
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A MODEL MISSPECIFICATION

A.1 MIS-CALIBRATION VS MISSPECIFICATION

To further elucidate the distinction between posterior calibration and model misspecification, it is
essential to highlight their respective scopes and the specific challenges they address.

Posterior calibration focuses on ensuring that the predicted posterior distributions accurately reflect the
true uncertainty in parameter estimates given the observations, under the assumption that the simulator
is well-specified. Methods such as those proposed by Falkiewicz et al. (2024); Delaunoy et al. (2022)
address this by improving the alignment between the expected and actual coverage probabilities of the
posterior. These approaches generally assume that the simulator faithfully represents the generative
process of the observed data, enabling calibration to be evaluated and improved by leveraging
simulations. While important, these methods do not account for discrepancies between the simulator
and real-world data, which are precisely the scenarios we target in this work.

Model misspecification, on the other hand, arises when the simulator fails to capture the true
generative process underlying the observed data. This results in systematic discrepancies that cannot
be corrected solely by optimizing posterior calibration techniques. Misspecification introduces a gap
between the simulated and real-world distributions, and this gap is only observable when real-world
data is available. Unlike posterior calibration, addressing misspecification requires methods that can
robustly leverage the simulator despite its inaccuracies, while incorporating real-world observations
to mitigate the impact of the mismatch.

In our work, we explicitly focus on handling model misspecification. This distinction is reflected
in the design of our approach and the evaluation scenarios we consider, such as Task E, where the
simulated data diverges significantly from the real-world measurements. While posterior calibration
methods may perform well in a well-specified context, they are not designed to cope with such gaps.
Instead, we prioritize creating predictive models that balance informativeness and robustness in the
presence of misspecification, even if achieving perfect calibration remains an open and challenging
problem.

A.2 COMPARISON BETWEEN MODEL MISSPECIFICATION DEFINITIONS

We provide a toy example to show how a simulator may be well-specified according to the standard
definition of misspecification but still provide biased estimates of the target parameter when applied
to real data.

Consider the following setting: a noisy sensor measures some physical quantity ω, producing
measurements x1

o, . . . ,x
n
o

i.i.d.→ Pω, where Pω := N (ωω, 1) is a normal distribution centered around
the ‘true’ value ω

ω. Let {Pε : ω ↑ R} be a simulator of this process with Pε := N (µ, 1), where
µ := ω + ε and ε > 0 is a fixed scalar constant, which is a misspecification in the simulator that
falsely accounts for a non-existing offset in the sensor that produced the real observations x1

o, . . . ,x
n
o .

According to the standard definition of misspecification, the simulator is well specified, as setting
ω ↓ ω

ω ↔ ε yields Pε = Pω. However, the posterior estimates we obtain with this simulator are
biased with respect to the true parameter ω

ω.

To see this, let us compute the posterior under a Gaussian prior N (ωω, 1) over the parameter ω,
centered on the true value ω

ω. Taking advantage of the conjugate prior, the posterior p(ω | x1
o, . . . ,x

n
o)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

becomes
p(ω | x1

o, . . . ,x
n
o) ↗ p(ω)p(x1

o, . . . ,x
n
o | ω)

= p(ω)
n∏

i=1

p(xi
o | ω)

=
1↘
2ϑ

exp

(
↔1

2
(ω ↔ ω

ω)2
) n∏

i=1

1↘
2ϑ

exp

(
↔1

2
(xi

o ↔ µ)2
)

↗ exp

(
↔1

2
(ω ↔ ω

ω)2 ↔ 1

2

n∑

i=1

(xi
o ↔ µ)2

)

= exp

(
↔1

2

[
ω
2 + (ωω)2 ↔ 2ωω

ω +
n∑

i=1

(xi
o)

2 + nµ
2 ↔ 2µ

n∑

i=1

xi
o

])

(drop const. terms) ↗ exp

(
↔1

2

[
ω
2 ↔ 2ωω

ω + nµ
2 ↔ 2µ

n∑

i=1

xi
o

])

(µ = ω + ε) = exp

(
↔1

2

[
ω
2 ↔ 2ωω

ω + nω
2 + nε

2 + 2nεω ↔ 2ω

n∑

i=1

xi
o ↔ 2ε

n∑

i=1

xi
o

])

(drop const. terms) ↗ exp

(
↔1

2

[
ω
2 ↔ 2ωω

ω + nω
2 + 2nεω ↔ 2ω

n∑

i=1

xi
o

])

= exp

(
↔1

2

[
(n + 1)ω2 ↔ 2ω(ωω ↔ nε +

n∑

i=1

xi
o)

])

= exp

(
↔ 1

2(n + 1)→1

[
ω
2 ↔ 2ω

(
1

n + 1

)
(ωω ↔ nε +

n∑

i=1

xi
o)

])

(complete square) ↗ exp

↔ 1

2(n + 1)→1

[
ω ↔

(
1

n + 1

)
(ωω ↔ nε +

n∑

i=1

xi
o)

]2

 ,

that is, a normal distribution N (ϖ, ϱ2) with mean

ϖ =

(
1

1 + n

)(
ω
ω ↔ nε +

n∑

i=1

xi
o

)

and variance ϱ
2 = (n + 1)→1. Thus, the posterior is biased, e.g., the posterior mean ϖ is a biased

estimator of ω
ω with E[ωω ↔ ϖ] = ω

ω ↔ ε

(
n

n+1

)
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B THE ROPE ALGORITHM

Algorithm 1 Posterior Inference using Robust Neural Posterior Estimation (RoPE)

Input: Simulator S(ω, ς), prior distribution p(ω), calibration set C = {(xi
o, ω

i)}Nc
i=1, test set

D = {xi
o}

No
i=1

Output: p̃(ω | xo)≃xi
o ↑ D

Step 1: Neural Posterior Estimation (NPE)
Train neural network hϑ and conditional normalizing flow p(ω | ·) using NPE:

p̃, φ
ω = arg max

p,ϑ
E ε↑ϖ(ε)
ϱ↑U [0,1]

