Published as a conference paper at ICLR 2025

LOCAL LOSS OPTIMIZATION IN THE INFINITE WIDTH:
STABLE PARAMETERIZATION OF PREDICTIVE CODING
NETWORKS AND TARGET PROPAGATION

Satoki Ishikawa' -2, Rio Yokota', Ryo Karakida®
1 Science Tokyo 2AIST
{ishikawa, rioyokota}@rio.scrc.iir.isct.ac.jp,karakida.ryolaist.go.jp

ABSTRACT

Local learning, which trains a network through layer-wise local targets and losses,
has been studied as an alternative to backpropagation (BP) in neural computation.
However, its algorithms often become more complex or require additional hyperpa-
rameters because of the locality, making it challenging to identify desirable settings
in which the algorithm progresses in a stable manner. To provide theoretical and
quantitative insights, we introduce the maximal update parameterization (uP) in
the infinite-width limit for two representative designs of local targets: predictive
coding (PC) and target propagation (TP). We verified that ;P enables hyperparam-
eter transfer across models of different widths. Furthermore, our analysis revealed
unique and intriguing properties of P that are not present in conventional BP. By
analyzing deep linear networks, we found that PC’s gradients interpolate between
first-order and Gauss-Newton-like gradients, depending on the parameterization.
We demonstrate that, in specific standard settings, PC in the infinite-width limit
behaves more similarly to the first-order gradient. For TP, even with the standard
scaling of the last layer, which differs from classical uP, its local loss optimization
favors the feature learning regime over the kernel regime.

1 INTRODUCTION

Deep learning has achieved remarkable performance by building upon the backpropagation (BP)
algorithm and developing architectures specialized for it (Rumelhart et al., 1986; LeCun et al.,
1998; 2015). BP, however, is not always a suitable method for more general objectives, such
as biologically plausible computation (Lillicrap et al., 2020; Bredenberg et al., 2024) or efficient
distributed computation (Amid et al., 2022). A representative alternative is local loss optimization, a
type of credit assignment problem, in which loss functions are defined layer-wise, and targets are set
locally. The basic formulation involves performing regression on target signals at each layer to reduce
the global error across the entire network: Predictive Coding networks, usually referred to as PC,
generate their targets through the internal dynamics of inference (Whittington & Bogacz, 2017; Song
et al., 2020; Salvatori et al., 2023), while Target Propagation (TP) generates them using feedback
networks (Bengio, 2014; Lee et al., 2015; Ernoult et al., 2022).

In many cases, the use of local losses requires additional hyperparameters (HPs) and their careful
tuning, making the algorithm configuration significantly more complicated compared to that of BP.
For example, PC requires not only the usual HPs, such as learning rate and initialization of weight
parameters but also those for the inference phase, such as the initialization of the state and the
number of inference sequences. These HPs are primary considerations and have been reported as
critical for ensuring stable training behavior (Pinchetti et al., 2024; Alonso et al., 2024; Rosenbaum,
2022). A few analyses have succeeded in providing theoretical intuition for such local learning
algorithms by introducing specific conditions or additional corrections that bridge them to classical
optimization formulations (Song et al., 2020; Alonso et al., 2022; Meulemans et al., 2020). However,
such conditions are not always met in practice and may not be commonly shared across the entire
family of methods. To develop local learning that is more easily manageable across a broader range
of settings, it is promising to establish a theoretical foundation that enables the analysis of natural
learning dynamics under fewer constraints.

Published as a conference paper at ICLR 2025

For standard BP, deep learning theory offers insights into the universal properties of learning (Bahri
et al., 2020; Bartlett et al., 2021). A key research focus in this area is understanding learning in the
infinite-width limit, including studies on neural tangent kernel (NTK) and feature learning regimes
(Jacot et al., 2018; Chizat et al., 2019; Mei et al., 2018; Bordelon & Pehlevan, 2022b). In particular,
Yang & Hu (2021) provided a unified perspective on the parameterizations that realize these learning
regimes and proposed maximal update parameterization (4P) as a unique scaling of HPs, such as
random initialization and learning rates, that achieves feature learning in the infinite-width limit.
Building on this developing theoretical foundation, we expect to gain universal insight into local
learning, which has not yet been systematically analyzed.

