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A Appendix1

A.1 Broader Impact2

Image generation models are susceptible to be used as tools for generating false content or prompting3

misinformation. Subject-driven generation could be misused as a tool for generating fake image4

of individuals. To mitigate this issue, our model has been trained on generic objects where person-5

related subjects have been purposely removed from the training data. This makes the model weaker6

at generating fake images using person as subject control.7

Our model is built using the pre-trained Stable Diffusion model trained on web-scraped datasets.8

Therefore, our model inherits some of its shortcomings, such as generating biased contents with9

social stereotypes, or other NSFW contents if used inappropriately. Our model’s ability to precisely10

control the generation subject can help mitigate certain biases. We can use NSFW detectors to block11

potential inappropriate content from being generated. Nevertheless, we strongly caution against using12

our model directly in user-facing applications without a careful inspection of the model’s output.13

Proper content moderation and regulation are highly advised to prevent undesirable consequence.14

A.2 Failure Cases Analysis15

In Figure 1, we outline common failure cases of the model. Our model suffers from issues observed16

for prior subject-driven generation models as outlined in [1], including incorrect context synthesis,17

overfitting to training set. In addition, it subsumes some weakness of the underlying diffusion model,18

such as failing to address text prompts or generating fine-grained composition relations.

Figure 1: Example failure generations. Subject images used for finetuning are shown on the left.
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A.3 Competing Methods20

We compare BLIP-Diffusion with fine-tuning based [2, 1] and retrieval-augmented [3] subject-driven21

generation models on the public DreamBench dataset [1]. We also compare qualitatively with the22

image editing method InstructPix2Pix [4]. We briefly introduce these methods below.23

• Textual Inversion [2]: a fine-tuning method which optimizes a placeholder embedding to24

reconstruct the training set of subject images. It requires 3,000 training steps for learning a25

new concept, which takes around 30 minutes on an A100 GPU.26

• DreamBooth [1]: a fine-tuning method similar to textual inversion. In addition to the27

placeholder embedding, it also optimizes parameters of the U-Net for a total budget of28

around 800 steps. We report intermediate results using 100 and 300 fine-tuning steps, while29

refer to metrics reported by the authors for full model comparison. Fine-tuning DreamBooth30

on a new concept costs around 6 minutes on an A100 GPU.31

• Re-Imagen: a retrieval-augmented model, which takes the subject images as references and32

attend to them to generate new images. While the model requires no tuning, it significantly33

underperforms other models. The model is not publicly available, thus we do not have34

access to qualitative examples for comparison.35

• InstructPix2Pix: an image editing model, which takes as input the source image and an36

editing instruction to generate edited images. Although it does not represent explicitly37

subjects, it can be used for applications such as subject re-contextualization and property38

modification. Therefore, we also include it for qualitative comparison. In particular, we39

experiment with both low (1.0) and high (1.5) image guidance scales, where a low image40

guidance scale preserves less the subject while promotes the text alignment; a high image41

guidance scale preserves better the original image yet is more likely to overlook the editing42

instruction.43

A.4 Evaluation Metrics44

We adopt metrics proposed in DreamBooth [1] for evaluation, including DINO, CLIP-I and CLIP-T45

scores. Among them, DINO and CLIP-I scores are used to measure subject fidelity and CLIP-T is46

used to measure image-text alignment. DINO score is the average pairwise cosine similaity between47

the ViT-S/16 DINO embeddings of the generated and real images. CLIP-I score is the average48

pairwise CLIP ViT-B/32 image embeddings of the generated and real images. It is considered that49

DINO score is the preferred metric for measuring subject fidelity as it is sensitive to the differences50

between subjects of the same class. CLIP-T score is the average cosine similarity between prompt51

and image CLIP embeddings.52

To better evaluate and compare subject-driven text-to-image models, it is suggested that these metrics53

should be considered jointly to avoid biased conclusion. For example, a model that naively copies the54

training set images will produce high DINO and CLIP-I scores with low CLIP-T scores. In the other55

case, a vanilla text-to-image generation model without subject knowledge, e.g. stable diffusion, will56

produce high CLIP-T scores with poor subject alignment. Both models are not considered desirable57

for the subject-driven text-to-image generation task.58

A.5 Pre-training Datasets59

For multimodal representation learning, we use the same pre-training data as by BLIP-2, totaling60

129M images. This includes COCO [5], Visual Genome [6], CC3M [7], CC12M [8], SBU [9] and61

