
Supplementary Materials: AL-GTD: Deep Active Learning for
Gaze Target Detection

The supplementary material expands on the implementation details
of our proposed method, AL-GTD, and the other active learning
(AL) methods used in comparisons (Sec. A). Additionally, we present
the main paper results (Figs. 4 and 5) in tabular form (Sec. B) as
well as additional ablation studies that were not a part of the main
paper due to space limitations. Lastly, we present extra qualitative
results (Sec. C).

A IMPLEMENTATION DETAILS
AL-GTD (Ours).We resize the input to the scene (S), depth (D),
and head (H ) branches to 224× 224, while the output gaze heatmap
has a size of 64 × 64. We perform up to 15 training epochs for
each AL iteration and evaluate the model performance for every
5 epochs. In all our experiments, we independently train multiple
times using the same initial split and apply identical augmentations
to each method.

Other AL methods. Except for VAAL [11] and LL4L [15], whose
implementation requires additional specific losses, all other meth-
ods employ the same loss formulation. The implementation details
of the other AL methods adopted for the gaze target detection task
are as follows.

(1) Entropy Sampling [10].We apply the softmax operator to the
predicted gaze heatmap 𝐻𝐺 with a temperature 𝜏 = 0.05 and calcu-
late the resulting distribution’s entropy. The acquisition function
prioritizes unlabeled samples based on uncertainty, labeling the
top-𝛽/𝑁 samples.

(2) MC-Dropout [6]. Following the insights of Gal et al. [6], i.e.
neural networks with dropout are equivalent to a probabilistic deep
Gaussian process, we incorporate dropout layers into𝐺𝑇𝑁 after S,
D,H , and within 𝐷𝐻 . The sample score is the average pixel-wise
variance of the gaze heatmaps generated through 16 samplings
with dropout enabled.

(3) LL4AL [15]. We adopt the formulation of the loss prediction
module of Yoo et al. [15], and we extend our 𝐺𝑇𝑁 with a learnable
module that predicts the target loss of unlabeled samples. The loss
module is trained jointly with 𝐺𝑇𝑁 , using a scale-invariant loss
function. As such, the update loss function of 𝐺𝑇𝑁 with LL4L is:

𝐿𝑡𝑜𝑡𝑎𝑙 (A) =
∑︁
𝑎∈A

𝐿ℎ (𝑎) +
∑︁
𝑎∈A

𝐿𝐿𝐿4𝐴𝐿 (𝑎) (9)

with 𝐿𝐿𝐿4𝐴𝐿 being the loss function defined in [15]. The sample
score is the output of the loss prediction module.

(4) VAAL [11]. Sinha et al. [11] integrated a Variational AutoEn-
coder (VAE) and a discriminator to learn an informativeness score
for unlabeled samples.We adapt the original implementation, where
the VAE reconstructs the original input image, to suit the gaze tar-
get detection task, ensuring the representativeness of an image

Table 6: AUC of our method AL-GTD with SOTA ALmethods
on the GazeFollow [9] dataset.

Method 3.7K 6.2K 8.7K 11.2K 13.7K

Random 82.64 ± 0.00 83.49 ± 0.18 85.18 ± 0.40 86.12 ± 0.54 86.47 ± 0.30
Entropy [10] 82.64 ± 0.00 83.70 ± 0.60 84.44 ± 0.20 84.52 ± 1.27 85.80 ± 1.65
MC-Dropout [6] 82.64 ± 0.00 82.99 ± 0.18 83.97 ± 0.09 84.64 ± 0.77 86.29 ± 0.69
LL4AL [15] 80.51 ± 0.00 82.67 ± 0.33 83.81 ± 0.21 84.89 ± 0.59 85.00 ± 0.56
VAAL [11] 81.12 ± 0.00 83.28 ± 0.31 84.64 ± 0.43 85.61 ± 0.33 85.79 ± 0.20
UnReGa [2] 82.17 ± 0.00 84.35 ± 0.29 84.65 ± 0.39 85.70 ± 0.29 86.33 ± 0.47
AL-SSL [4] 82.64 ± 0.00 83.46 ± 0.49 85.32 ± 0.15 85.71 ± 0.24 86.62 ± 0.12
AL-GTD (Ours) 82.64 ± 0.00 85.10 ± 0.74 85.81 ± 0.23 87.14 ± 0.21 87.67 ± 0.31