In this work, we derive the pP for PC and TP and investigate hyperparameter transfer (the so-called
pTransfer) across different widths. Although pP for SGD has been previously derived, the pP
depends on the specific training algorithm, making it necessary to derive uP for each local learning
algorithm. Our contributions are summarized as follows:

* While it is known that PC inference trivially reduces to gradient computation of BP under
the fixed prediction assumption (FPA), a technical and heuristic condition, there is generally
no guarantee that PC will reduce to BP, making it highly non-trivial to identify its pP. We
first consider PC with a single sequential inference and reveal the uP even without FPA
(Theorem 4.1). We also empirically verify the pyTransfer of learning rates, showing that the
optimal learning rate does not depend on the order of width.

* Second, for a more general context involving multiple inference sequences, we consider
the convergence of the inference phase. We find that, for deep linear networks, we can
explicitly obtain the local targets and losses at the fixed point of the inference, which depend
on inference step sizes (Theorem 4.2). Interestingly, it takes a similar form to the Gauss-
Newton (GN) gradient, but it can be reduced to the conventional first-order gradient descent
(GD) depending on the parameterization and step sizes. We find that the eventual gradient
is closer to GD for sufficiently wide neural networks under standard experimental settings
with pP. We also confirm that a larger inference step size, identified through this analysis,
enhances pTransfer of HPs.

* Finally, we derive uP for both TP and its variant difference target propagation (DTP)
assuming linear feedback networks (Theorem 5.1). We reveal a distinct property that differs
from BP and PC; the feedback network of (D)TP changes the preferable scale of the last
layer compared to the usual uP and causes the absence of the kernel regime. In this sense,
(D)TP favors feature learning more strongly than other learning methods.

Thus, this study provides a solid and qualitative foundation for the further development of local
learning schemes in large-scale neural networks in the future.

2 RELATED WORK

Local learning: Most research on local learning stems from the exploration of biologically plausible
learning (Lillicrap et al., 2020), with PC and TP following this line. As deep learning has evolved,
local learning has also begun to focus on large-scale networks, and some models have achieved
performances close to those trained with BP (Ernoult et al., 2022; Ren et al., 2023). Several algorithms
are inherently structured to resemble the BP chain (Akrout et al., 2019) or to estimate first-order
gradients (Scellier & Bengio, 2017). In contrast, PC relies on an inference phase, which essentially
infers the appropriate activation values for hidden layers, and TP uses a feedback network, both
of which are quite different from BP and seem to be fundamental designs for using local targets.
However, their optimization properties are still not well understood. Alonso et al. (2022) proposed a
modified PC as a proximal point algorithm (implicit SGD), though it requires additional corrections
and adaptive rescaling (Alonso et al., 2024). Innocenti et al. (2023) proposed an inference phase
computed by a GN method, but it requires a quadratic approximation of the local loss around a special
initialization. As discussed in the next section, bridging to such classical optimization requires strong
conditions that may deviate significantly from the original purpose and algorithm (Rosenbaum, 2022;
Meulemans et al., 2020).

Infinite width and pP: While the NTK regime guarantees the existence of learning dynamics in
the infinite-width limit and its global convergence, it reduces to just a kernel method (Jacot et al.,

Published as a conference paper at ICLR 2025

2018; Lee et al., 2019). To realize feature learning in the infinite-width limit, Yang & Hu (2021)
proposed pP, which is a non-trivial scaling of HPs with respect to the width. From a theoretical
perspective, this serves as a parameterization that enables the dynamics of feature learning, such
as those described by the mean-field regime (Mei et al., 2018) or the dynamical mean-field theory
(Bordelon & Pehlevan, 2022b). For more applications, uP or its extension has been validated across
various architectures (Yang et al., 2021; Vyas et al., 2023; Everett et al., 2024). It covers not only
the naive first-order gradient but also entry-wise adaptive optimizers such as Adam (Yang & Littwin,
2023) and second-order optimization methods like K-FAC (Ishikawa & Karakida, 2024). There
has been little previous work on the infinite-width analysis of local learning. Bordelon & Pehlevan
(2022a) formulated (direct) feedback alignment and (supervised) Hebbian learning using dynamical
mean-field theory, which are rather close to BP.

3 PRELIMINARIES

In this section, we summarize local learning and pP in an L-layer fully connected neural network f:
h=¢(w), w=Wh- (=1,...,1), (1)

where W, € RMiXMi-1 are weight matrices, hy, u; € RM*N are activations and N is the number
of data samples, independent of the order of width ;. We set the width of the hidden layers to
M; =M for (I =1,...,L—1) for simplicity. To keep the notation concise, for non-linear networks,
we set M, = 1; however, we can easily generalize to M = ©(1). The activation function ¢(-) is
usually assumed to be differentiable and polynomially bounded for some theoretical reasons within
the uP framework (Yang & Hu, 2021).