[log p(ω | hϑ(S(ω, ↼)))]

Step 2: Fine-tune sufficient statistics hϑω on the Calibration Set
gς := COPY(hϑω)
Ctrain, Cval = RandomSplit(C,

1
5)

bestval = ⇐
for Niter do

↽ ↓ ↽ ↔ ⇀⇒ς

[
(ε,xo)↓Ctrain

|gς(xo) ↔ Eϱ[hϑω(S(ω, ς))]|2

curval =

(ε,xo)↓Cval
|gς(xo) ↔ Eϱ[hϑω(S(ω, ς))]|2

if curval < bestval then
bestval = curval
↽
ω = ↽

end if
end for
Step 3: Generate Simulations for Test Set (Ns = No)
S = {xj

s}
Ns
j=1,

where xj
s → S(ωj , ς) ω

j → ϑ(ω) ς → U [0, 1]
Step 4: Entropic-regularized OT

Cij =|fϑω(xj
s) ↔ gςω(xi

o)| ≃i, j ↑ {1, . . . , No}⇑ {1, . . . , Ns}

P
ω = arg min

P↓Bo

⇓P, C ⇔ + ⇁ KL

(
P

T1No↖
1Ns

Ns

)
+ ϱ⇓P, log P ⇔

Step 5: Compute Posterior Distributions

p(ω|xi
o) :=

Ns∑

j=1

P
ω
ij p̃

ω | hϑω(xj

s)

Return p̃(ω|xi
o) ≃xi

o ↑ D

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C ROBUSTNESS TO PRIOR MISSPECIFICATION

In some practical applications of our algorithm, it is unlikely that the prior used to generate synthetic
data will match the distribution of the target parameters in the real data. For this reason, we
consider a semi-balanced formulation of OT, providing the flexibility to discard simulations with no
corresponding real-world observations.

Prior misspecification on Task E. To evaluate the effect of a misspecified prior on RoPE and RoPE,,
we perform an experiment that would resemble its use in real applications like the ones we outline in
the introduction. In such settings—e.g., inferring cardiac parameters or chemical concentrations—the
target parameters are limited to a range of validity, and a likely choice for the practitioner would be
to select a uniform prior over this range.

To replicate this setting, we collect a new real-world dataset from the light tunnel (Task E) and train
RoPE on synthetic data originating from a uniform prior, as we do for the results shown in Figure 2.
However, we then apply RoPE to real data generated from a different (betabinomial) distribution
over the target parameters. The results are shown in Figure 4, together with a visualization of the
misspecified and true parameter distributions (prior A and B, respectively). We also show the learnt
posterior distributions in Figure 5 for both RoPE and RoPE, (ϖ = 0.5).

The results show that RoPE is relatively robust to prior misspecification prior. Furthermore, using an
unbalanced OT formulation significantly improves the performance in this setting.

Prior misspecification on Task C. With this experiment we aim to better understand the role of ϖ

when RoPE is applied with different levels of prior misspecification. We thus re-use the same setup
as in Figure 2 but add prior misspecification as a mixture between the assumed prior and a much
tighter uniform distribution. As the weight of the tighter uniform distribution increases, the prior gets
more misspecified. The experimental setup follows closely the one in the well-specified case (see
subsection I.2), except calibration samples are drawn from the true prior (as this would be the case in
a real-world application) and we compute the OT coupling for values of ϖ ↑ [0.1, 1].

Figure 5: Visualization of estimated posteriors. Corner plots of the posteriors estimated by RoPE in
the prior-misspecification experiment from Fig. 1 above. We show, in different colors, the estimates
for four observations sampled at random from the test set, for RoPE (left) and RoPEω (ϖ = 0.5)
(right) formulation of the OT step, and a calibration set of size 50; the horizontal and vertical lines
correspond to the ground-truth value of the parameters.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D ROBUSTNESS TO DISTRIBUTION SHIFTS

Task E Light Tunnel
Out-of-distribution performance

Training distribution

Target distribution

Target distribution
flipped images

LPP

ACAUC

Training distribution

re
al

 o
bs

er
va

tio
ns

si
m

. o
bs

er
va

tio
ns

ROPE
J-NPE
NPE

OT-only
tuning-only

MLP

ROPE

Figure 6: Out-of-distribution performance of RoPE and some baselines. We train RoPE and other
baselines on the same light-tunnel data as in task E (training distribution), but apply it to test sets
originating from a target distribution where the real-world images are flipped vertically. We compare
the performance on test sets from both distributions, showing the LPP and ACAUC scores for each
method. For comparison, in the right plot we show again the LPP curve (light gray, dotted) attained
by RoPE under the training distribution. The performance of RoPE is barely affected as it cannot
exploit any signal in the real images (xo) beyond what is encoded in the simulator, and the simulator
output (xs) is invariant to the transformation we consider. Because NPE is not trained on real
observations, its performance, although poor, also remains virtually unchanged. On the other hand,
the performance of MLP and J-NPE drops in the target distribution, as these methods are not limited
in what information they can exploit from the real observations on which they are trained, potentially
learning shortcuts that are not present in the target distribution. This results demonstrate that if the
simulator embeds the right invariances, our modeling assumption xo ↙ ω | xs can be favorable to
out-of-distribution generalization.

