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ABSTRACT

A promising approach for improving the performance of vision-language models
like CLIP for image classification is to extend the class descriptions (i.e., prompts)
with related attributes, e.g., using brown sparrow instead of sparrow. How-
ever, current zero-shot methods select a subset of attributes regardless of com-
monalities between the target classes, potentially providing no useful informa-
tion that would have helped to distinguish between them. For instance, they
may use color instead of bill shape to distinguish between sparrows and wrens,
which are both brown. We propose Follow-up Differential Descriptions (FuDD),
a zero-shot approach that tailors the class descriptions to each dataset and leads to
additional attributes that better differentiate the target classes. FuDD first iden-
tifies the ambiguous classes for each image, and then uses a Large Language
Model (LLM) to generate new class descriptions that differentiate between them.
The new class descriptions resolve the initial ambiguity and help predict the
correct label. In our experiments, FuDD consistently outperforms generic de-
scription ensembles and naive LLM-generated descriptions on 12 datasets. We
show that differential descriptions are an effective tool to resolve class ambi-
guities, which otherwise significantly degrade the performance. We also show
that high quality natural language class descriptions produced by FuDD result
in comparable performance to few-shot adaptation methods. Code: https:
//github.com/BatsResearch/fudd

1 INTRODUCTION

What is the most distinguishing characteristic of a sparrow? It depends. To distinguish it from what?
To distinguish it from a goldfinch, it is the brown color. But, to distinguish it from a wren, it is the
conical bill (Fig.[T). Here, we propose a zero-shot approach to adapt the class representations of
vision-language models based on other classes in an image classification task. We use natural lan-
guage descriptions (called prompts) to provide visually differentiating information for target classes.

(A) Color  Bill Sparrow vs. Wren Sparrow vs. Goldfinch
Sparrow Brown  Conical Brown color JConical bill Conical bill
Goldﬁnché Yellow  Conical I Sparrow X Sparrow i X Sparrow

i X Wren ] Wren [] Goldfinch X Goldfinch

Wren Brown  Slender

Figure 1: A) Attributes for three different classes. B) Two sample classification tasks involving the
wren class. The distinguishing characteristics of each class vary based on other classes. Our ap-
proach selects the class descriptions based on other classes in the dataset to provide the information
that differentiates the target classes.
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Figure 2: FuDD overview. A) Using the model’s initial prediction, we identify the potentially
ambiguous classes. B) We use a large language model to generate class descriptions that differentiate
the ambiguous classes. C) We use the new differential descriptions in a follow-up classification task
to resolve the initial ambiguity and select the correct label.

Large Vision-Language Models (VLMs) use natural language as a source of supervision, which
allows us to easily create new classifiers by describing the classes in natural language (e.g., class
names) and labeling each image with the closest class. As a result, we can efficiently transfer the
learned visual representations to downstream tasks by adapting the class descriptions (i.e., prompts)
to the model’s pre-training distribution (Chen et al., 2023; Khattak et al., |2023; Menghini et al.,
2023 Mirza et al.l 2023} Novack et al. 2023} [Patashnik et al.| 2021} Radford et al 2021} [Zang
et al.,[2022; |Zhang et al., [2023a)).

The performance of prompting depends on careful prompt engineering to find class descriptions that
provide the most helpful information for each task (Menon & Vondrick} 2023} |[Novack et al.| [2023).
Previous works have used class attributes for better zero-shot learning performance (Lampert et al.},
2013} |[Parikh & Graumanl [2011; [Romera-Paredes & Torr, 2015} |Socher et al., 2013 [ Xian et al.,
2018)). Several recent works have adapted this idea for image classification with VLMs and propose
to describe the classes by their attributes, such as color and shape (Menon & Vondrickl 2023} |Pratt;
et al., 2022} Yang et al.,[2023)). Specifically, they prompt a large language model (LLM) with queries
like What does an image of a {class name} look like?, and use the responses
as the new class descriptions. The main idea is to enable the model to use the described attributes
in addition to the class names to identify each class. This should lead to better class representations
since models can better detect the attributes because of their prevalence during pre-training.

The additional information is helpful if it discriminates the class from all other classes in the tar-
get dataset. At least, the provided information should differentiate the class from other classes in
the dataset that are frequently mistaken for it. Despite this crucial requirement, current zero-shot
approaches generate descriptions solely based on the class itself without considering other classes
in the dataset (Menon & Vondrick, 2023} [Pratt et al., 2022)). As a result, although the descriptions
provide additional details about the class, they might not contain any information that differentiates
the class from other classes in the dataset. Thus, current methods might generate class descriptions
that are not helpful for the target task.

In this paper, we propose Follow-up Differential Descriptions (FuDIf_]), a novel approach that tai-
lors the class descriptions to each dataset and provides additional details that resolve the potential
ambiguities in the target task. For each image, we first use a set of basic class descriptions as
usual (Radford et al.,[2021)) and identify a subset of classes that, according to the VLM, are likely to
be the true label and thus are considered ambiguous. Then, for each such ambiguous class, we gen-
erate a set of descriptions that include the details that differentiate it from other ambiguous classes.
We rely on the extended world knowledge of pre-trained large language models to generate such
differential descriptions at scale (Brown et al.| [2020; [Petroni et al., [2019). Finally, we use these
differential descriptions in a follow-up classification task to resolve the initial ambiguity and predict
the correct label. By customizing the class descriptions based on other classes in the dataset, FuDD
aims to provide the most effective information for separating the classes of the target dataset.

"Pronounced like food.
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We evaluate our method on 12 datasets and show that FuDD consistently outperforms naive de-
scriptions for all datasets. FuDD outperforms naive LLM-generated descriptions by 2.41 percentage
points on average, with up to 13.95 percentage points improvement for the EuroSAT dataset. In
our experiments, we show that not all descriptions resolve ambiguities, and effective class descrip-
tions should provide differentiating information about ambiguous classes. Moreover, differentiating
the highly-ambiguous classes is the most important factor, accounting for most of FuDD’s perfor-
mance gains. In addition to GPT-3.5 E—], we experiment with the smaller, publicly available Llama 2
model (Touvron et al.,[2023) to study the impact of further fine-tuning, and find that the 7b-parameter
model can provide helpful information for everyday concepts. It also benefits from further fine-
tuning, especially for rare and abstract concepts in the EuroSAT and DTD datasets, with up to 23.41
percentage points boost in accuracy. Finally, we show that the performance when using high-quality
class descriptions from FuDD is comparable to using few-shot methods, achieving performance
competitive with 16-shot VLM adaptation methods (Yang et al.| 2023} Zhou et al.,[2022b) for some
datasets. Our results uncover the potential of using natural language to tailor the class represen-
tations to each dataset by providing information that differentiates the ambiguous classes. These
results motivate future work on creating effective class descriptions for each downstream task.

2 RELATED WORK

There is an increasing body of work on adapting VLMs to a wide range of downstream tasks (Gao
et al.l [2021;|Guo et al., 2023} Jia et al., [2022; Novack et al., [2023; |Patashnik et al., 2021; [Rao et al.,
2022; \Udandarao et al., 2022; |Zeng et al., 2022; [Zhang et al., 2021} |2022). Here, we describe the
related work and highlight their differences with our method.

