
Llama-3.1-70B meta-llama/Meta-Llama-3.1-70B ⇥
Llama-3.1-70B-Instruct meta-llama/Meta-Llama-3.1-70B-Instruct X

Continued on next page
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Model Name Model Card Chat/Instruction
Tuned

Mistral
Mistral-7B-v0.1 mistralai/Mistral-7B-v0.1 ⇥
Mathstral-7B-v0.1 mistralai/Mathstral-7B-v0.1 ⇥
Mistral-7B-v0.3 mistralai/Mistral-7B-v0.3 ⇥
Mistral-7B-Instruct-v0.3 mistralai/Mistral-7B-Instruct-v0.3 X
Mistral-Nemo-Base-2407
(12.2B)

mistralai/Mistral-Nemo-Base-2407 ⇥

Mistral-Nemo-Instruct-2407
(12.2B)

mistralai/Mistral-Nemo-Instruct-2407 X

TIIUAE
falcon-7B tiiuae/falcon-7b ⇥
falcon-11B tiiuae/falcon-11B ⇥
AI21
Jamba-v0.1 ai21labs/Jamba-v0.1 ⇥
AI21-Jamba-1.5-Mini ai21labs/AI21-Jamba-1.5-Mini ⇥

Table 7: Overview of the open- and closed-source LLMs we evaluated. The table includes their
names, their model card links, and whether they have been chat or instruction tuned. Models are
grouped by family and sorted by parameter size, with non-chat-tuned models listed first within each
group.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

I EXTRA RESULTS

I.1 PERFORMANCE ON ELEMENTS GENERATED BY CLAUDE 3.5 SONNET

To assess whether the performance on our dataset was influenced by the choice of the generation
LLM, we re-generated three elements from scratch using claude-3-5-sonnet. We selected Find
Equilibrium Price because it exhibited the largest performance gap between gpt-4o and claude-3-5-
sonnet, Diminishing Marginal Products was chosen as a random element with slight performance
variation across the models, and Price Elasticity of Demand served as a control where no significant
differences were expected.

Figure 8 shows the exact-match performance of both models on these three elements. We found no
significant differences in performance between any of the models.

Figure 8: Exact-match performance comparison between closed-source models on three that were
generated by gpt-4o and claude-3-5-sonnet. The elements were selected based on the observed
performance differences across models, with Price Elasticity of Demand serving as a control. The
figure shows no significant differences in performance between the models on these elements. Note
that the red dotted line signifies random guessing performance.

I.2 DEADWEIGHT LOSS

To conduct our error analysis, we ran all closed-source models on the free-text QA adaptation of the
deadweight loss task. We began by inspecting a range of model outputs to identify distinct classes
of errors that were common across responses. Once these error categories were established, we
computed the answers corresponding to these errors and rescored the models based on whether their
outputs were within 98% of either the correct answer or any of the answers derived from specific
error assumptions. We also ensured that when there was any overlap in incorrect responses that we
chose the closest one to the model’s response. This approach allowed us to capture not only the
frequency of correct outputs but also the systematic nature of the models’ reasoning flaws. Below, we
provide a detailed breakdown of the primary error types:

• Incorrect Base for Deadweight Loss Type 1: This error incorrectly substitutes Pe � Pm (the
difference between the competitive equilibrium price and the monopolist’s price) in place of
the correct term Pm �MC(Qm) (the difference between the monopolist’s price and the
marginal cost at the monopolist’s quantity).

• Incorrect Base for Deadweight Loss Type 2: This error calculates the deadweight loss using
the difference between the monopoly price and the competitive equilibrium price as the base
of the triangle.

• Incorrect Base and Height Type 1: This error replaces the base of the DWL triangle
(Qe �Qm) with a miscalculated value for the equilibrium quantity and replaces the base
with the Type 1 variant.
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• Incorrect Base and Height Type 2: This error assumes that Pe = MC(Qm), leading to an
incorrect height calculation where the DWL triangle’s height becomes Pm � Pe.

• Treating Marginal Cost as Constant: Instead of recognizing marginal cost as a function
derived from the supply curve (MC(Q) = asupply ⇥ Q + bsupply), several models treated
marginal cost as a constant, often equal to the slope of the supply curve. This assumption led
to errors in determining the monopolist’s quantity and price, further propagating inaccuracies
in the deadweight loss calculation.

• Combined Errors: A subset of models combined the two errors above, simultaneously using
an incorrect formula for deadweight loss and assuming a constant marginal cost. This
compounded error significantly reduced the likelihood of producing a correct answer and
highlighted the systematic nature of the misunderstanding.

I.3 PERFORMANCE GAPS BETWEEN FREE TEXT QA AND HIDDEN MCQA

Figure 9: Comparison of exact-match accuracy for four elements (Intertemporal Consumption
Smoothing, Profit Maximization, Aggregation of Consumer Demand, and Producer Surplus) across
all closed-source models. The plot illustrates the difference in performance under the hidden and
free-text adaptations, highlighting the impact of multiple-choice options on reasoning accuracy.
Plotted in blue is the accuracy random guessing would have in the hidden adaptation, note that this
line is not relevant for the free-text QA adaptation.