E OPTIMAL TRANSPORT COUPLING AS A JOINT DISTRIBUTION

With our conditional independence assumption, the problem of modeling p(xo | ω) reduces to
modeling p(xo | xs) instead. If we assume the prior well-specified, this task is equivalent to
modeling p(xo,xs) under the constraint that the corresponding marginal p(xs) =

p(xs,xo)dxo

equals

p(ω)p(xs | ω)dω. By construction, the OT coupling, ϑ
ω, respects the constraint on the

marginals,

ϑ
ω(xs,xo)dxo = p(xs) and

ϑ
ω(xs,xo)dxs = p(xo) , and the exact instantiation ϑ

ω

depends also on the chosen cost function which can always be defined to yield any given conditional
p(xo | xs) that respects the constraint

p(xo | xs)p(xs)dxs = p(xo). ϑ

↔ can thus model the "right"
posterior, provided the right cost function is used. In the case, where the prior cannot be trusted, we
suggest to use ϖ < 1 and relax the OT formulation. In this case, we only enforce that all elements of
p(xo) are matched to a subset of the elements of p(xs). This implicitly assumes that the assumed
prior p(ω) is overly conservative and covers p

ω(ω). We believe this is a reasonable assumption as it is
often easy to derive physical bounds for the parameter values and use a uniform distribution.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

F SELF-CALIBRATION PROPERTY

We say RoPE is self-calibrating because, by design, the posterior distribution marginalized over
observations tends to the prior as the number of simulation increases, that is,

X
p̃(ω | xo)p(xo)dxo = p(ω). (7)

This property is also called marginal calibration, and is a necessary condition for a posterior estimation
method to be calibrated. Considering NPE, p̃(ω | xs), is marginally calibrated and observations
xo are generated from the assumed prior, that is sampled from an unknown distribution p(xo) =

p(xo | ω)p(ω), we can show RoPE is marginally calibrated. Indeed, considering the Monte-Carlo
approximation of the marginalized posterior distribution over the test set Do := {xi

o}
No
i=1, we have,

X
p̃(ω | xo)p(xo)dxo = Ep(xo)[p̃(ω | xo)] (8)

∝ 1

No

No∑

i=1

p̃(ω | xi
o) (9)

=
1

No

No∑

i=1

Ns∑

j=1

NoP
ω
ij p̃(ω | xj

s) (10)

=
Ns∑

j=1

[
No∑

i=1

P
ω
ij

]
p̃(ω | xj

s) (11)

=
1

Ns

Ns∑

j=1

p̃(ω | xj
s) (12)

∝ p(ω), (13)

where we use the definition of the transport matrix to get
No

i=1 P
ω
ij = 1

Ns
. The last approximation

tends to be exact as the number of simulations increases, if the NPE is marginally calibrated.

G LEARNING MINIMAL SUFFICIENT STATISTICS WITH NEURAL POSTERIOR
ESTIMATION

We now discuss why NPE may learn a minimal sufficient statistic under perfect training. First, under
a sufficiently large validation set, NPE’s objective function is only optimal on the validation set if
NPE models the true posterior as defined implicitly by the prior p(ω) and the likelihood corresponding
to the simulator S. This consistency has been proven in (Papamakarios & Murray, 2016) and is
the motivation to use such an objective when estimating density. Second, some normalizing flows,
such as autoregressive UMNN flows (Wehenkel & Louppe, 2019), are universal approximators of
continuous densities. In addition, neural networks are also universal function approximators. As
such, we can claim that it is always possible to parameterize the NCDE pε(ω | hϑ(x)) such that the
class of functions its parameters represent contains the true posterior. We directly observe that x is
only used by the NCDE through hϑ(x). Thus, under perfect training pεω(ω | hϑω(x)) = p(ω | x)
and hϑω(x) is a sufficient statistic for ω given x under the simulator’s model.

Without additional constraints, we cannot claim anything about the minimality of hϑω(x). Neverthe-
less, we can enforce the neural network hϑω(x) to have an information bottleneck and thus reduce
the information carried. In practice, we choose the output dimension of hϑω(x) so that the NCDE
achieves optimal performance on the test set. Because in the context of SBI we can generate as
many (simulated) samples as needed, we can obtain estimators that closely approach the simulation’s
posterior and a minimal sufficient statistic.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

H COMPUTATIONAL COST OF ROPE

Running NPE is broadly recognized as having a low computational cost: once the upfront training
is complete, the cost of inverting the normalizing flow to sample from the posterior during inference
becomes negligible as the number of test observations increases. This makes NPE more efficient
than methods like Approximate Bayesian Computation or Markov Chain Monte Carlo (when the
simulator allows likelihood evaluation). RoPE introduces additional computational costs on top of
running NPE: (1) the OT coupling computation, i.e., solving Equation 2, and (2) obtaining samples
from the estimated posterior distributions, to compute the posterior estimate defined in Equation 5.
The computational cost of solving the transport problem with the Sinkhorn algorithm (Cuturi, 2013)
is quadratic in the number of real-world observations. The sampling step has a negligible cost as it
directly sub-samples from the set of points generated with NPE.

In our experiments, solving the OT optimization for 2000 test examples takes less than a minute on
an M1 MacBook Pro. Sampling from the mixture of posterior distributions involves caching 10,000
samples for each simulation and generating 5,000 samples by sub-sampling from the mixture using
the OT coupling matrix. This caching process takes under three minutes, and is comparable to the
cost of running NPE alone.

Extending RoPE to handle larger test sets or an online setting (processing test examples one at a time)
is outside the scope of this work. Nevertheless, mehtods like Neural OT (e.g., (Makkuva et al., 2020))
and online Sinkhorn (Mensch & Peyré, 2020) should provide good solutions to make RoPE fully
amortized.

I EXPERIMENTAL SETUP

In this section, we provide more details on our experiments. For completeness, we provide details on
the neural architectures and training hyperparameters. However, we encourage the reader interested
in reproducing our experiments to examine our code directly (a link to the code will be made available
in the public version of the paper).

For all methods training on calibration set we keep always keep 20% of the calibration to monitor
validation performance and we select the best model based on this metric.

For the MLP we use the same architecture as the NSE for all our experiments and optimize its
parameters on the calibration set with Adam and a learning rate equal to 0.0003, we select the best
model based on the LPP attributed to the validation subset of the calibration set.