Prompt Tuning Prompt tuning is an efficient approach for few-shot adaptation of VLMs to down-
stream classification tasks. Instead of updating the model parameters, prompt tuning methods add
learnable parameters to the input image or text (i.e., prompt) and learn these parameters through
gradient descent for each dataset (Huang et al., [2022} Jia et al., 2022; Menghini et al., [2023} |[Nayak:
et al., 2022} |Zhou et al.,|2022ab)). For instance, CoOp adds a set of parameters to the class descrip-
tions to represent the dataset context; and then uses a few labeled samples for training (Zhou et al.,
2022b). Although prompt tuning methods achieve good accuracy, they require additional labeled
examples, which limits their applications. On the other hand, our method is zero-shot and adapts to
each dataset without any additional samples, with competitive performance to prompt-tuning meth-
ods in low-shot scenarios.

VLMs with Other Foundation Models One line of work uses the capabilities of other foundation
models (Brown et al., [2020; |Caron et al., 2021} [Ramesh et al., [2021)) in combination with VLMs to
better adapt to downstream tasks (Chen et al.,|2023; Gupta & Kembhavi, 2023; Menon & Vondrick,
2023 |Mirza et al.} 2023} Pratt et al., 2022} Suris et al., 2023} Zeng et al., 2022} Zhang et al.||2023b).
For example, one can use the extended world knowledge of large language models (LLMs) in com-
bination with VLMs to solve more complex visual tasks. Our approach is closely related to this
line of work; we discuss the differences further in the next paragraph. Several other methods use
text-to-image generation models (Rombach et al.l 2022) on top of LLMs (Brown et al., 2020) to
further improve the performance (Udandarao et al.l 2022} Zhang et al.| [2023a). For instance, SuS-X
first uses an LLM to generate class descriptions and then uses a text-to-image generation model to
generate synthetic images for each class based on these descriptions (Udandarao et al.| [2022). Our
experiments show that despite using no images, FuDD’s performance is comparable to SuS-X for
most datasets while avoiding the complexities of text-to-image generation models.

Adaptation Through Description A specific approach for improving class representations with-
out additional samples is to provide more informative class descriptions (Menon & Vondrick, 2023
Novack et al.| 2023} [Pratt et al., |2022; Roth et al.| 2023). For example, WaffleCLIP adds high-
level category names to class descriptions to avoid ambiguities caused by class names with multiple
meanings (Roth et al.l 2023). Another approach is to describe the classes with their attributes so
the model can rely on attributes in addition to class names to identify images of each class (Menon
& Vondrick, 2023} Pratt et al., [2022). For example, Menon & Vondrick| (2023) propose to generate
such class descriptions by querying an LLM about the most important attributes of each class. How-
ever, the generated descriptions might provide no useful information for separating the class from
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other classes in the dataset. For example, the attribute color is not useful for separating sparrows and
wrens since both are brown (Fig. [T). To address this issue, LaBo uses additional labeled examples
to learn the importance of each attribute (Yang et al., 2023). Then, it selects a set of attributes that
are the most discriminative for each class. Unlike LaBo, FuDD generates class descriptions that
effectively separate the target classes in the first place, eliminating the need for further optimiza-
tion. Despite using no labeled data, FuDD’s performance is comparable to few-shot LaBo for most
datasets.

3  FOLLOW-UP DIFFERENTIAL DESCRIPTIONS (FUDD)

Here, we describe the components of our proposed method, FuDD. In Section [3.1] we explain how
VLMs are used for image classification. In Section [3.2] we use the model’s initial predictions to
identify potentially misrepresented classes that could lead to misclassifications, i.e., are ambiguous
(Fig.[Zh). In Section[3.3] we use large language models to generate class descriptions that explain the
visually differentiating information for the ambiguous classes (Fig.[Zb). In Section[3.4] we use these
differential descriptions in a follow-up classification task to resolve the initial ambiguity (Fig. 2k).

3.1 BACKGROUND

Following previous work (Radford et al.,[2021), given a set of classes, C, and a set of descriptions,
D,, for each class, we calculate the class embeddings as:

1
hc = |Dc| Z ¢T(d)7

deD.

where ¢ is the VLM text encoder, and h, is the embedding vector for class c¢. Since VLMs are
trained to minimize the distance between related image-text pairs, we select the closest class to
image embedding ¢;(x) as the label for image x, where ¢; is the VLM image encoder.

3.2 DETECTING AMBIGUOUS CLASSES

Enumerating the differences between all class pairs is prohibitive for large datasets with thousands
of classes. Instead, we focus on a small subset of potentially ambiguous classes that can lead to
misclassifications. For example, in Fig. 2h, the model is confident that boxer (a dog breed) is not
the label. However, any of the three most similar classes (british shorthair, bengal, and abyssinian
cat) is likely to be the true label. Therefore, differentiating visual information for these classes is
sufficient for selecting the correct label. For an image x, we define the set of ambiguous classes C'4,
as the £ most similar classes:

Cs = argmax Zcos(@(m),hci),

{c1,...,c }CC P

where ¢ is the VLM image encoder, and cos is the cosine similarity operator.

3.3 DIFFERENTIAL DESCRIPTIONS

To help the model distinguish between ambiguous classes, we generate a set of class descriptions
that explain their visual differences. We take advantage of the extended world knowledge of LLMs
to generate such descriptions at scale. Despite being uni-modal, LLMs acquire knowledge of the
visual world through massive pre-training datasets (Jiang et al.l 2020; |Petroni et al., 2019). For
example, an LLM can learn how a sparrow looks by reading the related Wikipedia page.

For each pair of ambiguous classes, we condition the LLM to select the visually differentiat-
ing attributes and describe them for both classes. We use the in-context learning capabilities of
LLMs (Brown et al., [2020) to guide the model to focus on visual characteristics by providing two
fixed examples as part of the prompt. Similarly, we guide the LLM to generate descriptions that re-
semble photo captions, which is shown to better adapt to VLMs’ pre-training distributions (Radford
et al.,[2021)) (refer to appendix for more details). We use the following prompt template:
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Table 1: Accuracy of FuDD in comparison with baselines. B/32 and L/14" represent the ViT-B/32
and ViT-L/14@336px vision backbones. ANaive(k) is the improvement of FuDD with k£ ambiguous
classes over the Naive LLM-generated descriptions proposed by Menon & Vondrick|(2023)).

