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Supplementary Materials
In this supplementary section, we provide additional details on our computational framework for
modeling the emergence of human color vision. Section A covers the simulation of optic nerve signals
from hyperspectral scene images and our modeling of retina circuitry. Section B details the design
of our simulated cortical model. Section C provides a step-by-step description of how we simulate
formal color matching function tests of color dimensionality, CMF -SIM . In Section D, we probe
whether the emergence of color vision depends on cortical learning, by introducing comparative,
baseline cortical models. Section E simulates variant cell expression phenotypes after gene therapy in
squirrel monkeys (Mancuso et al., 2009), showing robustness of the simulation result that addition of
a new cell opsin gene enhances color dimensionality. Finally, Section F discusses our tetrachromacy
simulation, highlighting the differences between the human Q cone (between M and L cones) and the
pigeon Q cone (between S and M cones). A supplementary video is available on our project website:
https://matisse.eecs.berkeley.edu.

Table 1: Glossary of terms used in our framework
Scalars

t, x, y Time, world view coordinates
u, v Optic nerve image coordinates
N N -dimensional vector represents cortical color

Eye Simulation Engine
St(x, y) Scene image, spectrum at each pixel

! Retina encoding of scene into time-averaged optic nerve image: !(St) = Ot

Cortical Image Functions
Ot(u, v) Time-averaged optic nerve image
At(u, v) Cone activations image
Ṽt(u, v) Visual percept image
Vt(x, y) Unwarped visual percept image

Ôt+dt(u, v) Predicted optic nerve image, time t+ dt

Neural Buckets (Learnable Parameters)
C Color type of each cone
P Position of each cone in visual field
W Lateral inhibition weights to neighboring cones
D Demosaicing operator parameters
M Motion estimation operator parameters

Learned Cortical Function Operators
”, # ” decodes Ot into Vt, and # re-encodes Vt into Ot.

” = ”P → ”C → ”W, and # = #W →#C →#P.
”W, #W Transforms Ot into At, and vice-versa.
”C, #C Transforms At into Ṽt, and vice versa.
”P, #P Transforms Ṽt into Vt, and vice versa.

µM(O1, O2) Estimates world translation (x, y) between two optic nerve images
$(x,y) Translates an image laterally by (x, y). $µM(Ot,Ot+dt)(Vt) = Vt+dt

A SIMULATION ENGINE OF BIOLOGICAL EYES

We simulate the optic nerve signals from hyperspectral scene images, simulate eye gaze movements,
and model the retina circuitry. We describe the details of these simulations in the following.

A.1 DATABASE OF HYPERSPECTRAL SCENE IMAGES

We model the scene viewed by the eye using a dataset comprising 900 hyperspectral images from
everyday scenes, captured with a hyperspectral camera (Arad et al., 2022). Each image in the dataset
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is of dimension 512 pixels ! 482 pixels ! 31 spectral channels, where each pixel is represented by
its spectral power distribution (“spectra ” below). To generate our training data set, we cropped
thousands of 482x482 patches from these hyperspectral images, ensuring sufficient resolution to
avoid aliasing effects, induced by varying cone cell densities (Section A.3.2).

While only hyperspectral images are used during learning simulation, RGB images can be presented
during test-time by simulating a projector with specific spectral power distributions (SPDs) for the
R, G, and B channels (Cottaris et al., 2019), effectively converting each RGB image into a spectral
representation before passing into the retina model. This test-time use of RGB images does not affect
learning and is purely for illustrative purposes in the figures (e.g., Figure 3).

A.2 EYE GAZE MOVEMENTS – FIXATIONAL DRIFT

We simulate small eye movement as fixational eye drift with a random walk (Young & Smithson,
2021). This produces a stream of the current scene image translating across the retina. Over a time
interval of duration dt, we sample the change in eye motion from a uniform probability distribution
(dX, dY ) ↑ U{(↓15, 15)↔ (↓15, 15)} where 15 corresponds to 15 pixels in the scene image S.

