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SkipVSR: Adaptive Patch Routing for Video Super-Resolution
with Inter-Frame Mask

Anonymous Author(s)

ABSTRACT
Deep neural networks have revealed enormous potential in video
super-resolution (VSR), yet the expensive computational expense
limits their deployment on resource-limited devices and actual
scenarios, especially for restoring multiple frames simultaneously.
Existing VSR models contain considerable redundant filter, which
drag down the inference efficiency. To accelerate the inference
of VSR models, we propose a scalable method based on adaptive
patch routing to achieve more practical speedup. Specifically, we
design a confidence estimator to predict the aggregation perfor-
mance of each block for adjacent patch information, which learns
to dynamically perform block skipping, i.e., choose which basic
blocks of a VSR network to execute during inference so as to re-
duce total computation to the maximum extent without degrading
reconstruction accuracy dramatically. However, we observe that
skipping error would be amplified as the hidden states propagate
along with recurrent networks. To alleviate the issue, we design
Temporal feature distillation to guarantee the performance. This
proposal essentially proposes an adaptive routing scheme for each
patch. Extensive experiments demonstrate that our method can
not only accelerate inference but also provide strong quantitative
and qualitative results with the learned strategies. Built upon an
BasicVSR model, our method achieves a speedup of 20% on average,
going as high as 50% for some images, while even maintaining
competitive performance on REDS4.

KEYWORDS
Adaptive Inference, Video Super-Resolution, Efficient Methods

1 INTRODUCTION
Video Super-Resolution (VSR) aims to reconstruct a high-resolution
video from its corresponding low-resolution counterpart by filling
in missing details, which has been widely used in remote sensing,
satellite imagery, surveillance and security. As the development
of Deep Neural Networks (DNNs), plenty of DNN-based methods
are proposed for VSR. Although existing CNN-based video super-
resolution works have been made promising performance over the
past few years, the video super-resolution in real application for
smartphones and TV monitors need huge computation cost and
unable to respond in real time. That is because recovering video
always requires the integration of multi-frames, which usually
come at a high computational cost and high memory footprint.
That means, it is necessary to design an accelerate strategy for
video super-resolution networks to be more applicable.

More important, most of the deep learning models perform in-
ference in a static manner. Both the computational graph and the
network parameters are fixed once trained, which may limit their
representation power, efficiency and interpretability. Therefore, it’s
an issue that deserves to be explored.

Figure 1: The heatmap about patch PSNR index of two
frames in REDS dataset. The PSNR is calculated between low-
resolution image and high resolution image super-resolved
by pre-trained BasicVSR [2] model. A darker color indicates
a higher PSNR value, suggesting better results and easier
recovery. On the other hand, lighter colors indicate lower
PSNR values, implying greater difficulty in recovering the im-
age. It shows that images with complex content or intricate
textures tend to have lighter colors in the heat map, indi-
cating a higher level of difficulty in achieving satisfactory
recovery results. Conversely, images with simpler content or
smoother textures exhibit darker colors, indicating a lower
level of difficulty in the recovery process.

To alleviate above issue, we introduce a new direction for effec-
tive and efficient VSR. To accelerate the inference process and train
once for all scenes with different resource constraints, we design an
adaptive patch routing scheme for the VSR task for the first time.

Currently, VSR methods can be mainly classified into two cat-
egories: parallel models and recurrent models. The parallel meth-
ods simultaneously enhance the recovery of all frames, and the
recurrent model incorporates temporal dependencies by consid-
ering video features in the sequential manner, which means that
the restoration for each frame depends on the information ob-
tained from previous frames. Both proposals have their advantages
and trade-offs, recurrent networks are widely used in VSR mod-
els to extract temporal features, consisting of residual blocks (e.g.,
BasicVSR[2] has 60 residual blocks). Therefore, we focus on the ac-
celeration strategy for recurrent model and choose classical model
BasicVSR [2] as our backbone.

In the field of single image super-resolution, there have been ad-
vancements in adapting subnetwork to accommodate varying com-
putational demands in different regions. For instance, ClassSR [15]
utilizes a classification scheme based on PSNR index to assign patch
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regions to pretained models with different sizes; APE [23] intro-
duces an adaptive patch exiting strategy for single image super-
resolution, which estimates. while dynamic networks have been
explored in single image super-resolution tasks, the considerations
in VSR are different due to the need to incorporate temporal and
spatial information from multiple frames.

To implement this idea, we need to address two challenges: 1)
how to automatically find the effective routing for each image
patches in video under different consumption Settings; and 2) how
to effectively solve the significant drop in performance caused by
error accumulation.