Computing the SBI baseline. We take the ground-truth labels {(ωi}Ni=1 from the test set {ωi,xi
o)}Ni=1

on which we compute all the metrics for Figure 2; for each label ω
i, we simulate a synthetic

observation xi
s := S(ωi), collecting them into a “synthetic” test set {(ωi,xi

s)}Ni=1; then, we apply to
it the NSE+NPE pipeline (simulated posterior in Figure 1, right) to obtain the posterior estimates
which we then evaluate. In this way, the baseline represents the performance we would hope to
achieve if there was no misspecification and the simulator perfectly replicated the real observations
(up to the stochasticity of the simulator itself).

I.1 TASK A: CS & TASK B: SIR

Task A (synthetic): CS. We reproduce the cancer and stromal cell development benchmark from
Ward et al. (2022). The simulator emulates the development of cancer and stromal cells in a 2D
environment as a function of three Poisson rate parameters (εc, εp, εd). The observations are vectors
composed of the number of cancer and stromal cells and the mean and maximum distance between
stromal cells and their nearest cancer cell. Synthetic misspecification is introduced by removing
cancer cells that are too close to their generating parent.

Task B (synthetic): SIR. We also use the stochastic epidemic model from Ward et al. (2022), which
describes epidemic dynamics through the infection rate β and recovery rate ϱ. Each observation is a
vector composed of the mean, median, and maximum number of infections, the day of occurrence of
the maximum number of infections, the day at which half the total number of infections was reached,
and the mean auto-correlation (lag 1) of the infections. Misspecification is a delay in weekend
infection counts, of which 5% are added to the count of the following Monday.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

We refer the reader to Ward et al. (2022) for more details about the simulator and prior distribution.
We use the exact same setting as theirs.

NEURAL ARCHITECTURE & TRAINING HYPERPARAMETERS

For all methods we use the same backbone MLP as the NSE with ReLU activations and layers
composed of [4K, 16K, 16K, 12K, 3K] neurons, where K is the dimensionality of ω. The NF
is a 1-step UMNN-MAF (Wehenkel & Louppe, 2019) with [100, 100, 100] neurons for both the
autoregressive conditioner and normalizer. For NNPE, we train the UMNN-MAF on simulations
poluted by Spike and Slab errors. We train models with Adam and a learning rate equal to 0.0005
and all other parameters set to default. We optimize the SBI model for 106 gradient steps and select
the best model on random validation sets containing 105 simulations.

I.2 TASK C: PENDULUM

DESCRIPTION

The first task is inspired from the damped pendulum benchmark commonly used to assess hybrid
learning algorithms. Given a 2D physical parameter ω := [φ0, A], where φ0 ↑ R+ denotes the
fundamental frequency and A ↑ R+ the amplitude of a friction-less pendulum, the simulator
generates the horizontal position of the pendulum at 200 discrete times during uniformly sampled in
a 10 seconds interval as

xs := [ω(t = 0), . . . , ω(t = 10s)] ↑ R200

where ω(t) = A cos(φ0t + ▷) ▷ → U(↔ϑ, ϑ). (14)
The relationship between the parameters and the simulation is thus stochastic as ▷ accounts for an
unknown phase shift when the measurements start. We generate real-world observations synthetically
by replacing ω(t) from (14) by

ω̃(t) = e
φt

A cos(φ0t + ▷) ▷ → U[↔ϑ, ϑ] ⇀ → U[0, 1],

where ⇀ represents the effect of friction. We also add Gaussian noise on both simulated and real-world
data to represent the inaccuracy of a sensor measuring the pendulum’s position. The prior distribution
is a product of uniform distribution, p(ω := [φ0, A]) = U [0, 3] ⇑ U [0.5, 10].

NEURAL ARCHITECTURE & TRAINING HYPERPARAMETERS

Neural Posterior Estimator. The NSE is a 1D convolutional neural network, with the architecture
described in Algorithm 2. The NCDE is a one-step discrete normalizing flow with an autoregressive

Algorithm 2 Convolutional Neural Network for Tasks A and D.

1: Conv1d(1, 16, 3, 1, dilation = 2, padding =
1)

2: ReLU()
3: Conv1d(16, 64, 3, 2, dilation = 2, padding =

1)
4: ReLU()
5: AvgPool1d(3, 1)
6: Conv1d(64, 128, 3, 1, dilation = 2, padding =

1)
7: ReLU()
8: Conv1d(128, 128, 3, 2, dilation =

2, padding = 1)
9: ReLU()

10: AvgPool1d(3, 1)
11: Conv1d(128, 128, 3, 1, dilation =

2, padding = 1)

12: ReLU()
13: Conv1d(128, 128, 3, 2, dilation =

2, padding = 1)
14: ReLU()
15: AvgPool1d(3, 1)
16: Conv1d(128, 128, 3, 1, dilation =

2, padding = 1)
17: ReLU()
18: Flatten()
19: Linear(2048, 512)
20: ReLU()
21: Linear(512, 128)
22: ReLU()
23: Linear(128, 32)
24: ReLU()
25: Linear(32, 10)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Algorithm 3 UNet1D Architecture
1: Unet1D :
2: Encoder1D :
3: Block(in_channels = 1, out_channels =

64)
4: Block(in_channels = 64, out_channels =

128)
5: Block(in_channels = 128, out_channels =

256)
6: Block(in_channels = 256, out_channels =

512)
7: Block(in_channels = 512, out_channels =

1024)
8: MaxPool1d(2)
9: Decoder1D :

10: ConvTranspose1d(1024 +
5, 512, 2, stride = 2)

11: Block(in_channels =
1024, out_channels = 512)

12: ConvTranspose1d(512, 256, 2, stride = 2)
13: Block(in_channels = 512, out_channels =

256)
14: ConvTranspose1d(256, 128, 2, stride = 2)
15: Block(in_channels = 256, out_channels =

128)
16: ConvTranspose1d(128, 64, 2, stride = 2)
17: Block(in_channels = 128, out_channels =

64)
18: ConvTranspose1d(64, 1, 2, stride = 2)
19: Block(in_channels = 64, out_channels =

1)
20: Conv1d(64, 1, 1)