Description Cub DTD EuroSAT FGVCAircraft  Flowers102 Food101
B/32 L/14" B/32 L/14° B/32 L/14° B/32 L/14° B/32 L/14" B/32 L/14"

Single Template ~ 51.21 63.48 43.14 54.04 40.87 56.82 20.88 37.08 63.80 75.12 82.63 93.49
Template Set 51.52 64.07 4271 55.32 46.76 5427 21.15 3831 6344 74.14 83.16 93.77
Naive LLM 5292 65.15 4590 5537 44.18 46.69 21.09 38.79 66.12 7598 84.02 94.26

FuDD (k=10) 5397 6590 4543 57.66 45.18 60.64 21.87 3882 67.80 78.76 84.05 94.05
FuDD (k=|C|) 5430 66.03 44.84 57.23 45.18 60.64 2232 39.63 67.62 79.67 8436 94.27

ANaive (k=10) 11.05 10.75 [-047 12.29 11.00 113.95 10.78 10.03 11.68 12.78 10.03 [-0.21
A Naive (k=|C[) 1138 10.88 |-1.06 11.86 11.00 11395 1123 10.84 1150 13.69 1034 10.01

ImageNet ImageNet V2 Oxford Pets Places365 Stanford Cars Stanford Dogs
B/32 L/14° B/32 L/14° B/32 L/14° B/32 L/14° B/32 L/14° B/32 L/14"

Single Template ~ 62.04 74.85 54.77 68.79 8498 92.86 39.10 40.70 60.37 78.06 58.01 73.61
Template Set 63.37 76.54 5591 70.85 84.55 92770 4091 4254 60.38 79.12 57.79 74.01
Naive LLM 63.52 7637 5596 7047 83.76 93.08 40.58 4143 59.63 7790 57.86 74.02

FuDD (k=10) 64.05 76.70 56.62 70.60 86.92 93.40 42.12 4395 60.86 7825 60.03 75.99
FuDD (k=|C) 64.19 77.00 56.75 71.05 89.34 9351 42.17 44.09 6146 7896 60.28 76.34

A Naive (k=10) 10.53 10.33 10.66 10.13 13.16 1032 11.54 42.52 +1.23 1035 12.17 +1.97
A Naive (k=|C|) 10.67 10.63 1079 10.58 15.58 1043 11.59 12.66 11.83 11.06 12.42 12.32

For the following objects, generate captions that represent the
distinguishing visual differences between the photos of the two
objects. Generate as many captions as you can.

Object 1: {class name 1}

Object 2: {class name 2}

Following the provided samples, the model generates several responses similar to:

Visual characteristic: Bill color
Caption 1: A photo of a black-footed albatross, with a yellow bill.
Caption 2: A photo of a laysan albatross, with a pink bill.

Given a pair of classes c; and c2, we define the pairwise differential descriptions for class c;, Dgf,
as all the values for Caption 1 in the LLM response, and similarly define D¢l. As a result, Dg?
contains all the descriptions that visually distinguish ¢; from cy. For each ambiguous class ¢, we

combine all its pairwise descriptions to obtain the set of differential descriptions D/,
/ i
p.= |J Dg.
ci€Ca\{c}

The new set of differential descriptions, D’ contains all the information necessary for separating
class ¢ from other ambiguous classes.

3.4 FoOLLOW-UP CLASSIFICATION

Since this visually differentiating information resolves the initial ambiguity, after the first round of
classification based on the original class descriptions, we create a follow-up classification task with
only the ambiguous classes, C4, and the new differential descriptions, D’.. Finally, we follow the
steps in Section [3.1]to predict the label.

4 EXPERIMENTS

In this section, we show the effectiveness of FuDD through extensive experiments. We show that
FuDD outperforms both generic and naive LLM-generated description ensembles. We design further
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Table 2: Accuracy of differential and non-differential descriptions for ambiguous classes. B/32 and
L/14" represent the ViT-B/32 and ViT-L/14@336px vision backbones. A is the improvement of
differential over non-differential descriptions.

Descriptor CUB DTD FGVCAircraft ~ Flowers102 Food101
B/32 L/14° B/32 L/14° B/32 L/14° B/32 L/14° B/32 L/14"
Differential 53.62 65.79 4537 5691 2217 39.06 67.62 79.54 84.17 94.34
Non-Differential 52.28 64.38 42.82 56.44 2214 3690 65.73 77.74 83.92 94.02
A T1.35 1142 1255 1047 10.03 12.16 11.89 11.81 10.25 10.32
Oxford Pets Places365 Stanford Cars Stanford Dogs
B/32  L/14 B/32  L/14 B/32  L/14°  B/32 L/14°
Differential 87.24 93.68 42.45 44.26 60.90 79.39 60.31 75.96
Non-Differential 86.24 93.62 41.73 43.98 60.74 78.55 59.30 75.41
A 11.01 10.06 10.73 10.28 10.16 10.85 11.01 10.55

analytical experiments to show that not all semantic information resolves class ambiguities, and
effective class descriptions should provide information that differentiates the ambiguous classes.
Additionally, we find that describing the differences between highly ambiguous classes is the most
important, accounting for most of FuDD’s performance gains.

Datasets. We evaluate our method on 12 image recognition datasets. We use the CUB200-
2011 (Wah et al.l 2011) (fine-grained bird species), Describable Textures Dataset (DTD) (Cimpo1
et al., |2014) (texture classification), EuroSAT (Helber et al.l [2019) (satellite image classification),
FGVCAircraft (Maji et al.,|2013)) (aircraft model classification), Flowers102 (Nilsback & Zisserman),
2008)), Food101 (Bossard et al.,[2014), ImageNet (Deng et al., 2009), ImageNetV2 (Kornblith et al.,
2019)), Oxford IIIT Pets (Parkhi et al., [2012), Places365 (Zhou et al.L [2017)), Stanford Cars (Krause
et al.,[2013)), and Stanford Dogs (Khosla et al., [2011)) datasets.

Setup. We use an instruction-tuned GPT-3 model (Brown et al. [2020; |Ouyang et al.l [2022),
gpt—3.5-turbo-0301, which is available through OpenAl API E] as our LLM, and CLIP (Rad-
ford et al.,|2021) as our VLM (refer to appendix for results with other VLMs). ImageNet Descrip-
tions: Because of the large number of classes in ImageNet, to accommodate the API limitations,
we cache the pairwise descriptions only for ambiguous classes detected by the ViT-B/32 backbone.
In all experiments, we limit the available differential descriptions to these cached values (refer to
appendix for details).

Baselines. We use three baselines. Single Template: to adapt to CLIP’s pre-training distribu-
tion, we adopt A photo of a {class name} . asthe class description (Radford et al.,[2021]).
Template Set: we use the 80 generic templates proposed by Radford et al.| (2021) to study the ben-
efits of FuDD’s better semantic information beyond simple prompt ensembling. Naive LLM: we
follow Menon & Vondrick| (2023)) to create naive LLM-generated descriptions with the same LLM
as ours, which uses a prompt like What are useful features for distinguishing
a {class name} in a photo? with a few in-context examples.