To explore the optimal path in our proposal, we introduce a deci-
sionmechanism after each residual block to determinewhether next
residual block shold be exexuted or skipped. For precise prediction,
we develop a confidence estimator to give an guidance for execu-
tion. During training, we utilize intermediate feature difference
as surpervision to constrain the training; while inference, we can
obtain the optimal effective sub-network by adjusting the threshold.
By this way, we can achieve once-for-all model. Furthermore, we
have observed that when performing block skipping, there is an
inevitable introduction of errors in the feature dimensions. In con-
trast to single image super-resolution, VSR tasks involve the fusion
of features from previous frames. Thus, these error will accumulate
layer by layer, which can lead to the model collapse. Therefore,
we adopt temporal feature alignment, which involves leveraging
a pre-trained model to correct the fratures at specific layers and
maintain the consistency of features across frames.

In summary, our contributions can be concluded as :
(1) In this paper, we proposed a novel framework based on Ba-

sicVSR to accelerate VSR networks. To the best of our knowledge,
we are one of the first to design a adaptive acceleration strategy for
VSR.

(2) The patch-specific subnetwork is guided by the decision of the
confidence estimator. Meanwhile, a GT constraint is also introduced
to accurate prediction.

(3) Extensive experimental results demonstrate that our pro-
posal can obtain great performance and efficiency trade-off, while
achieving once-for-all scalable model.

2 RELATEDWORK
2.1 Video Super-resolution
VSR models can leverage additional information from neighboring
LR frames for restoration, as demonstrated in previous works such
as [3, 5, 9, 10, 17, 26, 27, 29, 31, 32]. These methods exploit different
techniques for alignment and fusion of LR frames.

Earlier VSR methods, such as [1, 21, 27], estimate the optical
flow between LR frames and perform spatial warping for align-
ment. Then, more recent proposals have adopted iplicit alignment
strategies. Instead of image-level motion alignment, TDAN [22]
and EDVR [24] operate alignment at the feature level, aligning fea-
tures from different frames by deformable convolutional [4] layers.
EDVR further improves upon TDAN by introducing coarse-to-fine
deformable alignment and a new spatial-temporal attention fusion
module. RSDN [9] utilizes a recurrent detail-structural block and
a hidden state adaptation module to mitigate the impact of ap-
pearance changes and error accumulation. Recently, BasicVSR [2]

discovered that bidirectional propagation coupled with a simple
optical flow-based feature alignment can enhance performance.
Likewise, in the work by Yi et al. [28], a bidirectional propagation
framework is employed to exploit LR frames and estimate hidden
states from the past, present, and future frames. To address the
issue of huge consumption, Xiao et al. [25] proposed a space-time
knowledge distillation scheme for VSR model compression. How-
ever, these VSR methods often require high computational costs,
impeding their application on resource-limited devices. In contrast,
our work focuses on designing an adpative patch routing strategy
to expedite the inference of VSR models. By acceleratig the patch
routing process, we aim to reduce computational requirements
while maintaining restoration performance.

2.2 Content-Aware DNN
Deep neural networks(DNNs) are playing an important role in
video super-resolution area, as shown in section 2.1. However, most
of the deep learning models perform inference in a static manner,
i.e., both the computational graph and the network parameters are
fixed once trained, which may limit their representation power,
efficiency and interpretability. Dynamic networks [7], as opposed
to static ones, can adapt their structures or parameters to the input
during inference, and therefore enjoy favorable properties that are
absent in static models.

Motivate by the fact that different regions may have diverse
computational demands, there are some methods about dynamic
network in single image super-resolution. ClassSR [15] classifies
the patch region as three kinds according to the PSNR of each path,
and then deploy pretrained models with different sizes for restoring
them. This method requires evaluating and counting the PSNR
value of the whole dataset and manually classifying them, which is
inconvenient. Then APE [23] proposes an adaptive patch exiting
strategy for single image super-resolution, which estimates the
exiting layer directly based on the degree of path recovery. These
methods have greatly achieved performance and efficiency trade-
off. However, the temporal and spatial information between multi
frames must be considered in video super-resolution task.Since we
cannot directly apply a general dynamic inference strategy for VSR,
we explore the properties of VSR networks and develop an adaptive
patch skipping scheme in this paper.

3 METHOD
3.1 BasicVSR
The BasicVSR [2] model is currently considered the state-of-the-art
model, and it is chosen as the backbone network for the approach in
this chapter. Now, let’s provide a brief introduction to BasicVSR [2].