Table 7: Average distance of our method AL-GTD with SOTA
AL methods on the GazeFollow [9] dataset.
Method 3.7K 6.2K 8.7K 11.2K 13.7K

Random 0.260 ± 0.000 0.247 ± 0.001 0.234 ± 0.002 0.223 ± 0.005 0.217 ± 0.005
Entropy [10] 0.260 ± 0.000 0.252 ± 0.002 0.238 ± 0.004 0.245 ± 0.018 0.229 ± 0.011
MC-Dropout [6] 0.260 ± 0.000 0.254 ± 0.003 0.244 ± 0.002 0.240 ± 0.017 0.221 ± 0.005
LL4AL [15] 0.272 ± 0.000 0.259 ± 0.002 0.246 ± 0.002 0.238 ± 0.005 0.229 ± 0.009
VAAL [11] 0.274 ± 0.000 0.254 ± 0.005 0.234 ± 0.006 0.226 ± 0.001 0.216 ± 0.004
UnReGa [2] 0.261 ± 0.000 0.249 ± 0.004 0.234 ± 0.004 0.225 ± 0.005 0.218 ± 0.004
AL-SSL [4] 0.260 ± 0.000 0.244 ± 0.005 0.225 ± 0.003 0.220 ± 0.002 0.212 ± 0.003
AL-GTD (Ours) 0.260 ± 0.000 0.237 ± 0.010 0.218 ± 0.006 0.214 ± 0.004 0.208 ± 0.002

using both scene and head inputs. As such, we aim to reconstruct
the gaze heatmap 𝐻 with a Variational Autoencoder (VAE) while
training a discrimination function between labeled and unlabeled
samples. The final loss function is defined as

𝐿𝑡𝑜𝑡𝑎𝑙 (A) =
∑︁
𝑎∈A

𝐿ℎ (𝑎) +
∑︁
𝑎∈A

𝐿𝑉𝐴𝐴𝐿 (𝑎) (10)

with 𝐿𝑉𝐴𝐴𝐿 being the loss function defined in [11].

(5) AL-SSL [4]. We adopt AL-SSL to the gaze target detection
task by estimating the inconsistency 𝑖𝑛𝑐 = | |𝐻𝐺 − A−1 (𝐻 ′

𝐺
) | |2

between the original and flipped gaze heatmap, where highest
inconsistency corresponds to samples to be manually labeled by
the oracle. Pseudo-labeling follows the approach outlined in our
method (Sec. 3.2.2), with a pseudo-labeling percentage of 2%.

(6) UnReGa [2].We leverage the uncertainty definition from Un-
ReGa to establish a committee-based AL method. This involves
bootstrapping ensemble models 𝐺𝑇𝑁 𝑡

𝑖
from the trained set at vari-

ous epochs 𝑡 from the current AL iteration 𝑖 . The acquisition func-
tion is based on the uncertainty of the ensemble models, where a
higher value indicates increased uncertainty and a more informa-
tive sample.

B RESULTS
Tables 6, 7, 8, 9 and 10 showcase the results of our proposed method,
AL-GTD, alongside SOTA AL methods on GazeFollow [9] and
VideoAttentionTarget [3]. These results correspond to the figures
presented in the main paper, specifically Figs. 4 and 5.
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Table 8: Minimum distance of our method AL-GTD with
SOTA AL methods on the GazeFollow [9] dataset.
Method 3.7K 6.2K 8.7K 11.2K 13.7K