The Mona Lisa video in Supplementary Video 2:08 also incorporates manually-authored saccades
(e.g. from hand to mouth) for illustrative purposes, but the learning simulation uses only fixational
drift.

A.3 RETINA CIRCUITRY MODEL

Our model of light detection and signal encoding in the retina is the textbook model (Rodieck, 1998)
of the photopic, midget, “private-line” pathway (see Figure 2). Details of our implementation follow.

A.3.1 CONE MOSAIC AND SPECTRAL SAMPLING

In our simulation, we model 256 ↔ 256 cone cells, with the random distribution of L, M and S
cone cells on the retina with a relative probability of 0.63, 0.32 and 0.05 from Sabesan et al. (2015).
We model L, M and S spectral response using the template response function from Carroll et al.
(2000), with spectral peaks of 560, 530, 419 nm, respectively. We model photon-shot noise in
the photoreceptor activation values, simulating a signal-to-noise ratio of approximately 100. The
simulation omits foveal tritanopia (Williams et al., 1981).

A.3.2 FOVEATION AND CONE POSITIONS

We model cone cell spatial density on the retina in accordance with Curcio et al. (1990), while
enforcing retinotopy. Starting from a regular grid of cells, we computationally perturb positions
until the target spatial distribution is stochastically achieved, while constraining each cell to be
always confined by its neighbors. We model biological variation in cell locations, which represents a
challenge for cortical learning, by adding multi-resolution positional randomness (Perlin, 1985).

A.3.3 CENTER-SURROUND LATERAL INHIBITION

We mathematically model textbook lateral inhibition in retinal signals as a Difference-of-Gaussians
(DoG) convolution kernel (Enroth-Cugell et al., 1983), with parameters fitted from electrophysiol-
ogy (Wool et al., 2018). Specifically our DoG kernel has standard deviations of 0.15 and 0.9 cone
diameters, respectively, for the positive center and negative surround Gaussians. Significantly, the
relative amplitudes are such that the kernel has a non-zero mean of 0.09 (Lennie et al., 1991; Wool
et al., 2018). We convolve the array of cone activation values by this DoG kernel to compute outputs
to bipolar cells.

A.3.4 ON/OFF PATHWAYS AND OPTIC NERVE SPIKING

We model textbook on- and off- connections from cone activations to bipolar cells, forwarding to
on- and off- retinal ganglion cells (RGC)s. The on- activation is modeled by a rectified linear unit
activation function, ReLU(x) = max(0, x), where x is the laterally-inhibited cone output. The off-
activation is modeled as ReLU(↓x). Optic nerve spikes are the outputs at RGC axons, with action
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Figure 7: Pipeline of decoding, translation and re-encoding cortical functions. The optic nerve signal
image Ot is decoded into visual percept image Vt. The percept is translated in accordance with eye
motion over time dt, then re-encoded back into a prediction of the optic nerve signal Ôt+dt at a short
time in the future.

potentials are generated with Leaky Integrate and Fire model (Lapicque, 1907; Abbott, 1999; Arbib,
2003).

B CORTICAL MODEL

B.1 TIME-AVERAGED OPTIC NERVE SIGNALS

We model the first step of cortical processing as re-combination of the on- and off- RGC action
potentials followed by time-averaging. This results in an image stream Ot with real-valued pixel
values that are proportional to the laterally-inhibited output from cone cells. Ot is the sole input to
the remainder of the cortical model.

B.2 PREDICTION PIPELINE AND LEARNING OBJECTIVE

Figure 7 shows an elaboration of the cortical prediction pipeline introduced in Figure 3.1 and
summarized in Section 4. This pipeline represents an existence-proof simulation that the hypothesized
self-supervised learning on Ot can successfully produce: (1) emergence of vision with the correct
color dimensionality, and (2) inference of invariant retinal properties, including learned neural buckets
for cone spectral identities C, cell positions P and lateral inhibition weights W. Our results show that
both can be simultaneously achieved by learning to minimize the error in predicting the fluctuations
in optic nerve signal values.