ℎ𝑏𝑖 = 𝐹𝑏 (𝑥𝑖 , 𝑥𝑖+1, ℎ𝑏𝑖+1)

ℎ
𝑓

𝑖
= 𝐹𝑓 (𝑥𝑖 , 𝑥𝑖−1, ℎ𝑏𝑖−1)

(1)

As shown in Figure 2, BasicVSR [2] is a classic bidirectional re-
current network composed of three modules: the backward feature
fusion module (represented by the red module 𝐹𝑏 in Figure 2(a)),
the forward feature fusion module (represented by the blue module
𝐹𝑓 in Figure 2(a)), and the upsampling module (represented by the
yellow module𝑈 in Figure 2(a)). Given a low-resolution image 𝑥𝑡
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Figure 2: The overview of BasicVSR

at the 𝑡-th frame, the forward feature fusion module 𝐹𝑓 extracts
and fuses features by referring to the previous frame 𝑋𝑡−1, while
the backward feature fusion module 𝐹𝑏 processes the image by
referring to the next frame𝑋𝑡+1. In other words, these two modules
recursively fuse information from both ends of the video sequence.

The processing of these modules can be represented by the equa-
tions in (1). Finally, the upsampling module𝑈 combines the outputs
of 𝐹𝑏 and 𝐹𝑓 to reconstruct the super-resolution image 𝑆𝑅𝑡 corre-
sponding to the current frame.

As shown in Figure 2(b), both 𝐹𝑏 and 𝐹𝑓 modules have the same
structure, consisting of motion estimation 𝑆 , spatial transformation
𝑊 , and residual blocks 𝑅𝑓 /𝑅𝑏 . In this chapter, the redundancy in
the residual blocks 𝑅𝑓 /𝑅𝑏 of the forward and backward recurrent
feature fusion modules is explored and analyzed. By dynamically
adjusting the inference process and reducing unnecessary compu-
tations, the efficiency of the model is improved while maintaining
image quality.

3.2 Overview
For a video sequence 𝑋𝑇 ∈ R𝑇×𝐻×𝑊 ×3 consisting of T frames of
low-resolution images, the corresponding high-resolution video
image sequence 𝑆𝑅𝑇 ∈ R𝑇×𝑠𝐻×𝑠𝑊 ×3 is obtained through model
reconstruction, where s represents the image upscaling factor, and
H, W, and 3 represent the height, width, and number of channels
of the input frames, respectively.

In the forward feature fusion module, we take the dynamic in-
ference of the residual block group 𝑅 as an example to explain. The
residual block group 𝑅 performs feature fusion between adjacent
frames in the order from the first frame to the last frame.

ℎ𝑡 = 𝑅(𝑥𝑖 , ℎ
𝑡 ) (2)

For the t-th frame, the input to the residual block group 𝑅 is the
current frame image 𝑥𝑖 and the spatially compensated feature ℎ

𝑡
of

the reference frame, and the output is the fused image feature ℎ𝑡 .

This can be expressed as Equation (2). The module 𝑅 consists of M
residual blocks, and the fusion operates sequentially on the input
features, resulting in the output features ℎ𝑡𝑚 of the m-th fusion
module, with the input features ℎ𝑡

𝑚−1.

ℎ𝑡𝑚 = 𝑅𝑚 (ℎ𝑡𝑚−1) (3)

In a video sequence, adjacent frames exhibit high similarity,
known as inter-frame redundancy. Performing complete multi-
layer fusion operations on all input features in the fusion module
may lead to resource wastage. Therefore, this chapter proposes
an adaptive mask prediction module that generates a binary mask
𝑀𝑡
𝑚 (where m denotes the m-th residual block in R and t denotes

the t-th frame) based on the similarity between the input frame
and the reference frame features. This mask predicts whether to
perform full fusion operations or partial fusion operations to reduce
computation. The process is as follows:

ℎ
𝑡

𝑚 = 𝑀𝑡
𝑚 ⊙ ℎ𝑡𝑚 + (1 −𝑀𝑡

𝑚) ⊙ ℎ
𝑡

𝑚−1 (4)

Here, ⊙ denotes element-wise multiplication.
In addition, in order to mitigate the issue of error accumula-

tion when recursively propagating and fusing features of adjacent
frames in BasicVSR [2], this chapter maps features at specific layers
to a high-dimensional space and imposes constraints during train-
ing to ensure the accuracy of high-frequency details. For detailed
explanation, please refer to Section 3.4.

3.3 Adaptive Mask Prediction Module
This section provides a detailed explanation of the computation
process for generating the adaptive mask𝑴𝑡

𝑚 based on inter-frame
redundancy.