4.1 RESULTS

The benefits of using FuDD’s semantic information exceed simple description ensembling (Table[T).
When descriptions are provided for all classes (k=|C|), FuDD outperforms the generic template set
on 11 out of 12 datasets with ViT-B/32 (base) and ViT-L/14@336px (large) backbones. Moreover,
FuDD is more effective than naive LLM-generated descriptions at resolving class ambiguities. On
average, FuDD outperforms naive LLM-generated descriptions by 1.44% and 2.41% with base and
large vision backbones, respectively, with up to 13.95% improvements on EuroSAT. Notably, when
using the base vision backbone, naive LLM-generated descriptions perform worse than the generic
template set on the FGVCAircraft, Oxford Pets, Places365, and Stanford Cars datasets. On the other
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Figure 3: Impact of differential descriptions for k¥ most ambiguous classes with ViT-L/14@336px.
k=1 is accuracy with a single template. Providing differentiating details for the most ambiguous
classes accounts for most of FuDD’s gains, with diminishing gains for less ambiguous classes.

hand, FuDD improves accuracy compared to the generic template set by providing differentiating
information that resolves ambiguities. Importantly, we observe similar improvements with k=10,
where FuDD only describes the differences between the 10 most ambiguous classes. This empha-
sizes the significant impact of class ambiguities on accuracy, which allows computational efficiency,
that we will discuss in more detail later.

Importance of Differential Descriptions To study the importance of differentiating information,
we compare differential descriptions with non-differential descriptions, which describe character-
istics that do not separate the ambiguous classes. We select non-differential descriptions from at-
tributes not used by differential descriptions. To control for the number of descriptions, we augment
the descriptions with approx. 80 prefixes like image and snapshot, with minimal impact on semantic
information (refer to appendix for details). As shown in Table |2} non-differential descriptions per-
form worse than differential descriptions. Non-differential descriptions lead to lower accuracy by at
least 1% for six datasets, with up to 2.16% and 2.55% for FGVCAircraft and DTD. These results
confirm that not all semantic information resolves class ambiguities, and effective class descriptions
like FuDD should provide the necessary information to differentiate the ambiguous classes.

Role of Class Ambiguities Since FuDD mainly focuses on ambiguous classes, here, we examine
the importance of resolving class ambiguities. Figure 3| plots the accuracy of FuDD for the & most
ambiguous classes for different values of k, which corresponds to varying levels of ambiguity (Sec-
tion[3.2). k = 1 is accuracy with a single template. We find that describing the differences between
the five most ambiguous classes accounts for most of FuDD’s performance gains, with diminish-
ing benefits for less ambiguous classes. We can thus get most of the benefit while avoiding high
computational costs, especially in the case of diverse datasets and open-set problems.

5 PUBLICLY AVAILABLE LANGUAGE MODELS

The inaccessibility of proprietary LLMs like GPT-3.5 hinders  Table 3: The percentage of de-
further research into fine-tuning LLMs for visual classifica-  scriptions in a random sample that
tion. Here, we use publicly available LLMs to generate the are correct and visually differenti-
descriptions and study the impact of fine-tuning. Specifically, ating for EuroSAT.

we fine-tune the 7b-parameter Llama 2 model (Touvron et al.

2023) on the descriptions generated by 'GPT—3.5 for the Ima- Model Correct  Useful
geNet dataset. We find that even the original Llama 2 model
provides useful semantic information for visual classification. Llama 2 8226 19.35

Moreover, fine-tuning improves Llama 2 performance, espe- Llama2FT 9052 48.28

cially for rare concepts like satellite images, achieving compa-
rable performance to GPT-3.5.

As reported in Table[d] the original Llama 2 provides helpful semantic information for everyday ob-
jects like flowers, outperforming the generic template set. However, it struggles to describe the visual
differences for datasets with rare objects like EuroSAT or abstract concepts like DTD. Although the
fine-tuned model is not trained on test datasets, it learns the structure of the task and provides differ-
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Table 4: FuDD’s accuracy with Llama 2 generated descriptions before and after fine-tuning. B/32
and L/14" represent the ViT-B/32 and ViT-L/14@336px vision backbones.

Model Cub DTD EuroSAT FGVCAircraft
B/32 L/14° B/32 L/I14° B/32 L/A4° B/i32 L4

Llama 2 (k=10) 53.14 64.12 4191 5447 2771 3778 21.03 38.64

Llama 2 (k=|C|) 5333  64.65 4191 5489 2771 3778 20.76  37.86

Llama 2 FT (k=10) 5345 64.81 42.66 5654 39.14 61.19 22.14 3831
Llama 2 FT (k=|C|) 53.37 6443 43.14 56.17 39.14 61.19 2244  39.57

Flowers102 Food101 Oxford Pets Stanford Cars
B/32 L/14° B/32 L/I14° B2 L/A4 B2 L4
Llama 2 (k=10) 66.03 77.88 83.54 9400 87.19 93.19 6027 77.53
Llama 2 (k=|C|) 66.16 78.00 84.08 94.15 89.34 9324 6048 77.95

Llama 2 FT (k=10) 6598 77.67 8432 9428 86.05 92.67 60.07 78.20
Llama 2 FT (k=|C|) 66.55 77.51 84.52 9425 8749 9231 61.05 79.06

entiating visual information for these datasets. Using the ViT-L/14@336px backbone, fine-tuning
improves the accuracy by 3.25% on average, with up to 23.41% for EuroSAT.

To better understand the impact of fine-tuning, we manually evaluate a random subset of pairwise
differential descriptions before and after fine-tuning. Through visual inspection, for each pair, we
check 1) if each description is correct and 2) if the pair helps differentiate the images of the two
classes. Although fine-tuning helps with both measures, it significantly improves the usefulness of
the descriptions: as shown in Table [3] after fine-tuning, 48% of pairwise descriptions help differ-
entiate the two classes, compared to only 19% before fine-tuning. As illustrated in Fig. 5] unlike
the original model, the fine-tuned model describes attributes that are more diverse and focused on
low-level visual features rather than higher-level semantic concepts. For a more robust analysis,
Fig. [ plots the top-5 most common attributes before and after fine-tuning for EuroSAT. Similarly,
the original model describes a limited set of attributes with mostly high-level semantic information,
while the fine-tuned model generates a diverse set of visually differentiating attributes based on the
input classes.

6 FuDD vS. OTHER AUXILIARY INFORMATION

To put the importance of differential descriptions in perspective, we compare FuDD against other
approaches for VLM adaptation. We show that FuDD provides more helpful information through
differential descriptions compared to simple heuristics like using high-level category names. We
find that FuDD can better use the potential of natural language descriptions and achieve comparable
performance to other methods that use text-to-image generation models or labeled samples in low-
shot settings.

Few-Shot Description Selection We compare FuDD against LaBo, an alternative method that
uses few-shot learning to select a subset of naive LLM-generated class descriptions that are more
discriminative [2023). As reported in Table[5] although FuDD is zero-shot and uses no

building type, 12.5%

texture, 27.9% color, 28.6%

land , 10.7%
andscape o Llama 2

FT
7.1%
land cover, 66.1% \' PUIPOSS, T
shape, 25.0% size, 11.4%

Figure 4: Top-5 most common attributes described by Llama 2 before and after fine-tuning. The
fine-tuned model describes a more diverse and visually differentiating set of attributes.

land use, 5.4% [ Llama 2
building color, 5.4%
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Table 5: Accuracy of FuDD compared to LaBo (Yang et al.L[2023), which uses few-shot learning to
select the most effective LLM-generated descriptions for each class with ViT-L/14 backbone. #S is
the number of labeled samples.