To re-summarize Section 4, the prediction is made by applying the learned functions for decoding
”, translation $ and re-encoding # to the optic nerve signal Ot, to obtain a predicted optic nerve
signal Ôt+dt = #($(”(Ot))). The learning objective function is to minimize prediction error, the
difference between predicted and real optic nerve images at time t + dt: Eprediction = ↗Ot+dt ↓
Ôt+dt↗22 = ↗Ot+dt↓#($(”(Ot)))↗22. The decoder ” and re-encoder # functions are each factorized
into a pipeline, such that: ” = ”P → ”C → ”W and # = #W →#C →#P, where each sub-function
is an operator conditioned on its corresponding neural bucket, C, P and W. The following sections
describe the implementation of each learnable neural bucket and its associated cortical sub-function.

B.2.1 LEARNING LATERAL INHIBITION NEIGHBOR WEIGHTS W

In the factorized function pipeline, sub-decoder ”W conceptually inverts lateral inhibition to transform
optic nerve image Ot into cone activation image At. Conversely, sub-encoder #W reproduces lateral
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inhibition to transform At into Ot. These operators are modeled, respectively, as inverse and forward
convolution operators, implemented by pixel-wise division and multiplication in the Fourier domain.
The learnable parameters for this operator are neural bucket W, representing the Fourier transform
image pixels of the lateral inhibition DoG kernel’s Fourier transform. The resolution of W is set
equal to the image resolution of Ot.

B.2.2 LEARNING COLOR TYPES C AND INTERPOLATION D

In the factorized function pipeline, sub-decoder ”C conceptually transforms cone activation image
At (scalar-valued pixels) into a full-color visual percept image Ṽt (N -dimensional vector pixels).
Conversely, #C re-encodes Ṽt into At. These functions depend on two neural buckets of learnable
parameters, C and D. C is an image of N -dimensional vectors, in which the cortical model learns
to represent the spectral type of the source cone associated with each pixel in At. D are the
parameter weights of a learnable function ωD that spatially interpolates color across the image, which
we implement as a convolutional neural network based on the U-Net (Ronneberger et al., 2015)
architecture.

Mathematically, ”C and #C are defined as ”C(At) = ωD(At ↘ C), where ↘ denotes element-wise
multiplication; #C(Ṽt) = Ṽt ↘ C, where ≃ denotes element-wise dot product. To maintain ”C and
#C as pseudo-inverses, we constrain C≃ C to be an image with all pixels equal to 1.

B.2.3 LEARNING CELL POSITIONS P

As shown in Fig. 2.3.F, optic nerve images are spatially distorted due to foveation, whereas visual
perception is apparently undistorted. In the factorized function pipeline, sub-decoder ”P conceptually
transforms Ṽt(u, v), which is foveated and spatially distorted, into the final visual percept image
Vt(x, y), which is Euclidean and undistorted. Conversely, #P re-warps Vt(x, y) into Ṽt(u, v).

We define a learnable spatial warping function ωP(u, v) = (x, y), implemented using normalizing
flow (Rezende & Mohamed, 2015; Dinh et al., 2016) that is an invertible function. Neural bucket
P comprises the learnable parameters of this normalizing flow network. Then ”P(Ṽt)(x, y) =
Ṽt(ω

→1
P (x, y)), and #P(Vt)(u, v) = Ṽt(ωP(u, v)).

B.3 LEARNING EYE MOTION ESTIMATION M

In the learning loop, cortical sub-function $ translates the visual percept image according to the
spatial motion (dx, dy) that occurs during the brief period between t and t+ dt. Where does (dx, dy)
come from? Here, we describe how the cortex can learn a helper cortical function µM(Ot, Ot+dt)
that estimates (dx, dy) directly from the optic nerve stream values at times t and t+ dt, maintaining
the strict operation of the cortical learning model purely from optic nerve signals.