The inter-frame redundancy refers to the similarity between the
input features received by the current fusion module. In this chap-
ter, the difference between the current frame feature ℎ

𝑡

𝑚 and the
3
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Figure 3: (a). The basic architecture of the VSR methods with the bidirectional recurrent network. The forward and backward
networks both consists of numerous residual blocks. The extracted feature from multi-frame images will input into the
upsampler, which will restore videos. (b). The adaptive patch routing strategy proposed by this paper. Given a new video,
multi-frame images will input into forward network and backward network to generate temporal and spatial information.
We design a confidence estimator to evaluate the importance of each residual blocks. If the confidence value is below a given
threshold, the patches will be not excuted by next residual block. Finally, the SR patches are merged to the output image.

reference frame feature ℎ
𝑡−1
𝑚 is used as the inter-frame redundancy

△𝑇 :

△𝑇 = | |ℎ𝑡𝑚 − ℎ
𝑡−1
𝑚 | | (5)

A small adaptive mask generator is employed, which takes the
inter-frame redundancy △𝑇 as input and generates the correspond-
ing fusion confidence score 𝑆𝑖 :

𝑆𝑖 = 𝜎 (𝑊 ∗ 𝑔(ℎ△𝑇𝑚 ) + 𝑏) (6)

The generator consists of a fully connected layer and a global
average pooling layer. Here, 𝑔 represents the global average pooling
operation, and𝑊 and 𝑏 are the weights and biases of the fully
connected layer. The same generator is shared across all layers
(separate generators are used for the forward and backward fusion
modules), and it is jointly trained with the backbone network.

As the modules deepen, the fusion effect on image patches
reaches a bottleneck, and the feature maps exhibit minimal changes.
To ensure the correctness of the adaptive mask generation, the ex-
plicit variation 𝑆𝑖 between the current layer feature ℎ𝑆𝑚,𝑡 of the

dynamic network 𝑆 and the target layer feature ℎ𝑇𝑡𝑎𝑟𝑔𝑒𝑡,𝑡 of the
original network 𝑇 is used as supervision for the generator:

𝑆𝑖 = 1 − 𝜃 | |ℎ𝑆𝑚,𝑡 − ℎ𝑇𝑡𝑎𝑟𝑔𝑒𝑡,𝑡 | | (7)
where 𝜃 represents the Tanh activation function, and a target

layer is selected every 6 layers. During the training phase, the
confidence score 𝑆𝑖 is used to constrain the generator by applying
an 𝐿2 loss between the generated fusion confidence 𝑆𝑖 and the
supervised variation 𝑆𝑖 :

𝐿𝑖 = | |𝑆𝑖 − 𝑆𝑖 | |22 (8)
During the inference phase, the method uses the obtained fu-

sion confidence scores to generate a binary mask by applying a
threshold:

𝑴𝑡
𝑚,𝑛 =

{
1, if 𝑆𝑖 > 𝛼

0, otherwise
(9)

The calculated binary mask 𝑴𝑡
𝑚,𝑛 is then used in Equation (4)

for further computation.
4
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3.4 Temporal Feature Alignment
Based on the structure design of BasicVSR [2], the restoration of
the t-th frame image is achieved based on the (t-1)-th frame and the
(t+1)-th frame. If there is a small deviation in generating the hidden
layer features ℎ𝑓 and ℎ𝑏 in the dynamic network, this deviation will
be propagated frame by frame and amplified during the network
inference, leading to model collapse and inability to reconstruct
subsequent frames.

To address this issue, this chapter aligns specific high-dimensional
features of the dynamic network 𝑆 with the original model 𝑇 to
correct the errors and maintain model accuracy.

Inspired by spatial attention map distillation, this chapter pro-
poses to generate high-dimensional features through spatial feature
mapping F . Here, 𝐻𝑇

𝑡 ∈ R𝐶×𝑊 ×𝐻 and 𝐻𝑆
𝑡 ∈ R𝐶×𝑊 ×𝐻 represent

the feature maps of the t-th frame image in the original network
and the dynamic network, respectively. Here, 𝐶 , 𝐻 , and𝑊 repre-
sent the number of channels, height, and width of the feature maps,
respectively. The mapping function F can be defined as one of the
following three operations:

Fsum (𝐻𝑡 ) =
𝐶∑︁
𝑖=1

|𝐻𝑡,𝑖 |

F 2
sum (𝐻𝑡 ) =

𝐶∑︁
𝑖=1

|𝐻𝑡,𝑖 |2

F 2
max (𝐻𝑡 ) = max𝐶𝑖=1 |𝐻𝑡,𝑖 |2

(10)

where 𝐻𝑡,𝑖 represents the i-th slice in the feature channel dimen-
sion. F 2

sum (𝐻𝑡 ) is used as the mapping function, which gives more
weight to high-frequency details and describes scene details more
clearly and accurately through global computation.