Algorithm 4 Block1D(in_channels,
out_channels)

1: Conv1d(in_channels, out_channels,
kernel_size=3, padding=1)

2: ReLU()
3: Conv1d(out_channels, out_channels,

kernel_size=3, padding=1)
4: ReLU()

Algorithm 5 2D Convolutional Neural Net-
work

1: Conv2d(3, 64, 3, 2, dilation=1), ReLU()
2: Conv2d(64, 128, 3, 2, dilation=1),

ReLU()
3: MaxPool2d(3)
4: Conv2d(128, 128, 3, 2, dilation=1),

ReLU()
5: Conv2d(128, 64, 1, 1, dilation=1),

ReLU()
6: Conv2d(64, 3, 1, 1, dilation=1), ReLU()
7: Flatten()
8: Linear(27, 100), ReLU()
9: Linear(100, 20)

conditioner and a UMNN (Wehenkel & Louppe, 2019) as the normalizer. The autoregressive
conditioner is a MADE with ReLU activation and 3 layers of 100 neurons that output a 10 dimensional
vector to the UMNN. The UMNN has an integrand net with 3 layers of 100 neurons with ReLU
activations. For training the NPE, we use a batch size of 100 and a learning factor equal to 1e-4. NPE
is trained until convergence. Other parameters are set to default values and should marginally impact
the NPE obtained.

RoPE NSE. We have selected the best NPE based on the validation set with 10000 examples
generated with the simulator. The NPE is fixed to one best-of-all model. We fine-tune the NCDE
with a learning rate equal to 1e-5 for 5000 gradient steps on 80% the full calibration set. We use a
1-sample Monte Carlo estimate of the expectation in (6).

J-NPE. To train J-NPE, we simply randomly use a batch composed of 50% of simulated pairs (ω,xs)
and of 50% (ω,xo) from the calibration set. We use the same architecture and hyper-parameters as
the SBI NPE. The best model is selected based on the best training set performance. We do 50 epochs
with 50000 simulated examples for each epoch. The batch size is 100.

HVAE. For the HVAE, we re-use the NPE model as the physics encoder and replace the decoder with
a deterministic version of the simulator, thus removing the Gaussian noise on a random phase shift. In
addition, we follow the approach of Takeishi & Kalousis (2021) and have 1) a real-world encoder that
maps xo to za, 2) a reality-to-physics encoder, and 3) a physics-to-reality decoder. The real-world
encoder has the same architecture as the NSE of the NPE and outputs the mean and log-variance of a
5D latent vector za. The reality-to-physics and physics-to-reality also have the same architectures
and are two conditional 1D U-Net with neural network architecture described in Algorithm 3.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

To train the HVAE, we freeze the parameters of the NPE and optimizes the ELBO as well as a
calibration loss that evaluates the likelihood assigned to the true physical parameters. All distributions
are parameterized by Gaussian with mean and log-variance predicted by the neural networks. We
do not use any additional losses as we expect constraining NPE and using the calibration set should
already provide the necessary support to use the physics in a meaningful way. The HVAE is trained
on the 2000 test examples as it is the only real-world data, calibration set aside, that we have access
to. We use a batch size equal to 100 and a learning rate equal to 1e-3. We believe obtaining a better
HVAE is possible. However, we emphasize the complexity of setting up a good HVAE for the only
purpose of statistical inference over parameters.

DATASETS

For this task, we can generate samples (ω,xs) on the fly to train the NPE. The calibration and test sets
are also generated randomly by sampling from the prior distribution and using the damped pendulum
simulator.

I.3 TASK D: HEMODYNAMICS

DESCRIPTION

Inspired by Wehenkel et al. (2023), we define the task of inferring important cardiovascular parameters
from normalized arterial pressure waveforms measured at the radial artery. The simulator uses many
physiological parameters that modulates the heart function, physical properties of the 116 main
arterial segments, and behavior of the vascular beds. Our inference concerns two parameters of
the heart function, ω := [SV, LVET], the stroke volume (SV) is the amount pumped out from the
left ventricle over the heart beat modeled, and the left ventricular ejection time (LVET) is the time
interval between opening and closure of the aortic valve. Other parameters, such as the heart rate
or arteries’ stiffness, are considered as nuisance effects and are randomly sampled from a realistic
population distribution. An additional source of randomness is added by modeling measurement
errors with a white Gaussian noise and randomizing the starting recording time with respect to the
cardiac cycle. The simulator produces 8-second timeseries xt ↑ R1000 sampled at 125Hz. As
synthetic misspecification, the simulator assumes all arteries have the same length over the population
considered, whereas "real-world" data are artificially generated by also varying the length of arteries
and account for the effect of human’s height. The simulator is based on the openBF PDE solver (Melis,
2017) specialized for hemodynamics, which is not differentiable and takes approximately one minute
to simulate one sample on a standard CPU. This synthetic tasks represent a common scenario in
which a simulator, although faithful to the effect of certain parameters, misses additional degrees of
freedom that exists for the real-world data.

NEURAL ARCHITECTURE & TRAINING HYPERPARAMETERS

Algorithm 6 CNN Architecture for Task C.
1: Conv1d(1, 16, 3, 1, dilation=2, padding=1), ReLU()
2: Conv1d(16, 64, 3, 2, dilation=2, padding=1), ReLU()
3: AvgPool1d(4, 2)
4: Conv1d(64, 128, 3, 1, dilation=2, padding=1), ReLU()
5: Conv1d(128, 128, 3, 2, dilation=2, padding=1), ReLU()
6: AvgPool1d(4, 2)
7: Conv1d(128, 128, 3, 1, dilation=2, padding=1), ReLU()
8: Conv1d(128, 128, 3, 2, dilation=2, padding=1), ReLU()
9: AvgPool1d(4, 1)

10: Conv1d(128, 128, 3, 1, dilation=2, padding=1), ReLU()
11: Flatten()
12: Linear(1024, 512), ReLU()
13: Linear(512, 128), ReLU()
14: Linear(128, 32), ReLU()
15: Linear(32, 5)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Neural Posterior Estimator. The NSE is the 1D convolutional neural network described in Algo-
rithm 6. The NCDE is a 5-step discrete normalizing flow with an autoregressive conditioner and affine
normalizers. Each of the 5 autoregressive conditioners is a MADE with ReLU activations and 4 layers
of 300 neurons that output 4 dimensional vectors used to parameterize the affine transformations.
For training the NPE, we use a batch size of 100 and a learning factor equal to 5e-4. NPE is trained
until convergence. Other parameters are set to default values and should marginally impact the NPE
obtained.