We model learning of µM(Ot, Ot+dt) with neural bucket M by optimizing:

M = argmin
M,P

↗B(Ot+dt)↓#P($µM(Ot,Ot+dt)(”P(B(Ot))))↗22,

where B is a convolution operator that low-pass filters the optic nerve images, effectively halving the
highest frequencies; ”P aims to dewarp the optic nerve image into Euclidean coordinates, and #P is
the inverse operator that rewarps the image. Details are discussed also in Supplementary Video 16:25.

B.4 EFFICIENT LEARNING IMPLEMENTATION & ALTERNATIVE REPRESENTATION OF
INTERNAL PERCEPTS

We simulate the self-supervised learning by parallel numerical optimization of all neural buckets
by applying the stochastic gradient descent algorithm to minimize the prediction error metric. In
practice, this is implemented by repeating the following step thousands of times until convergence:
pick a batch of different scene images from the database; generate the optic nerve signals at time t

with the retina encoding model; send this into the cortical model and execute the decode / translate /
re-encode functions with current neural bucket parameters to estimate the signal at t+ dt; compute
the actual optic nerve signal at t+ dt with the retina encoding model; compute the prediction error
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by taking the difference between prediction and actual signal; backpropagate the prediction error to
update neural bucket parameters.

For efficient processing of cortical functions, we avoid computing full-resolution undistorted visual
percept images Vt(x, y) during the learning simulation. Instead, we directly compute Ṽt+dt(u, v) by
optical flow of the pixels in Ṽt(u, v), where the optical flow map is defined by (#P →$µM(Ot,Ot+dt) →
”P). This is mathematically equivalent to the learning implementation described in Section B.2, and
the cortical model continues to learn cell positions P, and therefore decoder ” can still be applied to
compute undistorted visual percepts when desired.

C COLOR MATCHING FUNCTION TESTS & CMF -SIM

In the classical color matching theory of Maxwell (1856) and Grassmann (1853), an observer
compares a test color spectrum, t, and a set of K primary color spectra, pi for i = 1, ...,K and tunes
real weights εi for each primary until a color match is achieved. If a particular weight has a negative
value, primary light of that magnitude is added to the test color t rather than to the other primary
colors. Mathematically, a color match is achieved when the matching spectrum

∑
K

i=1 ε
+
i
pi and test

spectrum t+
∑

K

i=1(↓εi)+pi appear identical. Here, ε+
i

is defined as max(εi, 0).

We simulate such classical color matching by formulating the retina model plus learned cortical
model as a black-box color observer in the colorimetric sense. That is, we take the test and matching
spectra, simulate the stimulation on different parts of the retina for test and match color patches, apply
the retina encoding model ! and the learned cortical decoder ” to each separately, and iteratively
update the weights εi until there is no further improvement in the computed perceptual difference
E = ↗”(!(

∑
K

i=1 ε
+
i
pi))↓”(!(t+

∑
K

i=1(↓εi)+pi))↗22. Note that the optimal E will not be close
to zero if the primaries cannot match test color t.

The color dimensionality of an observer is formally equal to the minimum number of primary colors
required to match any test color. CMF -SIM simulates thousands of color matches to rigorously
compute this dimensionality for any given retina model plus cortical model. In CMF -SIM , we
simulate classical color matching function (CMF) tests of exhaustively attempting to match test
colors equal to each monochromatic wavelength (100 samples from 400 to 700 nm), with a linear
combination of K primary colors. For the primary colors, we use distinct, monochromatic spectra.
We start CMF tests with a single primary, and add primaries one-by-one until all test wavelengths in
the CMF can be matched successfully. The pseudocode for CMF -SIM is described in Algorithm 1.