115M images from LAION400M [10]. We also employ the synthetic captions created using CapFilt62

method [11] for web images. We refer interested readers to Section 3.4 in the BLIP-2 paper [12] for63

details of the data bootstrapping configurations.64

For subject representation learning, we use a subset of OpenImage-V6. We filter the data using65

the annotations provided by the dataset. In particular, we discard a sample if it satisfies one of the66

following cases: (i) a group of objects of the same class appear in the image; (ii) the image is taken67

from inside of the subject; (iii) the object is of aspect ratios larger than 2; (iv) objects occupy a too68

large (0.8) or too small (0.3) area relative to the image; (v) human-related subject, including boy,69

girl, person, man, mammal, woman, human body, human head, human hair, human arm, human face,70
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human leg, human hand, human foot, human eye, human mouth, human nose, human ear, clothing,71

suit; (vi) cluttered objects, including tree, plant, houseplant, desk, table, poster and billboard. This72

results in 292K images for subject representation learning.73

A.6 Fine-tuning, Inference and Evaluation on DreamBooth Dataset74

For all fine-tuning experiments, we use AdamW [13] optimizer with constant learning rate 5e-675

and no warm-up steps. We use batch size 3, adam beta1 0.9, adam beta2 0.999, adam epsilon 1e-876

and weight decay 0.01. We fine-tune models on a single A100 (40Gb) GPU and select checkpoints77

manually based on a set of validation prompts. We report the number of iterations for each subject on78

DreamBench below, on average 76 steps, taking around 40 seconds to complete on a single A100.79

For inference, we use PNDM scheduler [14] for 100 denoising steps. We use a fixed guidance scale80

7.5 for all experiments.81

Table 1: Number of fine-tuning steps for DreamBench subjects.

backpack 110 backpack-dog 110 bear-plushie 110
bowl 40 can 70 candle 80
cat 40 cat2 50 clock 120

colorful-sneaker 80 dog 50 dog2 50
dog3 40 dog5 20 dog6 40
dog7 50 dog8 40 duck-toy 60

fancy-boot 50 grey-sloth-plushie 70 monster-toy 120
pink-sunglasses 90 poop-emoji 90 rc-car 120

red-cartoon 70 robot-toy 110 shiny-sneaker 80
teapot 120 vase 120 wolf-plushie 80

Table 2: Average metrics for each subject on DreamBench in zero-shot setup.
Subject backpack backpack-dog bear-plushie berry-bowl can candle

DINO 0.452 0.467 0.634 0.750 0.540 0.395
CLIP-I 0.782 0.712 0.739 0.792 0.641 0.710
CLIP-T 0.320 0.310 0.304 0.257 0.314 0.316

Subject cat cat2 clock colorful-sneaker dog dog2

DINO 0.760 0.703 0.402 0.680 0.780 0.730
CLIP-I 0.835 0.854 0.735 0.769 0.849 0.831
CLIP-T 0.306 0.286 0.303 0.298 0.310 0.307

Subject dog3 dog5 dog6 dog7 dog8 duck-toy
DINO 0.558 0.705 0.763 0.656 0.641 0.665

CLIP-I 0.747 0.788 0.867 0.817 0.816 0.840
CLIP-T 0.310 0.313 0.288 0.309 0.307 0.287

Subject fancy-boot grey-sloth-plushie monster-toy pink-sunglasses poop-emoji rc-car

DINO 0.538 0.632 0.490 0.599 0.494 0.569
CLIP-I 0.800 0.755 0.734 0.836 0.689 0.761
CLIP-T 0.291 0.315 0.293 0.308 0.307 0.281

Subject red-cartoon robot-toy shiny-sneaker teapot vase wolf-plushie

DINO 0.697 0.534 0.668 0.451 0.471 0.463
CLIP-I 0.826 0.787 0.759 0.804 0.786 0.737
CLIP-T 0.263 0.315 0.294 0.314 0.262 0.327

In Table 2 and 3, we report average metrics across 10 experiment runs for each subject in the dataset,82

in zero-shot and fine-tuning setups, respectively.83
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Table 3: Average metrics for each subject on DreamBench in fine-tuning setup.
Subject backpack backpack-dog bear-plushie berry-bowl can candle

DINO 0.551 0.639 0.693 0.808 0.618 0.519
CLIP-I 0.839 0.760 0.752 0.829 0.695 0.752
CLIP-T 0.320 0.317 0.307 0.254 0.313 0.311