Random 0.185 ± 0.000 0.174 ± 0.002 0.162 ± 0.002 0.152 ± 0.005 0.146 ± 0.005
Entropy [10] 0.185 ± 0.000 0.179 ± 0.003 0.166 ± 0.003 0.172 ± 0.017 0.158 ± 0.011
MC-Dropout [6] 0.185 ± 0.000 0.180 ± 0.003 0.171 ± 0.002 0.167 ± 0.016 0.148 ± 0.005
LL4AL [15] 0.199 ± 0.000 0.186 ± 0.002 0.173 ± 0.003 0.165 ± 0.004 0.158 ± 0.009
VAAL [11] 0.200 ± 0.000 0.180 ± 0.005 0.162 ± 0.006 0.154 ± 0.001 0.145 ± 0.003
UnReGa [2] 0.187 ± 0.000 0.176 ± 0.004 0.162 ± 0.005 0.153 ± 0.004 0.147 ± 0.004
AL-SSL [4] 0.185 ± 0.000 0.171 ± 0.005 0.153 ± 0.003 0.149 ± 0.002 0.142 ± 0.002
AL-GTD (Ours) 0.185 ± 0.000 0.166 ± 0.010 0.148 ± 0.005 0.144 ± 0.004 0.140 ± 0.006

Table 9: AUC of our method AL-GTD with SOTA ALmethods
on the VideoAttentionTarget [3] dataset.

Method 932 1.9K 2.8K 3.7K 4.7K

Random 88.73 ± 0.00 88.80 ± 0.14 88.98 ± 0.26 89.15 ± 0.29 89.41 ± 0.34
Entropy [10] 88.73 ± 0.00 88.99 ± 0.13 89.08 ± 0.16 89.26 ± 0.36 89.56 ± 0.48
MC-Dropout [6] 88.73 ± 0.00 88.70 ± 0.16 88.94 ± 0.34 89.13 ± 0.24 89.37 ± 0.27
LL4AL [15] 88.77 ± 0.00 88.90 ± 0.07 89.07 ± 0.19 89.23 ± 0.46 89.39 ± 0.39
VAAL [11] 88.40 ± 0.00 88.02 ± 0.02 87.93 ± 0.15 88.17 ± 0.28 88.42 ± 0.35
UnReGa [2] 88.43 ± 0.00 88.60 ± 0.02 88.77 ± 0.02 89.06 ± 0.19 89.32 ± 0.27
AL-SSL [4] 88.62 ± 0.00 88.63 ± 0.14 88.95 ± 0.17 89.35 ± 0.13 89.54 ± 0.21
AL-GTD (Ours) 88.73 ± 0.00 89.01 ± 0.06 89.48 ± 0.12 89.70 ± 0.14 90.03 ± 0.24

Table 10: Average distance of ourmethod AL-GTDwith SOTA
AL methods on the VideoAttentionTarget [3] dataset.
Method 932 1.9K 2.8K 3.7K 4.7K

Random 0.199 ± 0.000 0.196 ± 0.001 0.191 ± 0.002 0.190 ± 0.002 0.188 ± 0.003
Entropy [10] 0.199 ± 0.000 0.196 ± 0.000 0.191 ± 0.002 0.187 ± 0.004 0.183 ± 0.004
MC-Dropout [6] 0.199 ± 0.000 0.197 ± 0.002 0.196 ± 0.002 0.191 ± 0.003 0.189 ± 0.002
LL4AL [15] 0.186 ± 0.000 0.186 ± 0.001 0.186 ± 0.002 0.185 ± 0.003 0.184 ± 0.002
VAAL [11] 0.192 ± 0.000 0.196 ± 0.000 0.197 ± 0.003 0.197 ± 0.003 0.194 ± 0.004
UnReGa [2] 0.195 ± 0.000 0.191 ± 0.001 0.189 ± 0.001 0.185 ± 0.001 0.184 ± 0.002
AL-SSL [4] 0.187 ± 0.000 0.188 ± 0.000 0.188 ± 0.001 0.184 ± 0.001 0.182 ± 0.001
AL-GTD (Ours) 0.181 ± 0.000 0.181 ± 0.001 0.181 ± 0.002 0.180 ± 0.002 0.177 ± 0.002

In terms of AUC, averaging performance across AL cycles, the
method ranking for GazeFollow is (Tab. 6): AL-GTD (ours), AL-
SSL [4], random, UnReGa [2], MC-Dropout [6], VAAL [11], En-
tropy [10], and LL4AL [15]. For VideoAttentionTarget, the order
is (Tab. 9): AL-GTD (ours), Entropy [10], AL-SSL [4], random,
LL4AL [15], MC-Dropout [6], UnReGa [2], and VAAL [11].