While most cases show a negative gap between hidden and free-text QA performance, there are
notable exceptions. Figure 9 shows that in the Producer Surplus element, gpt-4o performed better in
the free-text QA adaptation compared to the hidden adaptation. One might expect that the explanation
for this positive gap is that the multiple-choice answers in the hidden adaptation were very similar,
which may have caused confusion for the LLM. However, our analysis shows that when the free-
text QA was scored correctly, gpt-4o selected an incorrect answer in the hidden adaptation with
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Figure 10: This figure depicts the percentage of time models were incorrect in the free-text adap-
tation but correct on the hidden adaptation due to choosing the closest answer. The plot compares
the performance of four elements—Intertemporal Consumption Smoothing, Profit Maximization,
Aggregation of Consumer Demand, and Producer Surplus—across all closed-source models.

at least a 10% difference from the correct answer 78% of the time. This suggests that while the
LLM could reason effectively about the problem, it struggled to correctly match its reasoning to the
multiple-choice options provided.

The plot also suggests that the performance gap in the Profit Maximization element is primarily due
to the benefit random guessing has on accuracy in the hidden adaptation compared to free-text QA.
Furthermore, in the Aggregation of Consumer Demand element, the inclusion of options after the
reasoning step offered limited benefit, highlighting that the true advantage lies in including these
options during the reasoning process.

These observations highlight an important nuance: although multiple-choice formats generally offer
helpful structure for models, they may also hinder performance in certain scenarios.
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J SECTION 3 IMAGES

Q: A baseball  team is buying new  equipment and needs 
baseballs, their  demand for  baseballs at any given 
pr ice is expressed by the fol low ing demand function 
-1.89Q + 2.6. What is the team's consumer  surplus i f  the 
pr ice of baseballs is 1.24? Let's think step by step. 
Explain your  r easoning.

User Prompt

To calculate the consumer surplus for the baseball team, first, we need to find the quantity demanded at the price of $1.24 using the demand function given. Then we'll compute the consumer surplus, which is the area between the demand curve and the actual price paid, up to the quantity purchased.

The demand function is given as:

D(Q) = -1.89Q + 2.6

The price the team is willing to pay is:

P = 1.24

We need to set the demand function equal to the price to solve for the quantity demanded (Q):

-1.89Q + 2.6 = 1.24

Now, solve for Q:

-1.89Q = 1.24 - 2.6
-1.89Q = -1.36

Next, divide both sides by -1.89 to find the quantity Q:

Q = -1.36 / -1.89
Q = 0.719 (approx)

Now that we have the quantity demanded at that price, we can calculate the consumer surplus. Consumer surplus is the difference between what consumers are willing to pay (as represented by the demand curve) and what they actually pay, summed over the quantity they purchase. It's the area of the triangle formed beneath the demand curve and above the price level up to the quantity demanded.

On a graph, the demand curve intercepts the vertical price axis at the maximum price consumers are willing to pay when quantity demanded is zero. This is given by the demand function when Q = 0:

D(0) = -1.89(0) + 2.6
D(0) = 2.6

This is the maximum price consumers are willing to pay for the first unit. The actual price paid is $1.24, which is constant for all the units since we're dealing with a fixed price, not a changing one.

The formula for consumer surplus (CS) for a linear demand curve is:

CS = 0.5 * (Base * Height)

In this context:

- Base is the quantity (Q), which is 0.719.
- Height is the difference between what the team is willing to pay for the first unit (D(0) = 2.6) and the actual price they pay for each unit (P = 1.24).

CS = 0.5 * (0.719) * (2.6 - 1.24)
CS = 0.5 * (0.719) * (1.36)
CS ? 0.3595 * 1.36
CS ? 0.489 (approx)

So the consumer surplus for the baseball team, given the price of baseballs is $1.24, is approximately $0.489 per baseball. However, to find the total consumer surplus for all baseballs purchased, you would not multiply by the quantity since the consumer surplus represents the entire area and not a per unit surplus. The computed value of approximately $0.489 is the consumer surplus for all 0.719 baseballs purchased? not per baseball.
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A. 0.49
B. 0.33
C. 0.21
D. 1.34
Answer  by w r i ting the option letter  cor responding to the 
cor rect option. WRITE ONLY A SINGLE LETTER. 
A:

User Prompt

Q: A baseball  team is buying new  equipment and needs 
baseballs, their  demand for  baseballs at any given 
pr ice is expressed by the fol low ing demand function 
-1.89Q + 2.6. What is the team's consumer  surplus i f  the 
pr ice of baseballs is 1.24? 
A. 0.49
B. 0.33
C. 0.21
D. 1.34
Let's think step by step. Explain your  r easoning.

User Prompt

Answer  by w r i ting the option letter  cor responding to the 
cor rect option. WRITE ONLY A SINGLE LETTER. 
A:

User Prompt

D

Output
Model used: gpt-4

B

Output
Model used: gpt-4

Figure 11: (Left) The hidden approach to 0-CoT: the model is given only the question and asked to
explain its reasoning before being provided with options. (Right) The shown approach to 0-CoT: the
model is presented with both the question and options before explaining its reasoning.
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K WEB APPLICATION

Figure 12: The web app user interface for template writing. This page includes fields for type, domain,
grade level and tags (including perspectives). The right shows an example of template verification
which uses a LLM to generate another template using the example seed.

Figure 13: The web app user interface for template generation. This page allows for a selection
of domains, and types for which templates will be generated using the available example seeds.
Templates can then be verified and saved by the user.
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