For example, for our cortical model to be formally measured as trichromat, we must show that there
do not exist any 1 or 2 primaries that can pass the CMF tests, and show 3 primaries that succeed. A
brute-force approach would be to exhaustively test all possible sets of K primaries; for efficiency,
we instead perform stratified sampling to randomly generate a large number (e.g. 500) distinct sets
of primaries for each choice of K. We require that all of these possible primary sets fail, with the
aggregate perceptual error across all wavelengths being greater than a threshold ϑ, before incrementing
the CMF tests to N+1 primaries.

D BASELINE RESULTS – TESTING IF CORTICAL INFERENCE IS REQUIRED
FOR COLOR VISION

A fundamental question about color perception is whether cortical inference is necessary, or if human
color perception arises directly from hardwired neural circuits. The main paper presents analysis an
existence proof that cortical inference can indeed result in color vision of the correct dimensionality.
Here, we add evidence that cortical inference of some kind is necessary, by modeling and testing
three baseline cortical models with limited or no cortical processing.

For our first baseline, we assume an extreme case where no cortical learning occurs, treating raw
optic nerve signals directly as internal percepts (i.e., the cortical decoder function ” is an identity
function). We apply CMF -SIM directly to the optic nerve signals generated by a trichromat retina.
Figure 8.1 presents analysis that this model fails to generate vision that can be recognized as color
consistent. The analysis is to perform baseline color matching experiments where the test and match

25



Published as a conference paper at ICLR 2025

Algorithm 1: Pseudocode for CMF -SIM
Data: WAVELENGTHS, MAX_TRIALS, Retinal process !, Cortical decoder ”

Function CMF-SIM():
base_errors ⇐ ComputeBaseErrors()
color_dimensionality ⇐ FindMinimumPrimaries(base_errors)
return color_dimensionality

Function ComputeBaseErrors():
Initialize an array errors
foreach wavelength ϖ in WAVELENGTHS do

(x, y)A = RandomLocation()
(x, y)B = RandomLocation()
colorPatchA ⇐ MonochromaticColorPatch(ϖ, (x, y)A )
colorPatchB ⇐ MonochromaticColorPatch(ϖ, (x, y)B )
perceptA ⇐ ”(!(colorPatchA))
perceptB ⇐ ”(!(colorPatchB))
errors[ϖ] ⇐ PerceptualError(perceptA, (x, y)A, perceptB, (x, y)B )

return errors

Function FindMinimumPrimaries(base_errors):
num_primaries ⇐ 0
repeat

num_primaries ⇐ num_primaries + 1
all_tests_passed ⇐ true
trial ⇐ 0
repeat

trial ⇐ trial + 1
Randomly initialize primaries p = {p1, ..., pnum_primaries}
foreach wavelength ϖ in WAVELENGTHS do

Zero initialize coefficients ε = {ε1, ...,εnum_primaries} for primary p

repeat
(x, y)A, (x, y)B = RandomLocations()
positive_alpha, negative_alpha ⇐ ε

+
i

for all i, (↓εi)+ for all i
testColorPatch ⇐ MonochromaticColorPatch(ϖ, (x, y)A +
WeightedColorPatch(negative_alpha, p, (x, y)A)

matchColorPatch ⇐ WeightedColorPatch(positive_alpha, p, (x, y)B)
testPercept ⇐ ”(!(testColorPatch))
matchPercept ⇐ ”(!(matchColorPatch))
errors[ϖ] ⇐ PerceptualError(testPercept, (x, y)A, matchPercept, (x, y)B )
coefficients ε ⇐ GradientDescent(p, ε, target, match, errors)

until convergence
if error ⇒ base_errors[ϖ] then

all_tests_passed ⇐ false
break

until trial = MAX_TRIALS
until all_tests_passed
return num_primaries

spectral functions are identical. This “base perceptual error” is larger than the energy of each color
percept itself, meaning that the emergent vision fails to recognize a patch as the same color across
different parts of the retina.