Regarding average distance, the ranking for GazeFollow is (Tab. 7):
AL-GTD (ours), AL-SSL [4], VAAL [11], random, UnReGa [2], MC-
Dropout [6], Entropy [10], and LL4AL [15]. For VideoAttention-
Target, it is (Tab. 10): AL-GTD (ours), AL-SSL [4], Entropy [10],
UnReGa [2], LL4AL [15], random, MC-Dropout [6], and VAAL [11].
Lastly, regarding minimum distance, the ranking for GazeFollow
is (Tab. 7): AL-GTD (ours), AL-SSL [4], VAAL [11], random, Un-
ReGa [2], MC-Dropout [6], Entropy [10], and LL4AL [15].

It is crucial to note that when there is noticeable diversity among
the images in a dataset, it allows for a better assessment and com-
parison of the performance of AL methods. In the context of video
datasets like VideoTargetAttention, where many frames and gaze
annotations are similar, distinguishing between AL methods be-
comes more challenging, and random selection shows marginally
better performance w.r.t. image datasets like GazeFollow.

Ablation study. Following Tab. 1 of the main paper, Table 11
and 12 report the effectiveness of SSL and the components of the
AL acquisition function for the average and minimum distance

of the GazeFollow dataset. We first understand the effect of SSL
by removing it from our pipeline (Row 1 vs. Row 6), which shows
an increase in average and minimum distances on all AL cycles.
Furthermore, (Rows 2-4) we show the impact of each acquisition
component. The results show that the full model performs best
while, on average, removing the objectness (Γ) criterion results in
a slightly greater increase compared to removing the others.

Effect of SSL. Tabs. 13 and 14 extend the results of Tab. 4 of the
main paper, presenting the average and minimum distances for the
GazeFollow dataset at each AL cycle, respectively. Consistent with
the findings in the main paper (Sec. 4.2.4), AL-GTD outperforms
all the SSL-injected counterparts, and SSL-based [4].

Impact of pseudo-labeling. Tab. 15 shows the effect of pseudo-
labeling on the VideoAttentionTarget dataset, confirming the find-
ings of the main paper (Sec. 4.2.3). The optimal performance is
achieved when the amount of samples pseudo-labeled is equal to
the number of samples labeled by the oracle.

Comparison with SOTA Gaze Target Detectors. Tab. 16 compares
the performance of AL-GTD with SOTA gaze target detectors [12–
14] in a low-data regime scenario, utilizing the dataset selected by
AL-GTD (Row 2-4). It is essential to emphasize that for the VideoAt-
tentionTarget dataset, the standard approach adopted by all studies
utilizing it such as [1, 3, 5, 7, 8, 12–14] is to fine-tune their model
with VideoAttentionTarget dataset after pre-training it on the Gaze-
Follow dataset. In other words, all gaze target detection results are
achieved by initially training the models on GazeFollow and then
on the VideoAttentionTarget dataset. Taking this into account, our
study also adheres to this methodology. Consequently, it becomes
more challenging to compare SOTA gaze target detectors under a
low-data regime since they have access to more data compared to
the experiments performed with the Gazefollow dataset. This surely
brings in an advantage to the transformer-based SOTA [13, 14] as
well as allowing the [12] to close the performance gap with the
proposed method. Nevertheless, the results once again confirm the
better performance of AL-GTD in terms of all metrics.

Inference time of AL-GTD and other AL methods. Tab. 17 shows
the number of parameters and the elapsed times for training, AL,
and inference, for AL-GTD and other AL methods. Our AL-GTD
requires fewer parameters (only 92.2𝑀) compared to LL4AL [15],
VAAL [11], and UnReGa [2], which rely on additional modules. Our
running time is comparable to other AL methods like AL-SSL [4].