RoPE NSE. We have selected the best NPE based on the validation set with 2000 examples generated
with the simulator. The NPE is fixed to one best-of-all model. We fine-tune the NCDE with a learning
rate equal to 1e-5 for 2000 gradient steps on 80% of calibration set. We use a 1-sample Monte Carlo
estimate of the expectation in (6).

J-NPE. To train J-NPE, we simply randomly use a batch composed of 50% of simulated pairs (ω,xs)
and of 50% (ω,xo) from the calibration set. We use the same architecture and hyper-parameters as
the SBI NPE. The best model is selected based on the best training set performance. We do 50 epochs
with 6000 simulated examples for each epoch. The batch size is 100.

HVAE. There is no HVAE for this experiment as the simulator is non-differentiable.

DATASETS

For this task, we cannot generate samples (ω,xs) on the fly to train the NPE. For the purpose of
this experiment, we have generated 10000 simulations and real-world observations. Our fine-tuning
strategy approximates (6) by finding the simulations with the closest parameter value.

I.4 TASK E: LIGHT TUNNEL

DESCRIPTION

We use one of the light-tunnel datasets from the causal chamber project (Gamella et al., 2024,
causalchamber.org). In particular, we use the data from the ap_1.8_iso_500.0_ss_0.
005 experiment in the lt_camera_v1 dataset. The light tunnel is an elongated chamber with a
controllable light source at one end, two linear polarizers mounted on rotating frames, and a camera
that takes images of the light source through the polarizers. We refer the reader to Gamella et al. (2024,
Figure 2) for a complete schematic. Our task consists of predicting the color setting of the light source
((R, G, B) ↑ [0, 255]3) and the dimming effect of the linear polarizers ⇀ ↑ [0, 1] from the captured
images. As a misspecified simulator of the image-generating process, we adopt the simple model
described in Gamella et al. (2024, Model F1, Appendix D). A Python implementation is available
through the causalchamber package (models.model_f1); visit causalchamber.org for
more details. As input, the simulator takes the parameters ω := [R, G, B, ⇀] and produces an image
consisting of a hexagon roughly the size of the light source, with an RGB color vector equal to
[⇀R, ⇀G, ⇀B]. The factor ⇀ := cos2(ω1 ↔ ω2), where ω1, ω2 denote the angles of the two polarizers,
corresponds to Malus’ law (e.g. , Collett, 2005), which models the dimming effect of the polarizers as
a function of their relative angle. Besides the obvious misspecification with respect to image realism
(see Figure 2), the model ignores other important physical aspects, such as the spectral response of
the camera sensor or the non-uniform effect of the polarizers on the different colors—more details
can be found in Gamella et al. (2024, Appendix D.IV.2.2). The prior is uniform over colors and
polarizer angles, which leads to a non-uniform prior over the dimming effect ⇀.

NEURAL ARCHITECTURE & TRAINING HYPERPARAMETERS

Neural Posterior Estimator. The NSE is the 2D convolutional neural network described by Algo-
rithm 5.

The NCDE is also a one-step discrete normalizing flow with an autoregressive conditioner and a
UMNN (Wehenkel & Louppe, 2019) as the normalizer. The autoregressive conditioner is a MADE
with ReLU activation and 3 layers of 500 neurons that outputs a 10 dimensional vector to the UMNN.
The UMNN has an integrand net with 4 layers of 150 neurons with ReLU activations. For training the
NPE, we use a batch size of 100 and a learning factor equal to 5e-4. NPE is trained until convergence.
Other parameters are set to default values and should marginally impact the NPE obtained.

25

https://causalchamber.org
causalchamber.org
ap_1.8_iso_500.0_ss_0.005
ap_1.8_iso_500.0_ss_0.005
https://github.com/juangamella/causal-chamber/tree/main/datasets/lt_camera_v1
lt_camera_v1
https://pypi.org/project/causalchamber/
causalchamber
models.model_f1
https://causalchamber.org
causalchamber.org

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Algorithm 7 2D UNet
1: Encoder2D:
2: Block2D(in_channels=3, out_channels=64)
3: Block2D(in_channels=64, out_channels=128)

4: Block2D(in_channels=128,
out_channels=256)

5: Block2D(in_channels=256,
out_channels=512)

6: Block2D(in_channels=512,
out_channels=1024)

7: MaxPool2d(2)
8: Decoder2D:
9: ConvTranspose2d(1024 + 5, 512, 2, stride=2)

10: Block2D(in_channels=1024,
out_channels=512)

11: ConvTranspose2d(512, 256, 2, stride=2)
12: Block2D(in_channels=512,

out_channels=256)
13: ConvTranspose2d(256, 128, 2, stride=2)
14: Block2D(in_channels=256,

out_channels=128)
15: ConvTranspose2d(128, 64, 2, stride=2)
16: Block2D(in_channels=128, out_channels=64)

17: ConvTranspose2d(64, 1, 2, stride=2)
18: Block2D(in_channels=64, out_channels=1)
19: Conv2d(64, 1, 1)

Algorithm 8 Block2D(in_channels,
out_channels)

1: Conv2d(in_channels, out_channels,
kernel_size=3, padding=1, bias=False)

2: BatchNorm2d(num_features=out_channels)

3: ReLU(inplace=True)
4: Conv2d(out_channels, out_channels,

kernel_size=3, padding=1, bias=False)
5: BatchNorm2d(num_features=out_channels)

6: ReLU(inplace=True)

RoPE NSE. We have selected the best NPE based on the validation set with 10000 examples
generated with the simulator. The NPE is fixed to one best-of-all model. We fine-tune the NCDE
with a learning rate equal to 1e-4 for 2000 gradient steps on on 80% of the calibration set. We use a
1-sample Monte Carlo estimate of the expectation in (6).