During the training of the dynamic network, specific high-dimensional
feature maps 𝑄𝑆

𝑡 and 𝑄𝑇
𝑡 are selected from a certain interval of lay-

ers in the dynamic network and the original network, and their
differences are constrained by the 𝐿2 loss to ensure consistency
between the dynamic network features and the original network
features, preserving high-frequency details. The error correction
constraint is as follows:

𝐿error =
1
𝑇

𝑇∑︁
𝑡=1

| |F 2
sum (𝐻S

𝑡 ) − F 2
sum (𝐻T

𝑡 ) | |22 (11)

Here, 𝐿error represents the 𝐿2 norm distance, and𝑇 is the number
of frames in the input sequence.

3.5 Training Process
According to previous methods EDVR [? ] and BasicVSR [? ], this
chapter employs the Charbonnier loss as the reconstruction loss to
constrain the training of the backbone network:

𝐿rec =
√︁
| |𝑆𝑅𝑡 − 𝐻𝑅𝑡 | |2 + 𝜖2 (12)

Here, 𝜖 is set to 1𝑒−6. 𝑆𝑅𝑡 and𝐻𝑅𝑡 denote the high-resolution im-
age reconstructed for the t-th frame and the corresponding ground
truth high-resolution image, respectively. Based on this design, the
overall training loss function of the dynamic network includes the
reconstruction loss, the adaptive mask generation loss, and the
error correction constraint, as follows:

𝐿 = 𝐿rec + 𝜆1𝐿mask + 𝜆2𝐿error (13)
where 𝜆1 and 𝜆2 are weight coefficients, and 𝐿mask and 𝐿error

represent the constraints for adaptive mask training and error cor-
rection, respectively.

4 EXPERIMENTS
4.1 Experiments Settings
We adopts widely-used datasets for training: REDS[19] and Vimeo-
90K[27]. For REDS, following, we use the REDS4 dataset as our
test set. We additionally define REDSval4 as our validation set. The
remianing clips are used for training. We use Vid4[16], UDM10[29],
and Vimeo-90K-T[27] as test sets along with Vimeo-90K[27]. We
train and test our models with 4× downsampling using two degra-
dations - Bicubic (BI) and Blur Downsampling (BD) as BasicVSR did.
For BI, the MATLAB function "imresize" is used for downsampling.
For BD, we blur the HR images by a Guassian filter with 𝜃 = 1.6,
followed by a subsampling every four pixels.

We use pre-trained SpyNet[20] as our flow estimation, and fix
the parameters of the flow estimator are fixed. The patch size of
input LR frames[18] is 48 × 48. We adopt Adam[14] optimizer, 𝜃 =

10−8, Cosine Annealing scheme and we use 𝐿1 loss as loss function.
We pretrain BasicVSR as VSR network backbone. Experiments are
conducted on a server with Pytorch 1.10 and V100 GPUs.

The batch size is 16 and the LR patch size is 48. We use Adam
optimizer, where 𝛽1 is set to 0.9 and 𝛽2 is set to 0.999. During testing,
we first split LR images into patches of size 48 with stride 46 unless
otherwise specified. Then the LR patches are super-resolved in
parallel, and the parallel size can be tuned to fit the computational
resource. Finally, the SR patches are merged to obtain the complete
SR images by weighting overlapping areas. The Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity (SSIM) calculated on
RGB channels are adopted as the evaluation metrics to measure SR
performance. We use FLOPs to evaluate the computational cost and
the practical running time is benchmarked on NVIDIA V100 GPUs.

4.2 Evaluation of SkipVSR
Performance Results. To evaluate the effectiveness and applica-
bility of our proposed method, we conduct experiments by applying
it to the classical method BasicSR [2] and compare iy with state-
of-the-art and representative VSR netwroks. For a fair comparison,
we not only adopt the model trained with our adaptive skipping
strategy, but also compare models with varing scale sizes. Specifi-
cally, we set different confidence thresholds during the inference
process.

We evaluate the performance of SkipVSR on various datasets, as
shown in Table 1. It shows that VSR networks with SkipVSR can
achieve comparable performance compared to original SR networks
in terms of PSNR and SSIM. This comparison validates that our
adaptive patch routing can provide insight into the diminishing
return and role of individual layers.
Efficiency Results As for the efficiency of SkipVSR, Table 2 shows
the performance under different computational costs as BasicVSR [2].
Although our method add lightweight decisive network, it only
consists of several MLP layers and its FLOPs are negligible. It il-
lustrated that our method can reduce the computational cost of
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Table 1: Quantitative comparisons of state-of-the-art methods and SkipVSR. To compare the performance of SkipVSR under
the same computation constriants, the confidence threshold of SkipVSR is set 0. Parameters, FLOPs, PSNR and SSIM on various
representative datasets with scaling factors ×4 are reported in the table. The changes in PSNR and FLOPs indexes corresponding
to BasicVSR and SkipSR are marked in red and blue, respectively. Note that all the efficiency indexes (Params and FLOPs) are
measured under the setting of LR images as 180 × 320 resolution on all scales.