C QUALITATIVE RESULTS
Figs. 6 and 7 showcase supplementary qualitative results compar-
ing the performance of AL-GTD against random, Entropy [10],
VAAL [11], LL4AL [15], UnReGa [2], and AL-SSL [4], showing that
our method can generate superior gaze heatmaps, whereas other
methods tend to produce heatmaps with multiple modes or sparser
activation points.
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Table 11: Ablation study on GazeFollow [9] in terms of average distance (best in bold, lower is better) for the effect of SSL, and
the components of the AL acquisition function: objectness (Γ), discrepancy (Δ), and scatteredness (Σ). We also report the results
of random sampling and AL-SSL [4] for the reader’s reference. Note that the cycle with 3.7K samples represents the initial
training, where no AL is applied. Therefore, the results are equal for all.

SSL 𝚪 𝚫 𝚺 3.7K 6.2K 8.7K 11.2K 13.7K

✗ ✓ ✓ ✓ 0.260 ± 0.000 0.252 ± 0.004 0.238 ± 0.006 0.235 ± 0.008 0.228 ± 0.009
✓ ✗ ✓ ✓ 0.260 ± 0.000 0.242 ± 0.003 0.228 ± 0.006 0.218 ± 0.004 0.213 ± 0.004
✓ ✓ ✗ ✓ 0.260 ± 0.000 0.242 ± 0.007 0.223 ± 0.002 0.215 ± 0.003 0.206 ± 0.002
✓ ✓ ✓ ✗ 0.260 ± 0.000 0.242 ± 0.005 0.227 ± 0.005 0.214 ± 0.005 0.209 ± 0.004
✓ ✓ ✗ ✗ 0.260 ± 0.000 0.240 ± 0.005 0.224 ± 0.003 0.214 ± 0.008 0.220 ± 0.019
✓ ✓ ✓ ✓ 0.260 ± 0.000 0.237 ± 0.010 0.218 ± 0.006 0.214 ± 0.004 0.208 ± 0.002

Random 0.260 ± 0.000 0.247 ± 0.001 0.234 ± 0.002 0.223 ± 0.005 0.217 ± 0.005
AL-SSL [4] 0.260 ± 0.000 0.244 ± 0.005 0.225 ± 0.003 0.220 ± 0.002 0.212 ± 0.003

Table 12: Ablation study on GazeFollow [9] in terms of minimum distance (best in bold, lower is better) for the effect of SSL,
and the components of the AL acquisition function: objectness (Γ), discrepancy (Δ), and scatteredness (Σ). We also report the
results of random sampling and AL-SSL [4] for the reader’s reference. Note that the cycle with 3.7K samples represents the
initial training, where no AL is applied. Therefore, the results are equal for all.

SSL 𝚪 𝚫 𝚺 3.7K 6.2K 8.7K 11.2K 13.7K

✗ ✓ ✓ ✓ 0.185 ± 0.000 0.179 ± 0.003 0.167 ± 0.006 0.163 ± 0.007 0.157 ± 0.008
✓ ✗ ✓ ✓ 0.185 ± 0.000 0.169 ± 0.003 0.157 ± 0.006 0.148 ± 0.003 0.143 ± 0.002
✓ ✓ ✗ ✓ 0.185 ± 0.000 0.170 ± 0.006 0.152 ± 0.003 0.145 ± 0.002 0.137 ± 0.001
✓ ✓ ✓ ✗ 0.185 ± 0.000 0.170 ± 0.004 0.157 ± 0.005 0.145 ± 0.004 0.139 ± 0.004
✓ ✓ ✗ ✗ 0.185 ± 0.000 0.168 ± 0.004 0.155 ± 0.002 0.145 ± 0.007 0.150 ± 0.017
✓ ✓ ✓ ✓ 0.185 ± 0.000 0.166 ± 0.010 0.148 ± 0.005 0.144 ± 0.004 0.140 ± 0.006

Random 0.185 ± 0.000 0.174 ± 0.002 0.162 ± 0.002 0.152 ± 0.005 0.146 ± 0.005
AL-SSL [4] 0.185 ± 0.000 0.171 ± 0.005 0.153 ± 0.003 0.149 ± 0.002 0.142 ± 0.002

Table 13: Comparisons of average distance on GazeFollow
among SSL-based methods for different cycles of AL. Note
that the cycle with 3.7K samples represents the initial train-
ing stage, where no AL is applied. Thus, the results are equal
for methods whose loss function is the same.