Subject cat cat2 clock colorful-sneaker dog dog2

DINO 0.806 0.747 0.479 0.739 0.821 0.793
CLIP-I 0.869 0.864 0.784 0.805 0.860 0.841
CLIP-T 0.306 0.284 0.305 0.320 0.313 0.307

Subject dog3 dog5 dog6 dog7 dog8 duck-toy

DINO 0.573 0.727 0.834 0.672 0.723 0.699
CLIP-I 0.751 0.801 0.891 0.823 0.823 0.838
CLIP-T 0.312 0.311 0.280 0.310 0.310 0.284

Subject fancy-boot grey-sloth-plushie monster-toy pink-sunglasses poop-emoji rc-car

DINO 0.649 0.717 0.566 0.625 0.627 0.651
CLIP-I 0.827 0.780 0.743 0.826 0.784 0.775
CLIP-T 0.299 0.322 0.292 0.312 0.290 0.288

Subject red-cartoon robot-toy shiny-sneaker teapot vase wolf-plushie

DINO 0.788 0.626 0.757 0.484 0.628 0.599
CLIP-I 0.882 0.803 0.804 0.819 0.812 0.760
CLIP-T 0.262 0.316 0.297 0.331 0.261 0.325

A.7 Zero-shot Subject-driven Image Manipulation84

Our model is able to extract subject features to guide the generation. In addition to applications of85

subject-driven generations and editing, we show that such pre-trained subject representation enables86

intriguing and useful applications of zero-shot image manipulation, including subject interpolation87

and subject-driven style transfer.88

Subject Interpolation. It is also possible to blend two subject representation to generate subjects with89

a hybrid appearance. This can be achieved by traversing the embedding trajectory between subjects.90

In Figure 2, we create bilinear interpolations among 4 different subject representations, and render91

the interpolated subject in a novel context. As the figure shows, the subject appearance blends along92

the trajectory and fits naturally with the environment. This is useful when multiple subjects are used93

as reference to guide the generation. For example, subject interpolation can be used in joint with94

subject-driven style transfer to create hybrid style from multiple guiding subjects.95

Subject-driven Style Transfer. When provided with a subject, the model can encode the appearance96

style of it and transfer to other subjects. We refer such an application as subject-driven style transfer.97

In Figure 3 and 4, we generate stylized reference subjects with the aid of edge-guided ControlNet.98

The styles are hinted by the guiding subjects. Specifically, we feed BLIP-2 with guiding subjects99

and their category texts, e.g. fire, flower, glass, vase, ball, bread, to extract the subject representation.100

In this application, guiding subjects serve as alternative of textual prompts to specify styles. This is101

useful especially when a style is non-trivial to describe by natural languages accurately.102

A.8 Additional Qualitative Results and Subject Fidelity Showcasing103

In Figure 5 to 7, we provide additional qualitative results on DreamBench subjects and prompts. We104

show the reference subject image in the first column. In the rest columns, we provide generated105

renditions. To showcase subject fidelity and photorealism, we purposely mix one genuine subject106

image in and leave for interested readers to figure out. Read the captions to verify.107
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Figure 2: Zero-shot subject interpolation. We interpolate subject representation and use the same denoising and
decoder network for generation. The intermediate subject representation naturally blends the subject appearance,
while fitting coherently into the new context.
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Figure 3: Zero-shot subject-driven stylization. We show guiding subject images on top. In the rest rows, we
show reference subjects and their canny maps on left, and stylized reference subjects by column.
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Figure 4: (Cont.) Zero-shot subject-driven stylization. We show guiding subject images on top. In the rest rows,
we show reference subjects and their canny maps on left, and stylized reference subjects by column.
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Figure 5: Additional qualitative results using DreamBench subjects and prompts. To showcase subject fidelity
and photorealism, we mix one genuine subject image in the generations for readers to figure out. Zoom-in and
read the captions to verify.
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Figure 6: (Cont.) Additional qualitative results using DreamBench subjects and prompts. To showcase subject
fidelity and photorealism, we mix one genuine subject image in the generations for readers to figure out. Zoom-in
and read the captions to verify.
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Figure 7: (Cont.) Additional qualitative results using DreamBench subjects and prompts. To showcase subject
fidelity and photorealism, we mix one genuine subject image in the generations for readers to figure out. Zoom-in
and read the captions to verify.
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