The second baseline model is a variant of the first, where we change the optic nerve stream to directly
transfer cone activation values, omitting the encoding complications of foveated warping and lateral
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Figure 8: Comparison CMF -SIM results of our baseline cortical models with limited or no inferential
processing. In all of these models, the input optic nerve stream comes from a retina with 3 cone
cells as in regular human trichromacy. 1. The first baseline model represents no cortical learning
involvement in human visual perception, by setting the internal percept directly equal to the input
optic nerve signal. The resulting base error, the perceptual error between the same color patch at two
different retinal locations, results in higher errors, compared to the energy of the internal percept.
This means that this cortical model fails to recognize the same color consistently across different
patches of the retina, so it is procedurally impossible to even try color matching function tests against
reference match colors. Formally then, this model fails resolve color vision. 2. In the second baseline
model, we treat cone cell activations as internal percepts, omitting lateral inhibition from the eye
simulation; CMF -SIM measures the resulting internal percept as 1D color vision, failing to resolve
trichromacy. 3. The third baseline model is an ablation model in which we omit the demosaicking
network D from our proposed model of Section B; CMF -SIM also measures the resulting internal
percept as 1D color. Red base errors are superimposed on energy / 1 primary error plots for visual
comparison, and 150% of these base errors are applied as threshold determination.

inhibition. This is intended as a far simpler encoding, to pressure test whether color vision can be
detected in the spectrally encoded cone values without further processing. However, CMF -SIM
formally measures that this model results in 1D color (Figure 8.2), instead of the expected 3D color
from such a retina. This result shows that cortical processing is required even on cone activations to
produce color vision of the correct color dimensionality.

The third baseline model adds another perspective by taking the full-featured model detailed in
Section B but omitting the demosaicking network ωD (as defined in Section B.2.2). As shown in
Figure 8.3, CMF -SIM measures the resulting percepts of this model also as 1D, providing evidence
of the importance of demosaicking process in the emergence of color vision.

E VARIATIONS IN CELL EXPRESSION AFTER GENE THERAPY

As described in Section 6, we simulate experiments aimed at boosting color dimensionality Mancuso
et al. (2009). In our simulation, approximately 60% of M cones are affected by gene therapy, with
three possible scenarios for their modification. First, affected M cones are completely transformed
into pure L cones (Figure 9.1). Second, affected M cones equally express M and L opsins (Figure 9.2).
Third, affected M cones express M and L opsins in random ratios, that is εL + ϱM, where ε and ϱ

spatially vary across the retina (Figure 9.3). In all cases, we confirm that our cortical model acquires
3D color vision after adaptation (i.e. re-learning), formally measured by CMF -SIM . This makes
intuitive sense if we consider the emergent vision from linear systems theory. Each different opsin
can be interpreted as a basis vector for the resulting linear color space. In this view, cells containing a
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Figure 9: Three scenarios of cell expression after gene therapy adding a third cone type: 1. affected
M cones transform into L cones, 2. affected M cones express 50:50 M and L opsins, and 3. affected
M cones express M and L opsins at spatially-varying, random ratios (i.e. ε,ϱ ⇑ [0, 1],ε+ ϱ = 1).
CMF -SIM shows that all cases converge to 3D color vision after post-therapy re-learning.

mixture of two cones (M and L in this case) can be interpreted as linear combinations of two basis
vectors, which cannot increase the dimensionality of the linear space.

F PROBING EFFECT OF SPECTRAL RESPONSE AND ENVIRONMENTAL COLORS
IN ACQUIRING TETRACHROMATIC VISION

In Section 6, tests of tetrachromatic eyes assumed the fourth cone type was a pigeon Q cone, with peak
sensitivity at 506 nm, between the S and M cone peak sensitivities (419 nm and 530 nm, respectively).
In this section, we report additional experiments using instead a human Q cone, modeled with peak
sensitivity at 545 nm between M and L peak sensitivities (530 nm and 560 nm, respectively). As
shown in the spectral graphs of Figure 10, the pigeon Q cone is more decorrelated from L, M, S,
which in principle may more easily support emergence of 4D color vision.