BI degradatioin BD degradatioin
Methods Params (M) FLOPs (G) Runtime (ms) REDS4 [19] Vimeo-90K-T [27] Vid4 [16] UDM10 [29] Vimeo-90K-T [27] Vid4 [16]
Bicubic - - - 26.14/0.7292 31.32/0.8684 23.78/0.6347 28.47/0.8253 31.30/0.8687 21.80/0.5246

VESPCN [1] - - - - - 25.35/0.7557 - - -
SPMC [21] - - - - - 25.88/0.7752 - - -
TOFlow [27] 1.4 274.9 1610 27.98/0.7990 33.08/0.9054 25.89/0.7651 36.26/0.9438 34.62/0.9212 -
DUF [13] 5.8 1645.8 974 28.63/0.8251 - - 38.48/0.9605 36.87/0.9447 27.38/0.8329
RBPN [8] 12.2 8516.0 1507 30.09/0.8590 37.07/0.9435 27.12/0.8180 38.66/0.9596 37.20/0.9458 -

EDVR-M [24] 3.3 304.2 118 30.53/0.8699 37.09/0.9446 27.10/0.8186 39.40/0.9663 37.33/0.9484 27.45/0.8406
PFNL [30] 3.0 940.0 295 29.63/0.8502 36.14/0.9363 26.73/0.8029 38.74/0.9627 - 27.16/0.8355
TGA [11] 5.8 694.1 236 - - - - 37.59/0.9516 27.63/0.8423
RLSP [6] 4.2 82.3 49 - - - 38.48/0.9606 36.49/0.9403 27.48/0.8388
RSDN [9] 6.2 355.7 94 - - - 39.35/0.9653 37.23/0.9471 27.92/0.8505
RRN [12] 3.4 108.7 45 - - - 38.96/0.9644 - 27.69/0.8488

FastDVDnet∗ [25] 2.6 64.3 - - 36.12/0.9348 26.14/0.8029 - - -
BasicVSR [2] 4.9 338.5 57 30.65/0.8735 36.43/0.9372 26.54/0.7923 39.12/0.9650 36.75/0.9400 27.03/0.8444

SkipVSR-BasicVSR 4.9 338.5 58 30.60/0.8726 36.39/0.9365 26.54/0.7924 39.05/0.9645 36.73/0.9398 26.98/0.8434

Table 2: Efficiency evaluation of BasicVSR and SkipVSR with different threshold. In order to satisfy various scenarios with
different upper limits of computational resources, we design SkipVSR, which can be flexibly varied by adjusting the confidence
threshold after training whole model once. Parameters, FLOPs, PSNR and SSIM on various representative datasets with scaling
factors ×4 are reported in the table. The changes in FLOPs and runtime indexes are marked in red and blue, respectively. Note
that all the efficiency indexes (Params, FLOPs and Runtime) are measured under the setting of LR images as 180× 320 resolution
on all scales.

BI degradatioin BD degradatioin
Methods Threshold FLOPs (G) Runtime (ms) REDS4 [19] Vimeo-90K-T [27] Vid4 [16] UDM10 [29] Vimeo-90K-T [27] Vid4 [16]

BasicVSR [2] – 338.5 57 30.65/0.8735 36.43/0.9372 26.54/0.7923 39.12/0.9650 36.75/0.9400 27.03/0.8444
SkipVSR-BasicVSR 0 338.5(100%) 58 30.60/0.8726 36.39/0.9365 26.54/0.7924 39.05/0.9645 36.73/0.9398 26.98/0.8414
SkipVSR-BasicVSR 0.9 324.9(96%) 57 30.41/0.8700 36.25/0.9342 26.39/0.7910 38.89/0.9634 36.60/0.9378 26.78/0.8212
SkipVSR-BasicVSR 0.92 297.8(88%) 55 30.22/0.8655 36.03/0.9320 26.28/0.7888 38.70/0.9589 36.42/0.9323 26.54/0.8057 -
SkipVSR-BasicVSR 0.93 264.0(78%) 49 30.02/0.8608 35.90/0.9315 26.09/0.7742 38.46/0.9534 36.09/0.9279 26.23/0.7989
SkipVSR-BasicVSR 0.94 216.6(63%) 42 29.76/0.8547 35.62/0.9248 25.67/0.7651 38.03/0.9487 35.68/0.9223 25.88/0.7890
SkipVSR-BasicVSR 0.95 145.5(43%) 30 29.38/0.8468 35.02/0.9136 25.22/0.7450 37.58/0.9400 35.13/0.9117 25.57/0.7777
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(a) PSNR-GFLOPs on REDS4 ×4 (b) SSIM-GFLOPs on REDS4 ×4