J-NPE. To train J-NPE, we simply randomly use a batch composed of 50% of simulated pairs (ω,xs)
and of 50% (ω,xo) from the calibration set. We use the same architecture and hyper-parameters as
the SBI NPE. The best model is selected based on the best training set performance. We do 50 epochs
with 1000 simulated examples for each epoch. Simulations are generated randomly for each batch by
sampling the prior and simulating for the corresponding parameters. The batch size is 100.

HVAE. For the HVAE, we re-use the NPE model as the physics encoder and use the simulator as is
as it is differentiable without additional effort. In addition, we follow the approach of Takeishi &
Kalousis (2021) and have 1) a real-world encoder that maps xo to za, 2) a reality-to-physics encoder,
and 3) a physics-to-reality decoder. The real-world encoder has the same architecture as the NSE
of the NPE and outputs the mean and log-variance of a 5D latent vector za. The reality-to-physics
and physics-to-reality also have the same architectures and are two conditional 2D U-Net with the
architecture described by Algorithm 7.

To train the HVAE, we freeze the parameters of the NPE and optimizes the ELBO as well as a
calibration loss that evaluates the likelihood assigned to the true physical parameters. All distributions
are parameterized by Gaussian with mean and log-variance predicted by the neural networks. We
do not use any additional losses as we expect constraining NPE and using the calibration set should
already provide the necessary support to use the physics in a meaningful way. The HVAE is trained
on the 2000 test examples as it is the only real-world data, calibration set aside, that we have access
to. We use a batch size equal to 100 and a learning rate equal to 1e-3. We believe obtaining a better
HVAE is possible. However, we emphasize the complexity of setting up a good HVAE for the only
purpose of statistical inference over parameters.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

DATASETS

For this task, we can generate samples (ω,xs) on the fly to train the NPE. However, the calibration
and test sets are real-world data. We ensure there is not overlap between calibration and test set. The
is no randomization and the test set is constant for all experiments, the calibration set are also fixed
for a given calibration set size.

I.5 TASK F: WIND TUNNEL

DESCRIPTION

We use one of the wind-tunnel datasets from the causal chamber project (Gamella et al., 2024,
causalchamber.org). In particular, we use the data from the load_out_0.5_osr_
downwind_4 experiment in the wt_intake_impulse_v1 dataset. The tunnel is a chamber
with two controllable fans that push air through it and barometers that measure air pressure at different
locations. A hatch precisely controls the area of an additional opening to the outside (see Gamella
et al., 2024, Figure 2). The data is a collection of pressure curves that result from applying a short
impulse to the intake fan load and measuring the change in air pressure using one of the barometers
inside the tunnel. Our inference task consists of predicting the hatch position, ω := [H] ↑ [0, 45]
given a pressure curve (see Figure 2). As a simulator model, we combine the models A2 and C3
described in Gamella et al. (2024, Appendix D); we numerically solve the ODE in model A2, and
add stochastic components to simulate the sensor noise and the unknown time point at which the
impulse is applied. This results in the simulator being neither differentiable nor deterministic. A
Python implementation of the complete simulator is available in the causalchamber package
(models.simulator_a2_c3); visit causalchamber.org for more details. Misspecifica-
tion arises from the many simplifying assumptions needed to model the complex dynamics of the
airflow inside the tunnel—more details can be found in Gamella et al. (2024, Appendix D.IV.1.2).

Neural Posterior Estimator. The NSE and NCDE have the same 1D convolutional neural network
as for Task A. For training the NPE, we use a batch size of 100 and a learning factor equal to 5e-4.
NPE is trained until convergence. Other parameters are set to default values and should marginally
impact the NPE obtained.

RoPE NSE. We have selected the best NPE based on the validation set with 10000 examples
generated with the simulator. The NPE is fixed to one best-of-all model. We fine-tune the NCDE
with a learning rate equal to 1e-4 for 20000 gradient steps on on 80% of the calibration set. We use a
1-sample Monte Carlo estimate of the expectation in (6).

J-NPE. To train J-NPE, we simply randomly use a batch composed of 50% of simulated pairs (ω,xs)
and of 50% (ω,xo) from the calibration set. We use the same architecture and hyper-parameters as
the SBI NPE. The best model is selected based on the best training set performance. We do 50 epochs
with 10000 simulated examples for each epoch. The batch size is 100.

HVAE. There is no HVAE for this experiment as the simulator is non-differentiable.

DATASETS

For this task, although slightly slower than Task A and B, we can generate samples (ω,xs) on the fly
to train the NPE. However, the calibration and test sets are real-world data. We ensure no overlap
between the two sets for all calibration set sizes. All sets are fixed for all experiments.