Method Cub DTD Aircraft Flowers102 Food101 ImageNet
Acc. #S Acc. #S Acc. #S Acc. #S Acc. #S Acc. #S

FuDD(k=10) 6426 0 56.76 0 3738 0 78.61 O 9328 0 75.67 0
FuDD(k=|C|) 64.14 0 57.07 0 37.89 0 7948 O 9340 0 7599 0

LaBo 54.19 1 5526 2 3771 2 82.05 1 9245 Full 72.60 16

labeled images, it performs better than 16-shot and full-shot (training on all samples) LaBo on Ima-
geNet and Food101, respectively. For the other four datasets, FuDD’s performance is comparable to
LaBo in low-shot scenarios. Unlike LaBo, FuDD encourages the descriptions to be discriminative
as part of the generation process, eliminating the need for further optimization.

High Level Concepts WaffleCLIP uses high-level category names to address
class ambiguities by specifying the dataset context. As shown in Table [6]in appendix, FuDD per-
forms better than WaffleCLIP for seven of the eight datasets. Although high-level category infor-
mation is helpful, the additional details provided by FuDD are necessary to resolve more complex
class ambiguities beyond what is caused by similar class names.

Additional Images In Table [§] in appendix, we
compare FuDD with CoOp (Zhou et al 2022b),
which uses additional labeled images to learn a set of
parameters as part of class descriptions. Without us-
ing any images, FuDD performs better than 16-shot
CoOp on Food101 and Oxford Pets datasets and bet-
ter than 4-shot CoOp on the ImageNet dataset. On
the other five datasets, FuDD’s performance is com-
parable to CoOp in low-shot settings. We also com-

pare FuDD with SuS-X (Udandarao et all, [2022), o e

which avoids the additional labeled images by using |, - A type of land - A type of land
. ama 2 cover with cover with
a pre-trained LLM (Brown et al.| 2020) and a text- cropland water
to-image generation model (Rombach et al.l 2022]) -
to generate additional images for each class. As re- - Brownish color - Blueish color
. A A A A . - Rough texture - Smooth texture
ported in Table []in appendix, despite using no im-  Liama2 - with geometric - With natural,
ages, FuDD achieves a performance comparable to FT shape irregular
. - Shows agricultural shape
SuS-X by only relying on the LLM-generated de- fields and - Shows islands
scriptions. FuDD uses the potential of natural lan- irrigation systems and coastlines

guage more effectively through differential descrip-
tions and achieves comparable performance without Figure 5: Descriptions generated by Llama 2
additional labeled data or complexities of using text- before and after fine-tuning.

to-image generation models.

7 CONCLUSION

In this work, we introduce FuDD, a novel zero-shot approach that uses natural language to provide
vision-language models with differentiating information about classes in downstream image recog-
nition tasks. FuDD identifies a potentially ambiguous subset of classes and uses a large language
model to generate visually differentiating descriptions that resolve the ambiguity. We show that
not all information helps resolve class ambiguities, and effective descriptions should provide dis-
criminative information about the ambiguous classes. Well-designed class descriptions, such as the
ones produced by FuDD, can achieve comparable performance to few-shot prompt tuning methods
in low-shot settings. Our results uncover the potential of natural language for tailoring the class
representations to each dataset by providing differentiating information about ambiguous classes.
These results motivate future work on creating effective natural language class descriptions for each
downstream task.
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Table 6: Accuracy of FuDD compared to other approaches that use high-level category names,
WaffleCLIP (Roth et al., 2023)), labeled samples, CoOp (Zhou et al.| 2022b), and text-to-image
generation models, SuS-X (Udandarao et al., [2022)), with ResNet-50 He et al.|(2016) backbone. #S
is the number of labeled samples. “SuS-X-SD uses synthetically generated images.

Method Cub DTD EuroSAT Aircraft Flowers102 Food101
Acc. #S Acc. #S Acc. #S Acc. #S Acc. #S Acc. #S

FuDD(k=10) 4945 0 4351 0 3942 0 1977 0O 67.39 0 80.65 0
FuDD(k=|C|) 49.26 0 4351 0 3942 0 1992 0 68.76 0 8095 0
WaffleCLIP 4834 0 3925 0 3508 O - - - - 8138 0
CoOp . - - 4439 1 50.63 1 18.68 2 68.12 1 74.67 16
SuS-X-SD” 49.10 2 51.00 4 47.69 15 19.92 79 67.32 31 77.02 34
ImageNet ImageNetV2 Oxford Pets Places365 Stanford Cars
Acc. #S Acc. #S Acc. #S Acc. #S Acc. #S
FuDD(k=10) 60.69 0 53.19 0 86.86 0 40.64 O 56.62 0
FuDD(k=|C|) 60.78 0 53.60 0 87.52 0 4069 O 56.77 0
WaffleCLIP 60.12 0 52.89 0 85.80 0 39.03 0 - -
CoOp . 5999 4 - - 87.01 16 - - 55.59 1
SuS-X-SD” 61.65 36 - - 85.09 71 - - 57.14 5

A DIFFERENT VISION ENCODERS

In general, the benefits of FuDD over the generic template set are more significant for smaller models
(Fig. [6a). However, larger vision encoders can better take advantage of the nuanced information
provided by FuDD beyond naive LLM-generated descriptions (Fig. [6b). We believe as image-text
representations improve, VLMs can better take advantage of available semantic information, making
natural language class descriptions even more important for vision tasks in the future.

B LLM PROMPTING DETAILS

We use gpt-3.5-turbo-0301 to generate the differential  descriptions.
gpt—-3.5-turbo-0301 is a GPT-3 model that is fine-tuned to follow instructions (Brown
et al., 2020; |Ouyang et al., 2022). In this form, the model is given a sequence of user and assistant
messages and is expected to generate the next assistant message. In our experiments, we encode
two fixed sample outputs as assistant messages and ask the model to generate similar output
for a given pair of classes. Specifically, we use the template messages in Table [0] and replace
class name 1and class name 2 with the desired classes to get the corresponding pairwise

differential descriptions.

ImageNet Descriptions. As mentioned in Section[d] because of the large number of classes in the
ImageNet dataset, it is not possible to generate the differential descriptions for all class pairs. Since
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Figure 6: FuDD’s average accuracy boost for different vision backbones compared to a) generic
template set and b) naive LLM-generated descriptions
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Table 7: Total API costs for each dataset in Dollars

Dataset Cost
Cub 15.47
DTD 0.84
EuroSAT 0.03
FGVCAircraft 3.85
Flowers 4.00
Food101 3.93
ImageNet 60.24
Pets 0.52
Places365 51.63

Stanford Cars 14.85
Stanford Dogs 5.55

differential descriptions are the most effective for ambiguous classes, we generate and cache all the
pairwise descriptions for ambiguous classes and limit the available pairwise differential descriptions
to this set. Following Section we use ViT-B/32 vision backbone with k = 5 to detect the most
ambiguous classes. For all pairs in each set of ambiguous classes, we generate and cache the corre-
sponding pairwise differential descriptions, D¢, as explained in Section [3.3] In all our experiments,
we use the cached pairwise differential descriptions, DS If the cache does not exist for a class pair,
we use a single template description instead, i.e., D5 = {A photo of a class name.}.