Figure 4: Quantitative results of performance-efficiency
trade-off.We apply SkipVSR to BasicVSR with scaling factors
×4 on REDS4 [19] dataset. For a fair comparison, we adopt
BasicVSR [2] and EDVR [24] as label. Average FLOPs of all
180 × 320 LR patches and PSNR/SSIM calculated on the full
image are reported.

original VSR networks while maintaining the performance. More
important, our proposal enables to meet different computational
resource scenarios based on training once. For example, our model
only requires 43% of the original model to obtain recovery results.
The computational cost of BasicVSR is significantly reduced by our
method, and the computational costs of head and tail stay the same.
Scalability Results We show the performance-efficiency trade-
off results in Fig. 4 to demonstrate the scalability of SkipvSR. By
controlling the confidence threshold during inference, SkipVSR
can achieve scalable performance-efficency trade-off. Therefore,
we can deploy one SkipVSR network on platforms with different
computational resources. For the device with low computational
resource, we can decrease the confidence threshold to get lower
performance and faster inferences speed.
Visual Results Figure 6 shows the qualitative comparison of our
method against the original VSR networks and with different confi-
dence threshold. As we can see, SkipVSR can achieve same or even
better visual results compared with original VSR networks. Figure
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Figure 5: (a) Statistical results of the number of pass patches
per layer. We apply SkipVSR to BasicVSR with scaling factors
×4 on REDS4 dataset, and count the ratio of the number of
patches executed per layer relative to the total patch numbers.
(b) Statistical results of the intermediate feature difference
bewteen layers distribution. We calculate the results inter-
mediate feature difference | |𝐻𝑆

𝑖
−𝐻𝑂

𝑡𝑎𝑟𝑔𝑒𝑡 | |22 between adjacent
layers.

5-(b) visualizes the length of adaptive routing on each patch. As
can be seen, the confidence selector network selects fewer blocks in
the path for smooth regions. As for patches in complicated regions,
the confidence selector network allocates more blocks. This is con-
sistent with the motivation of applying appropriate networks to
various difficulties. More important, we also visualize the number
of patches executed by each block as figure 5-(a), and we can see
that it is not the case that the later layers execute fewer blocks,
which verifies the fact that we perform confidence per layer not
exit once is correct.

4.3 Ablation Study
The Validation of Components in SkipVSR. We conduct an
ablation study to demonstrate of our SkipVSR by progressively
adding components. The result are shown in table 3. VSR1 adopts
skip blocks uniformly while VSR2 adopts confidence estimator to
guide which block should be skipped. Comparing VSR1 and VSR2, it
is indicated that our strategy is superior to other skip strategy and
provide a promising direction for VSR inference speed-up. That is
because confidence estimator can extract all information contained
in feature channels and analyze its restoration performance. As we
can see, SSL3 and SSL4 outperform other methods. That is because
introducing the temporal feature alignment can mitigate error ac-
cumulation owing to layer skipping. Comparing VSR3 and VSR4,
we can see that With the guarantee of temporal feature alignment,
adding a confidence estimation module does not affect the overall
performance either.
Variants of skip strategy To validate our adaptive patch routing
strategy, we conduct experiments on REDS4 for BasicVSR with
different skip strategies. We compare our approach with three em-
pirical policies inllustrated in Table 4: skip blocks uniformly, shallow
and deep aggressively execute shallow and deep layers respectively.
It shows that using our strategy can substantially reduce the com-
putation cost while maintaining performance better. For a more fair
comparison, we set the confidence upper limits with 0.95 and 0.94.
It is indicated that while confidence threshold set as 0.94, SkipVSR

Table 3: Validation of the components in our SkipVSR.
PSNR(dB) results evaluated on REDS4[19] (4×). The back-
bone is BasicVSR[2].

Methods VSR1 VSR2 VSR3 VSR4 (𝑂𝑢𝑟𝑠 )

Uniform Skip ✓
Confidence Estimator ✓ ✓
Temporal Alignment ✓ ✓ ✓

PSNR(dB) 25.30 29.89 30.60 30.60

Table 4: Adaptive inference policy comparison of SkipVSR
on REDS4. The index of threshold corresponds to the upper
limits of confidence value in inference. Uniform, shallow
and deep skip represents skip randomly, only execute the
second half of the model and the first half of the model,
respectively. For both shallow network and deep networks,
SkipVSR outperforms these strategies by a large margin.