Further, we probe the effect of visual environment on the emergence of tetrachromacy, simulating
the learning of color vision with three different input scene image datasets. The first environment
is the set of real hyperspectral photographs of everyday scenes (Arad et al., 2022) as described in
Section A.1. However, natural hyperspectral images are thought to be lacking in human tetrachromatic
colors (Lee et al., 2024), so in the second and third datasets we augment the 900 hyperspectral images
with 100 tetrachromatic color patches. In the second dataset, the colors are sampled from the
tetrachromatic hue sphere as computed using recently developed N -dimensional color theory for
tetrachromacy (Lee et al., 2024), customized to each of the observers here (i.e. with human Q or
pigeon Q, respectively). In the third dataset, the colors are sampled from an idealized tetrachromatic
color space in which each of the four cone channels is allowed to take any value, allowing theoretically
maximum levels of chromatic contrast. Since natural hyperspectral images have been found lacking
in human tetrachromatic colors (Lee et al., 2024), in principle we may expect the likelihood that 4D
color vision emerges to increase across these three simulated environments.

Indeed, in line with theoretical intuition, Figure 10 shows that 4D color vision emerges, as measured
formally by CMF -SIM , only for the third visual environment in the case of the human Q cone, but
4D color vision emerges with any of the visual environments for the pigeon Q cone. Our simulations
suggest strong genetic and environmental effects on emergence of tetrachromatic color vision.

G FURTHER EVALUATION OF COLOR EMERGENCE IN CORTICAL MODEL

G.1 VALIDATION OF SIMULATED COLOR MATCHING FUNCTIONS AGAINST HUMAN
PSYCHOPHYSICAL DATA

Our simulation produces results that are highly consistent with the psychophysical measurements of
actual human subjects. Specifically, we compared the output of CMF -SIM with the empirical color
matching function data reported in Stiles & Burch (1955). To match the experimental setup in Stiles
& Burch (1955), we employed the same monochromatic color primaries at 444nm, 526nm, and
645nm. As shown in Figure 11, the CMFs resulting from color matching simulation in CMF -SIM
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Figure 10: Results of expanded experiments of boosting color dimensionality from 3D to 4D, by
addition of a Q cone to trichromatic L, M, S cones. Panel 1 models addition of a Q cone from
natural human tetrachromacy, and panel 2 is for a Q cone from pigeon vision; spectral responses are
shown. Each panel compares emergence of color vision with three different visual environments: real
hyperspectal images (Arad et al., 2022); synthetic images containing tetrachromatic colors sampled
from the hue sphere customized to that color observer (Lee et al., 2024); synthetic images containing
idealized tetrachromatic colors with chromatic contrast between cone channels at the theoretical
maximum. The simulation results show that 4D color vision only emerges for the human Q cone
with the third environment, while it emerges for the pigeon Q cone under all three environments.

closely align with the empirical color matching function curves, providing further validation of our
simulated cortical model as an accurate representation of human trichromatic color vision.

G.2 ROBUST EMERGENCE OF CORRECT COLOR DIMENSIONALITY IN CORTICAL MODEL

The emergence of correct color dimensionality in our simulations remained consistent across varia-
tions in initialization, designed to mimic the natural biological variability between humans (Carroll
et al., 2002; Hofer et al., 2005). We tested this rigorously by varying both cone type ratios and initial
noise parameters. First, we altered the L:M cone ratios in the retinal patch, testing 2:1 (original), 1:1,
and 1:2, as well as an equal L:M:S ratio of 1:1:1. In all cases, the framework consistently converged
to 3D color vision, demonstrating adaptability to different cone distributions. Second, we sampled
the random seed for noise parameters, including: photon-shot noise during photoreceptor activation,
lateral inhibition noise, Perlin noise for cell position randomization, and cortical model parameter
initialization. Despite these changes, the model always converged to 3D color vision when trained
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Generated Color Matching Functions
from our Simulated Cortical Model CMFs from Stiles & Burch (1955)