C DIFFERENTIAL VS. NON-DIFFERENTIAL DETAILS

For the non-differential experiments in Table[2] we select a set of descriptions that describe a set of
details for each class that does not differentiate it from other ambiguous classes. For some class ¢, to
create non-differential descriptions, we first collect all the available differential descriptions, which
is equal to the differential descriptions with K = |C|. Next, we create the normal set of differential
descriptions, D, with K = 10 as explained in Section[3| As a result of our description generation
method, we know the corresponding attribute for each of the differential descriptions. Now, we filter
the set of all available differential descriptions to exclude all the descriptions that their corresponding
attribute is similar to the attributes explained by descriptions in D’. The remaining descriptions do
not include any attribute that helps to separate the ambiguous classes.

We consider two attributes to be similar if they share a common word. For instance, color and
coat color are similar since they share the word color. We split the attributes by white space
and use simple string matching to check for this criteria. Because of the lack of diversity in the
available descriptions for DTD, Oxford Pets, and Stanford Dogs datasets, using this criteria leads
to a small number of remaining non-differential descriptions for each class. Therefore, for fair
comparisons, we relax the criteria for these three datasets and compare attributes without splitting
by white space, i.e., color and coat color are not considered similar for these three datasets.

As mentioned by previous work, the number of descriptions for each class also impacts the accu-
racy (Radford et al., 2021; Roth et al., 2023). We use description augmentation to control for the
number of prompts for both differential and non-differential descriptions. Description augmentation
creates a large number of descriptions from the original class descriptions with minimal impact on
semantic information. Specifically, we create an augmented set of descriptions for each class de-
scription by replacing the original prefix (e.g. a photo of a) with a set of similar prefixes like
an image of aand a snapshot of a. We use the prefixes used in Radford et al.| (2021).
Now to calculate the augmented description embedding, we average over the embeddings of all the
descriptions in the corresponding augmented description set.

D CosTs

Although FuDD queries the LLM more than naive approaches, the API calls are very affordable
and do not hinder wider adoption of FuDD. On average, one input prompt and model response
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is 380 and 199 tokens, respectively. With OpenAl pricing at the time of writing ($0.001/1k and
$0.002/1k tokens for input and response), the cost is $0.78 per 1000 queries, leading to affordable
prices as reported in Table [/{ FuDD also accommodates datasets with a large number of classes
like ImageNet by recognizing the more significant role of ambiguous classes, reducing the costs for
ImageNet dataset from $388 to $60 (see Appendix [B|for details).

In addition, as studied extensively in Section El, we can use off-the-shelf or fine-tuned LLMs like
Llama 2 to generate differential descriptions using in-house hardware to avoid API costs or accom-
modate other issues like working with private and sensitive data.

E ADDITIONAL VLMS

To further evaluate FuDD, we repeat our main experiments with different VLMs. We choose Open-
CLIP (Cherti et al.l 2023} [[lharco et al., 2021) because of its superior performance to CLIP. For
example, OpenCLIP with ViT-L/14 backbone trained on datacomp_x1_s13b_b90k improves
the performance of its CLIP counterpart by 4 percentage points on ImageNet dataset using Single
Template descriptions. We also run experiments using BLIP-2 (Li et al.,|2023) because it is trained
using an entirely different strategy with a combination of image-text contrastive loss, image-text
matching loss, and generation loss. To calculate image-text similarity using BLIP-2, we follow a
similar procedure to|Li et al.| (2023). As reported in Table[§] these other VLMs can also use the ad-
ditional information provided by FuDD and improve the performance beyond naive LLM-generated
descriptions.
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Table 8: FuDD accuracy using OpenCLIP and BLIP2 models. DComp is the checkpoint trained on
datacomp-x1_s13b_b90k and Laion is the checkpoint trained on 1aion2b_el6 dataset.

Description Cub DTD
ViT-B-32 ViT-L-14  BLIP2 | ViT-B-32 ViT-L-14  BLIP2
DComp Laion DComp - \ DComp Laion DComp -
Single Template ~ 72.63  63.93 85.31 23.52 ‘ 54.95 51.12 63.19 53.24
Template Set 72.52 63.12 85.00 27.36 55.80 52.71 64.79 55.53

Naive 73.63 63.79 85.66 27.51 58.99 56.86 66.22 55.48

|
FuDD (k=10) 7342 6391 85.69 28.51 5824  55.43 67.23 56.70
FuDD (k=|C|) 73.82  64.19 86.16 28.77 57.45 54.95 67.77 56.86

EuroSAT FGVCAircraft
ViT-B-32 ViT-L-14  BLIP2 ViT-B-32 ViT-L-14 BLIP2

DComp Laion  DComp -

|

| DComp Laion DComp -
Single Template 38.03 41.73 61.14 52.14 ‘ 29.94 26.31 51.82 14.19

|

Template Set 41.02 4144 61.62 51.01 30.75 26.46 51.88 14.46
Naive 49.28 45.37 69.72 63.63 31.41 25.77 52.09 16.35

FuDD (k=10) 55.74 57.27 74.05 70.84 31.59 26.67 50.89 15.54
FuDD (k=|C|) 55.74 57.27 74.05 70.84 31.38 26.43 51.25 16.44

Flowers102 Food101
ViT-B-32 ViT-L-14 BLIP2 ViT-B-32 ViT-L-14 BLIP2

DComp Laion DComp -

|

| DComp Laion  DComp -
Single Template 72.13 67.49 80.60 5591 ‘ 85.89 81.31 94.49 85.07

|

Template Set 72.06 67.67 81.12 57.85 85.75 81.24 94.39 86.74
Naive 73.18 66.53 79.90 60.81 85.49 81.48 94.05 87.71

FuDD (k=10) 73.98 69.00 83.35 61.60 86.40 81.50 94.43 88.50
FuDD (k=|C) 75.05 69.91 83.02 61.21 86.49 81.86 94.51 88.63

ImageNet ImageNet V2
ViT-B-32 ViT-L-14  BLIP2 ViT-B-32 ViT-L-14  BLIP2

DComp Laion DComp -

|

| DComp Laion  DComp -
Single Template ~ 68.44  65.20 78.83 60.93 ‘ 60.33 56.91 71.96 56.20

|

Template Set 69.13 65.61 79.15 66.07 60.76 57.36 72.05 60.60
Naive 68.60 65.42 79.03 66.15 60.06 57.19 71.92 61.00

FuDD (k=10) 69.13 65.91 79.25 67.31 60.94  57.70 72.08 61.28
FuDD (k=|C/) 69.35  66.20 79.50 68.55 61.28  57.90 72.39 62.53