Skip strategies REDS4

FLOPs Runtimes PSNR/SSIM

uniform skip 278G 35ms 25.30dB/0.7288
shallow skip 278G 34ms 12.01dB/0.1840
deep skip 278G 35ms 28.87dB/0.7930

SkipVSR(threshold = 0.94) 293G 42ms 29.76dB/0.8547
SkipVSR(threshold = 0.95) 270G 30ms 29.38dB/0.8468

Table 5: The ablation study of confidence estimator with dif-
ferent GTs. PNSR, PSNR interval, Feature, Feature interval
represents the average difference of final PSNR value, PSNR
value based on intermediate feature, final feature and inter-
mediate feature, respectively.

The GT of REDS4

Confidence Estimator FLOPs Runtimes PSNR/SSIM

PSNR 338.5G 57ms 25.67dB/0.6789
PSNR Interval 338.5G 103ms 30.62dB/0.8725

Feature 338.5G 58ms 21.01dB/0.3031
Feature Interval 338.5G 58ms 30.60dB/0.8726

can achieve an PSNR index of more than about 0.5dB with less
GFLOPs consumption as well as faster inference. We outperform
other strategies by a large margin.
Variants of Confidence Estimator In order to improve the accu-
racy and accelerate the convergence of the confidence estimator,
we apply different GT designs about feature and performance index
(PSNR) to supervise the training of confidence estimator. So we
perform ablation experiments on varaiants GT supervision with
confidence estimator. As shown in Table 5, we adopt the final PSNR
difference between original model and SkipVSR as equation 14,

𝑆𝑖 = 1 − 𝜃 | |𝑃𝑆𝑁𝑅𝑆𝑁 − 𝑃𝑆𝑁𝑅𝑂𝑁 | |22 (14)
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Figure 6: Qualitative comparison between various VSR and our skipping strategy with different confidence threshold on
REDS4 [19]. As we can see, our method maintains comparable visualization when the number of FLOPs is reduced by up to 80%.
the intermediate PSNR value based on features extracted by inter-
mediate layers as equation 15,

𝑆𝑖 = 1 − 𝜃 | |𝑃𝑆𝑁𝑅𝑆𝑖 − 𝑃𝑆𝑁𝑅𝑂𝑖 | |22 (15)

the final feature difference between original model and SkipVSR as
follow:

𝑆𝑖 = 1 − 𝜃 | |𝐻𝑆
𝑁 − 𝐻𝑂

𝑁 | |22 . (16)
and the intermediate feature difference as equation ??. As shown
in table 5, it shows that only adapting the metric indexes calcu-
lated at the end of whole model can not provide great guidance
the confidence estimators for each intermediate layer, causing a
failure of the whole model to converge. The PSNR index obtained
by upsampling the intermediate features can be a good instruction
for model recovery, which achieve 30.62dB PSNR. However, the
resource consumption caused by upsampling each layer is huge. As
a trade-off, we use the intermediate features as confidence estimator
GT, which give an enough and clear guidance efficiently. getting
30.60dB with 58ms.

4.4 Limitations
There are several limitations in our work. 1) The skipping oper-
ation only performs on the block-wise level. Future work should
take more fine-grained skipping into consideration. 2) More lighter
weight temporal feature alignment strategies can be explored, al-
lowing more accurate alignment of features with less time and
resource consumption. We believe that our research is inspiring
and the above limitations should be addressed in future works.

Table 6: The ablation study of temporal feature alignment is
set per several layers. Feature intervals represent the number
of layers to be constrained. ’–’ indicates that the model can
not be converged.

Feature Intervals REDS4

FLOPs Runtimes PSNR/SSIM

15 338.5G 58ms – / –
10 338.5G 58ms 25.52dB/0.6525
6 338.5G 58ms 30.60dB/0.8726

5 CONCLUSION
In this paper, we propose an adaptive patch routing strategy to
speed up the inference of the VSR model in resource-limited sit-
uations. Specifically, the key idea is using a confidence estimator
constrained by a feature difference loss between current layers and
target layers to obtain the binary decision, which provides a execu-
tion signal for each patch in each images to indicate its recovery
importance. What’s more, temporal feature alignment is designed
for keeping the accuracy and performance of target layers. We ap-
ply SkipVSR on the BasicVSR, and extensive experiments show that
our proposal can achieve superior trade-off between performance
and efficiency.
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