Wavelength (nm) Wavelength (nm)

C
oe

ffi
ci

en
ts

* Same primaries are used: 444nm, 526nm, 645nm

Figure 11: Side-by-side comparisons of two color-matching functions (CMFs) are presented. Left:
The CMFs generated from our simulated cortical model, trained using a trichromatic retina. Right:
The CMFs obtained from Stiles & Burch (1955), based on real human subjects. To ensure a direct
comparison, our simulation used the same set of spectral primaries (i.e., 444nm, 526nm, and 645nm).
This comparison highlights the validity of our trained cortical model as an accurate representation of
a color observer.

with a trichromat retina, underscoring the robustness of the simulated cortical learning to biological
and physical variability.

To further illustrate the robustness of our cortical model, we present its performance across a diverse
range of input stimuli during testing, as shown in Figure 12. The figure demonstrates the Neural-
Scoped internal percept of our cortical model trained with a trichromatic retina. Specifically:

1. For hyperspectral images derived from RGB inputs, converted using the method described
in Section A.1, the model successfully reconstructs accurate color percepts (3rd column)
from optic nerve signals (2nd column), which have been time-averaged for improved
visualization. Additionally, the model demonstrates complete robustness to various hue
variations, accurately reconstructing color percepts even under significant changes in the
chromatic properties of the input stimuli.

2. For hyperspectral images from a standard dataset (Arad et al., 2022), the model accurately
reconstructs color percepts (6th column) from optic nerve signals (5th column). To aid
clarity, we include RGB-projected versions of the hyperspectral images in the 4th column.

This highlights the model’s ability to generalize across varying input types and maintain robust
performance under diverse conditions.

H TABLE OF IMAGES WITH VARYING NUMBER OF CONES FOR
PHOTORECEPTOR ACTIVATIONS AND RGC SPIKES

To enhance intuition and visual clarity, we present a table in Figure 13, where the number of cone
types in the simulation varies across columns. The rows display images of photoreceptor activations,
bipolar signals, and optic nerve signals.

The second row in Figure 13 reveals that photoreceptor activations become increasingly noisy as
additional cone types are added to the retinal mosaic. The third row shows bipolar signals, computed
by applying a center-surround lateral inhibition kernel to the photoreceptor activations, introducing
greater complexity compared to the photoreceptor layer. By the time optic nerve signals (spikes)
are generated, differences between cone mosaics become almost indistinguishable, underscoring the
cortical challenge of extracting color vision with the correct dimensionality.

We also present a variant of Figure 13 that features the balloon image in Figure 14.
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1. Hyperspectral-converted RGB image as input stimulus 2. Hyperspectral image as input stimulus

Learned internal percept of our cortical model trained with trichromatic retina

Figure 12: Our learned cortical model demonstrates robust performance across a wide variety of
inputs during testing. Here, we present the neural-scoped internal percept of our cortical model trained
with a trichromatic retina: 1. For hyperspectral images derived from RGB inputs (Section A.1), the
model accurately reconstructs the color percept (3rd column) from optic nerve signals (2nd column,
time-averaged for clearer visualization). 2. For hyperspectral images (Arad et al., 2022), the model
similarly produces accurate color percepts (6th column) from optic nerve signals (5th column). For
visual clarity, we show RGB-projected hyperspectral images in the 4th column.
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Figure 13: Expanded version of Figure 2.4, showing the full field of view with simulated retinal
ganglion cell outputs (i.e., spiking optic nerve signals in the last row). Red boxes highlight close-up
details of the full-sized data near the left eye of the Mona Lisa. L, M, S, and Q cones are visualized
as red, green, blue, and black, respectively, in the first row.
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Figure 14: Expanded version of Figure 2.4, a variant of Figure 13, featuring the balloon image.
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