Oxford Pets Places365
ViT-B-32 ViT-L-14  BLIP2 | ViT-B-32 ViT-L-14  BLIP2
DComp Laion DComp - | DComp Laion DComp -
Single Template ~ 89.40 87.54 94.74 76.70 ‘ 4152 41.88 43.21 43.72
Template Set 88.47 87.49 93.51 76.91 4320 42.84 44.73 43.67

Naive 89.86 89.07 94.79 81.17 42.24 42.61 44.06 43.51

|
FuDD (k=10) 90.71 89.04 94.90 81.96 42.79 43.16 44.98 45.30
FuDD (k=|C) 90.95 90.00 95.18 83.51 43.13 43.55 44.89 45.52

Stanford Cars Stanford Dogs
ViT-B-32 ViT-L-14  BLIP2 ViT-B-32 ViT-L-14 BLIP2

DComp Laion DComp -

|

| DComp Laion DComp -
Single Template 88.42 86.82 93.67 79.97 ‘ 63.92 59.76 79.23 47.70

|

Template Set 88.66  87.02 93.71 80.48 64.93 59.50 79.22 47.76
Naive 87.38 86.76 93.56 80.08 65.02  60.12 79.22 50.31

FuDD (k=10) 88.35 86.87 93.77 80.25 65.13 59.84 79.39 5242
FuDD (k=|C) 88.45 86.84 93.65 81.06 65.96 60.22 80.29 5291
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Class 1 Class 0: Tennessee Warbler

Black-footed Albatross Attribute: size

0: A photo of a tennessee warbler, a small songbird that is only about 4 inches long.
1: A photo of a black-footed albatross, a large seabird with a wingspan of up to 7 feet.

Attribute: coloration
0: A photo of a tennessee warbler, a bright yellow bird with olive-green wings and back.
1: A photo of a black-footed albatross, a dark-colored bird with a white head and underparts.

Attribute: bill shape
0: A photo of a tennessee warbler, a bird with a small, pointed bill.
1: A photo of a black-footed albatross, a bird with a large, hooked bill.

Mangrove Cuckoo Attribute: bill length

0: A photograph of a tennessee warbler, a type of bird, with a short, pointed bill.
1: A photograph of a mangrove cuckoo, a type of bird, with a long, curved bill.

Attribute: tail length
0: A photograph of a tennessee warbler, a type of bird, with a short, square tail.
1: A photograph of a mangrove cuckoo, a type of bird, with a long, graduated tail.

Attribute: wing bars
0: A photograph of a tennessee warbler, a type of bird, with two white wing bars.
1: A photograph of a mangrove cuckoo, a type of bird, with no wing bars.

Caspian Tern Attribute: size

0: A photograph of a tennessee warbler, a type of bird, which is smaller in size.
1: A photograph of a caspian tern, a type of bird, which is larger in size.

Attribute: bill color
0: A photograph of a tennessee warbler, a type of bird, with a black bill.
1: A photograph of a caspian tern, a type of bird, with a red bill.

Attribute: wing shape
0: A photograph of a tennessee warbler, a type of bird, with short, rounded wings.
1: A photograph of a caspian tern, a type of bird, with long, pointed wings.

Attribute: head pattern

0: A photograph of a tennessee warbler, a type of bird, with yellow and gray head pattern.
1: A photograph of a black-throated sparrow, a type of bird, with black and white striped
head pattern.

Attribute: eye ring
0: A photograph of a tennessee warbler, a type of bird, with no eye ring.
1: A photograph of a black-throated sparrow, a type of bird, with white eye ring.

Attribute: breast color

0: A photograph of a tennessee warbler, a type of bird, with yellow breast color.

1: A photograph of a black-throated sparrow, a type of bird, with black and white striped
breast color.

Figure 7: Various pairwise differential descriptions for sample class “Tennessee Warbler” and four
different classes.
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Table 9: Prompt template for generating pairwise differential descriptions. We use two fixed sample
pairs of classes to guide the model to generate the appropriate output.

Type Content
System You are a knowledgeable teacher.
User For the following objects, generate captions that

represent the distinguishing visual differences between
the photos of the two objects.
Generate as many captions as you can.

Object 1: Field sparrow

Object 2: Acadian flycatcher

Assistant | <START>

Visual characteristic: Bill shape

Caption 1: A photograph of a field sparrow, a type of
bird, with cone bill shape.

Caption 2: A photograph of a acadian flycatcher, a type
of bird, with all-purpose bill shape.

Visual characteristic: Breast color

Caption 1: A photograph of a field sparrow, a type of
bird, with buff breast color.

Caption 2: A photograph of a acadian flycatcher, a type
of bird, with white breast color.

Visual characteristic: Back pattern

Caption 1: A photo of a field sparrow, a type of bird,
with striped back pattern.

Caption 2: A photo of a acadian flycatcher, a type of
bird, with solid back pattern.

<END>

User For the following objects, generate captions that
represent the distinguishing visual differences between
the photos of the two objects.

Generate as many captions as you can.

Object 1: Cornet

Object 2: Flute

Assistant | <START>

Visual characteristic: Shape

Caption 1: A photo of a cornet, a type of musical
instrument, with a conical bore.

Caption 2: A photo of a flute, a type of musical
instrument, with a cylindrical bore.

<END>

User For the following objects, generate captions that
represent the distinguishing visual differences between
the photos of the two objects.

Generate as many captions as you can.

Object 1: {class name 1}
Object 2: {class name 2}
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Table 10: Sample descriptions generated by GPT-3.5 for Cub
Classes Descriptions
Attribute: size

Tennessee Warbler

0: a photograph of a caspian tern, a type of
bird, which is larger in size.

1: a photograph of a tennessee warbler, a type

of bird, which is smaller in size.

Attribute: Dbill color
0: a photograph of a caspian tern, a type of
bird, with a red bill.

1: a photograph of a tennessee warbler, a type

of bird, with a black bill.

Attribute: wing shape
0: a photograph of a caspian tern, a type of
bird, with long, pointed wings.

1: a photograph of a tennessee warbler, a type

of bird, with short, rounded wings.

Attribute: tail shape
0: a photograph of a caspian tern, a type of
bird, with a forked tail.

1: a photograph of a tennessee warbler, a type

of bird, with a square tail.

Table 11: Sample descriptions generated by GPT-3.5 for DTD

Classes

Descriptions

Stratified

Attribute: texture

0: a photo of an interlaced surface, with a
woven texture.
1: a photo of a stratified surface, with a

layered texture.

Attribute: pattern

0: a photo of an interlaced surface, with a
criss—-cross pattern.
1: a photo of a stratified surface, with a

horizontal pattern.

Attribute: material

0: a photo of an interlaced surface, made of
woven fibers.
1: a photo of a stratified surface, made of

layered sediment or rock.
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Table 12: Sample descriptions generated by GPT-3.5 for EuroSAT

Classes Descriptions

Attribute: color

0: a satellite image of industrial or commercial
buildings, with a mix of grey, white, and black
colors.

1l: a satellite image of a river, with blue and
green colors.