Method + SSL 3.7K 6.2K 8.7K 11.2K 13.7K

Entropy [10] 0.260 ± 0.000 0.242 ± 0.009 0.231 ± 0.003 0.238 ± 0.008 0.218 ± 0.011
MC-Dropout [6] 0.260 ± 0.000 0.241 ± 0.003 0.225 ± 0.004 0.217 ± 0.004 0.226 ± 0.024
UnReGa [2] 0.259 ± 0.000 0.242 ± 0.005 0.221 ± 0.006 0.217 ± 0.002 0.211 ± 0.004
AL-SSL [4] 0.260 ± 0.000 0.244 ± 0.005 0.225 ± 0.003 0.220 ± 0.002 0.212 ± 0.003
AL-GTD (Ours) 0.260 ± 0.000 0.237 ± 0.010 0.218 ± 0.006 0.214 ± 0.004 0.208 ± 0.002

Table 14: Comparisons of minimum distance on GazeFollow
among SSL-based methods for different cycles of AL. Note
that the cycle with 3.7K samples represents the initial train-
ing stage, where no AL is applied. Thus, the results are equal
for methods whose loss function is the same.

Method + SSL 3.7K 6.2K 8.7K 11.2K 13.7K

Entropy [10] 0.185 ± 0.000 0.170 ± 0.008 0.159 ± 0.003 0.165 ± 0.007 0.148 ± 0.010
MC-Dropout [6] 0.185 ± 0.000 0.169 ± 0.003 0.154 ± 0.005 0.145 ± 0.003 0.154 ± 0.023
UnReGa [2] 0.187 ± 0.000 0.171 ± 0.004 0.152 ± 0.005 0.144 ± 0.002 0.141 ± 0.002
AL-SSL [4] 0.185 ± 0.000 0.171 ± 0.005 0.153 ± 0.003 0.149 ± 0.002 0.142 ± 0.002
AL-GTD (Ours) 0.185 ± 0.000 0.166 ± 0.010 0.148 ± 0.005 0.144 ± 0.004 0.140 ± 0.006

Table 15: Performance of AL-GTD associated with different
numbers of samples pseudo-labeled. The results correspond
to 4.7K manually annotated samples from the VideoAtten-
tionTarget [3] dataset.

Percentage AUC ↑ Avg. Dist. ↓

0% 89.41 ± 0.15 0.180 ± 0.002
1% 89.82 ± 0.23 0.179 ± 0.004
2% 90.03 ± 0.24 0.177 ± 0.002

Table 16: Comparisons between our AL-GTD and SOTA gaze
target detectors trained under low data regimes (i.e. ∼3%
and ∼40% of the dataset, respectively) on VideoAttention-
Target [3] using our AL-GTD’s sample selection.

AUC ↑ Avg. Dist. ↓
3% 40% 3% 40%

[12] (ICMI 2022) 88.5 92.1 0.189 0.128
[14] (CVPR 2022) 82.7 89.8 0.204 0.128
[13] (ICCV 2023) 88.2 91.3 0.203 0.123
AL-GTD (Ours) 89.0 93.5 0.181 0.119
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Table 17: Comparisons among AL-GTD and other AL meth-
ods in terms of number of parameters, and training, AL, and
inference times per iteration.

Method # of params Training
(sec/iter)

AL
(sec/iter)

Inference
(sec/iter)

Random 92.2M 0.004 0.006 0.004
Entropy [10] 92.2M 0.006 0.007 0.005
MC-Dropout [6] 92.2M 0.008 0.021 0.013
LL4AL [15] 92.7M 0.009 0.012 0.006
VAAL [11] 106.3M 0.008 0.016 0.008
UnReGa [2] 276.6M 0.118 0.035 0.030
AL-SSL [4] 92.2M 0.017 0.008 0.003
AL-GTD (Ours) 92.2M 0.017 0.017 0.011
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Figure 6: Gaze heatmaps produced by AL-GTD and others.
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Figure 7: Gaze heatmaps produced by AL-GTD and others.
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