27

https://causalchamber.org
causalchamber.org
load_out_0.5_osr_downwind_4
load_out_0.5_osr_downwind_4
https://github.com/juangamella/causal-chamber/tree/main/datasets/wt_intake_impulse_v1
wt_intake_impulse_v1
https://pypi.org/project/causalchamber/
causalchamber
models.simulator_a2_c3
https://causalchamber.org
causalchamber.org

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

J COMPUTING ACAUC

Algorithm 9 Statistical Calibration of Posterior Distribution
Input: Dataset of pairs D = {(ωi,xi)}, Posterior estimator p̃(ω | x), Number of samples N .
Output: ACAUC

1: AVG_CALIBRATION = 0
2: for k ↑ {1, . . . , K}) do
3: Initialize an empty list CredLevels
4: for (ωi,xi) ↑ D do
5: Initialize an empty list Samples
6: for j = 1 to M do
7: Sample ω

j from p̃(ω | xi)
8: Append ω

j to Samples
9: end for

10: Sort Samples
11: Compute the rank (position in ascending order) r of ω in Samples
12: Set CredLevels = r

N
13: Append CredLevel to CredLevels
14: end for
15: Sort CredLevels
16: CALIBRATION =

N
i=1 CredLevels[i] ↔ i

N

17: AVG_CALIBRATION = AVG_CALIBRATION + CALIBRATION
K

18: end for
Return: AVG_CALIBRATION

K ADDITIONAL RESULTS

K.1 CORNER AND CALIBRATION PLOTS

4

8

12

16

20

�
p

30
0

60
0

90
0

12
00

15
00

�c

10
.0

12
.5

15
.0

17
.5

20
.0

�
d

4 8 12 16 20

�p

10
.0

12
.5

15
.0

17
.5

20
.0

�d

4

8

12

16

20

�
p

30
0

60
0

90
0

12
00

15
00

�c

10
.0

12
.5

15
.0

17
.5

20
.0

�
d

4 8 12 16 20

�p

10
.0

12
.5

15
.0

17
.5

20
.0

�d

4

8

12

16

20

�
p

30
0

60
0

90
0

12
00

15
00

�c

10
.0

12
.5

15
.0

17
.5

20
.0

�
d

4 8 12 16 20

�p

10
.0

12
.5

15
.0

17
.5

20
.0

�d

Figure 7: Three corner plots for task A with a calibration set with 50 samples.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0.
00

0.
15

0.
30

0.
45

�

0.
00

0.
15

0.
30

0.
45

�

0.
00

0.
15

0.
30

0.
45

�

0.
00

0.
15

0.
30

0.
45

�

0.
00

0.
15

0.
30

0.
45

�

0.
00

0.
15

0.
30

0.
45

�

0.
00

0.
15

0.
30

0.
45

�

0.
00

0.
15

0.
30

0.
45

�

0.
00

0.
15

0.
30

0.
45

�

Figure 8: Three corner plots for task B with a calibration set with 50 samples.

0.
0

0.
8

1.
6

2.
4

�0

2.
5

5.
0

7.
5

10
.0

A

2.
5

5.
0

7.
5

10
.0

A

0.
0

0.
8

1.
6

2.
4

�0

2.
5

5.
0

7.
5

10
.0

A

2.
5

5.
0

7.
5

10
.0

A

0.
0

0.
8

1.
6

2.
4

�0

2.
5

5.
0

7.
5

10
.0

A

2.
5

5.
0

7.
5

10
.0

A

Figure 9: Three corner plots for task C with a calibration set with 50 samples.

50 75 10
0

12
5

HR

12
0

18
0

24
0

30
0

36
0

S
V

12
0

18
0

24
0

30
0

36
0

SV

50 75 10
0

12
5

HR

12
0

18
0

24
0

30
0

36
0

S
V

12
0

18
0

24
0

30
0

36
0

SV

50 75 10
0

12
5

HR

12
0

18
0

24
0

30
0

36
0

S
V

12
0

18
0

24
0

30
0

36
0

SV

Figure 10: Three corner plots for task D with a calibration set with 50 samples.

0

60

12
0

18
0

24
0

G

0

60

12
0

18
0

24
0

B

0 60 12
0

18
0

24
0

R

0.
00

0.
25

0.
50

0.
75

1.
00

�

0 60 12
0

18
0

24
0

G

0 60 12
0

18
0

24
0

B

0.
00

0.
25

0.
50

0.
75

1.
00

�

0

60

12
0

18
0

24
0

G

0

60

12
0

18
0

24
0

B

0 60 12
0

18
0

24
0

R

0.
00

0.
25

0.
50

0.
75

1.
00

�

0 60 12
0

18
0

24
0

G

0 60 12
0

18
0

24
0

B

0.
00

0.
25

0.
50

0.
75

1.
00

�

0

60

12
0

18
0

24
0

G

0

60

12
0

18
0

24
0

B

0 60 12
0

18
0

24
0

R

0.
00

0.
25

0.
50

0.
75

1.
00

�

0 60 12
0

18
0

24
0

G

0 60 12
0

18
0

24
0

B

0.
00

0.
25

0.
50

0.
75

1.
00

�

Figure 11: Three corner plots for task E with a calibration set with 50 samples.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0

60

12
0

18
0

24
0

G

0

60

12
0

18
0

24
0

B

0 60 12
0

18
0

24
0

R

0.
00

0.
25

0.
50

0.
75

1.
00

�

0 60 12
0

18
0

24
0

G

0 60 12
0

18
0

24
0

B

0.
00

0.
25

0.
50

0.
75

1.
00

�

0

60

12
0

18
0

24
0

G

0

60

12
0

18
0

24
0

B

0 60 12
0

18
0

24
0

R

0.
00

0.
25

0.
50

0.
75

1.
00

�

0 60 12
0

18
0

24
0

G

0 60 12
0

18
0

24
0

B

0.
00

0.
25

0.
50

0.
75

1.
00

�

0

60

12
0

18
0

24
0

G

0

60

12
0

18
0

24
0

B

0 60 12
0

18
0

24
0

R

0.
00

0.
25

0.
50

0.
75

1.
00

�

0 60 12
0

18
0

24
0

G

0 60 12
0

18
0

24
0

B

0.
00

0.
25

0.
50

0.
75

1.
00

�

Figure 12: Three corner plots for task E with distribution shift with a calibration set with 50 samples.

(a) (b) (c)

(d) (e) (f)

Figure 13: Calibration plots of the different methods on the 6 benchmarks, the coverage at each level
is the average of the coverage of the marginal distributions. Each color indicates a different algorithm
and the opacity is proportional to the size of the calibration set which ranges from 10 to 1000. We
observe that RoPE and OT-only are consistently well calibrated for.

30