Attribute: texture

0: a satellite image of industrial or commercial
buildings, with a rough and angular texture.
Industrial or commercial | 1: a satellite image of a river, with a smooth
building and flowing texture.

Attribute: shape

0: a satellite image of industrial or commercial
buildings, with rectangular and square shapes.
1: a satellite image of a river, with a winding

and curvy shape.

Attribute: pattern

0: a satellite image of industrial or commercial
buildings, with a grid-like pattern.
1l: a satellite image of a river, with a

meandering pattern.
River

Table 13: Sample descriptions generated by GPT-3.5 for Flowers

Classes Descriptions

Attribute: color

0: a photo of a bird of paradise, a type of
flower, with bright orange and blue colors.

1: a photo of a globe thistle, a type of flower,
with muted blue and green colors.

Attribute: shape

0: a photo of a bird of paradise, a type of
flower, with a unique bird-like shape.

1: a photo of a globe thistle, a type of flower,
with a spherical shape.

Bird of paradise

Attribute: texture

0: a photo of a bird of paradise, a type of
flower, with smooth and glossy petals.

1: a photo of a globe thistle, a type of flower,
with spiky and rough texture.

Globe thistle
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Table 14: Sample descriptions generated by GPT-3.5 for Food101

Classes

Descriptions

“"‘x%h"’

Sashimi

Attribute: type of food

0: a photo of a hot dog, a type of fast food,
with a sausage in a bun.

1: a photo of sashimi, a type of japanese
cuisine, with raw fish slices.

Attribute: cooking method

0: a photo of a hot dog, a type of fast food,
with a grilled sausage.

1: a photo of sashimi, a type of japanese
cuisine, with raw fish slices.

Attribute: serving style

0: a photo of a hot dog, a type of fast food,
served with ketchup and mustard.

1: a photo of sashimi, a type of japanese
cuisine, served with soy sauce and wasabi.

Attribute: texture

0: a photo of a hot dog, a type of fast food,
with a chewy texture.

1: a photo of sashimi, a type of japanese
cuisine, with a soft and tender texture.

Table 15: Sample descriptions generated by GPT-3.5 for ImageNet

Classes Descriptions
Attribute: number of wheels
0: a photo of a minivan, which has four wheels.
1: a photo of a rickshaw, which has three
wheels.
Attribute: size
0: a photo of a minivan, which is larger in size
and can accommodate more passengers.
1: a photo of a rickshaw, which is smaller in

Rickshaw

size and can accommodate fewer passengers.

Attribute: propulsion

0: a photo of a minivan, which is powered by an
engine.
1: a photo of a rickshaw, which is powered by

human pedaling.

Attribute: type of vehicle

0: a photo of a minivan, which is a modern
automobile.
1: a photo of a rickshaw, which is a traditional

asian vehicle.
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Table 16: Sample descriptions generated by GPT-3.5 for Oxford Pets

Classes Descriptions
Attribute: Dbody type
0: a photo of a german shorthaired, a type of
dog, with a muscular and athletic body type.
1: a photo of a sphynx, a type of cat, with a
slender and sleek body type.
Attribute: coat
0: a photo of a german shorthaired, a type of
dog, with a short and dense coat.
1: a photo of a sphynx, a type of cat, with no
coat or hair.
Attribute: ears
0: a photo of a german shorthaired, a type of
dog, with floppy ears.
1: a photo of a sphynx, a type of cat, with
large and pointed ears.
Attribute: facial features
0: a photo of a german shorthaired, a type of
dog, with a snout and a prominent nose.
1: a photo of a sphynx, a type of cat, with a

Sphynx

flat face and no visible nose bridge.

Table 17: Sample descriptions generated by GPT-3.5 for Stanford Cars

Classes Descriptions

Attribute: Dbody type
0: a photo of a 2012 hyundai veracruz suv, a
large vehicle with a high ground clearance and a
boxy shape.
1: a photo of a 2009 spyker c8 convertible, a
sleek and low-slung sports car with a convertible
top.
Attribute: number of doors
0: a photo of a 2012 hyundai veracruz suv, a
vehicle with four doors.
1: a photo of a 2009 spyker c8 convertible, a
vehicle with two doors.
Attribute: wheel design
0: a photo of a 2012 hyundai veracruz suv, with
standard alloy wheels.
1: a photo of a 2009 spyker c8 convertible, with
unique and intricate spoke wheels.
Attribute: grille design
0: a photo of a 2012 hyundai veracruz suv, with
a large and prominent grille.

2009 Spyker C8 1: a photo of a 2009 spyker c8 convertible, with

Convertible a small and distinctive grille.

23




Published as a conference paper at ICLR 2024

Table 18: Sample descriptions generated by GPT-3.5 for Stanford Dogs

Classes Descriptions

Attribute: size
0: a photo of a schipperke dog, a small breed of
dog.

1: a photo of a saint bernard dog, a large breed
of dog.
Attribute: coat color

0: a photo of a schipperke dog, with black coat
color.

Schipperke 1: a photo of a saint bernard dog, with white and
brown coat color.

Attribute: ear shape

0: a photo of a schipperke dog, with pointed ears.
1: a photo of a saint bernard dog, with droopy
ears.

Attribute: tail length

0: a photo of a schipperke dog, with a short tail.
Saint bernard 1: a photo of a saint bernard dog, with a long
tail.

Table 19: Sample descriptions generated by GPT-3.5 for FGVC Aircraft

Classes Descriptions
Attribute: size
0: a photo of an airbus a3l9 aircraft, a

commercial airliner that is much larger than a
cessna 172.

1: a photo of a cessna 172 aircraft, a small,
single—-engine plane that is much smaller than an
airbus a319.

Attribute: wing shape

0: a photo of an airbus a3l19 aircraft, with
Airbus A319 swept-back wings.
1: a photo of a cessna 172 aircraft, with

straight wings.

Attribute: engine placement

0: a photo of an airbus a3l9 aircraft, with
engines mounted under the wings.
1: a photo of a cessna 172 aircraft, with a

single engine mounted on the nose of the plane.

Attribute: cockpit windows

0: a photo of an airbus a3l9 aircraft, with a
Cessna 172 large cockpit window that extends over the top of
the plane.

1: a photo of a cessna 172 aircraft, with a
small, single-piece windshield in the cockpit.
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Table 20: Sample descriptions generated by GPT-3.5 for Places365

Classes

Descriptions

Pier

Attribute: location

0: a photo of a pier, which is located near a
body of water.
1: a photo of a plaza, which is located in a

city or town center.

Attribute: purpose

0: a photo of a pier, which is used for docking
boats and ships.
1: a photo of a plaza, which is used for public

gatherings and events.

Attribute: design

0: a photo of a pier, which is typically long
and narrow with a flat surface.

1: a photo of a plaza, which is typically
open and spacious with various features like
fountains, benches, and sculptures.

Attribute: surroundings

0: a photo of a pier, which is surrounded by
water and may have views of the ocean or other
bodies of water.

1: a photo of a plaza, which is surrounded by
buildings and may have views of city streets and
architecture.
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