3.1 OVERVIEW OF LOCAL LEARNING
3.1.1 PREDICTIVE CODING

Predictive Coding (PC) updates both the states and weights to minimize the following free-energy
function (Whittington & Bogacz, 2017; Song et al., 2020; Salvatori et al., 2023):

L1
1
Fu,W) =Ly, Weo(vr-1)) + g Il = Wi(vi1)|* . @
=1

L denotes a loss function, and both mean squared error loss and cross-entropy loss are allowed in
theory and experiments unless an explicit assumption is stated. To distinguish the internal state from
the forward signal propagation u;, we denote this state as v;. Although this algorithm was originally
derived from the variational Bayes formulation, it has been extended beyond the scope of the original
framework, aiming instead to develop inference computations that work more effectively in practice.
PC is composed of two phases: an inference phase, in which the per-layer states v; are updated and a
learning phase, in which weights 1W; are updated. Its update rule for the inference phase is given by

oF
Uls+1 = Ul,s — e vs — Yiens + Y19 (vis) o Wihieps (1< L), 3)

where we define e; 5 := v; s — Wi¢(v;_1 5) and o is the Hadamard product. From eq. (3), 7; can be
regarded as a step size for the inference phase. The update rule for the learning phase is given by

Witer = Wiy =Wt +mmersd(vi—1s) 4

OF
m oW,
Note that the inference time index s and the parameter update index ¢ are distinct with s resetting to 0
at each ¢. We usually omit the step size 7; in Eq. (S.6) in implementation. Generally, weights are
updated after multiple inference steps, while the incremental version of PC (iPC), which updates the
weights after just a single inference, has also been proposed (Salvatori et al., 2024b). The internal
state can be updated simultaneously across all layers or computed sequentially in a specified order.
In the first part of the next section, we focus on the Sequential Inference (SI) method, where ¢; s is
computed sequentially by propagating from the output layer to the input layer. For more details on
this difference, see Algorithm 1 in the Appendix.

Published as a conference paper at ICLR 2025

Empirically, to improve trainability, PC often relies on assumptions that are either rational or, at
times, unrealistic. One such reasonable assumption is the initialization method for v; o, which is used
to improve the convergence (Song et al., 2020; Alonso et al., 2022; Rosenbaum, 2022):

Technique (i): Forward initialization (F-ini). At each training step ¢, v; o is initialized such that
V1,0 = U4 , which ensures ¢; g = 0.

Generally, the gradient computation of PC does not match that of BP. However, under F-ini and
SI, it reduces to BP by adopting the following rather technical assumption (Millidge et al., 2022b;
Rosenbaum, 2022):

Technique (ii): Fixed prediction assumption (FPA). Replace ¢ (v;_1) with ¢ (v;_1 o) during the
inference phase.

Under FPA, the inference is given by e; 11 = (1 — vi)ers + y419’ (vi0) © VVlTH@lH,s- By
substituting F-ini, one can easily verify that this sequential inference computes V,,, L. In Section 4,
we reveal that the following scaling of ~;, with respect to the width M plays a fundamental role in
characterizing the feature learning of PC and a parameterization that enables stable learning even
without such heuristic techniques: B

L= /M)
with an exponent 7, and an uninteresting constant 4' > 0. A more detailed overview of PC is
provided in the extended related work (Appendix.A.1.2).

3.1.2 TARGET PROPAGATION

In target propagation (TP), hy =hp — NV, L is propagated through the feedback network, which
generates local targets h; as follows:

iLl :gl(iLH»l)u gl(x) :¢(Ql$) (l = 17"'3L_]-)7 (6)
where @; € RMi-1XM: are weight matrices, 1/(-) is an activation function of the feedback network.
We also analyze the Difference Target Propagation (DTP), a variant of TP, whose definition is
provided in the appendix. The feedback network is trained to minimize the following reconstruction

loss:

Lree(Q1) = llgr (filhi-1)) = i1l (N
where f(x) = ¢(W;x). TP updates the weights W, to minimize the following local loss | ¢;||? :=
(|4 — h||2. The gradient of this local loss provides the update rule for the learning phase as Wiis1 =
Wi —me' (Wi thi—1) o €lhl—r_1~ For a so-called invertible network, TP computes the Gauss-Newton
Target (GNT), i.e., eNT = (8,6," + pI)~16,er, where §; = V,,uy, is the BP signal (Meulemans
etal., 2020) ' and e;, = y — hp, is the error vector. Note that the assumption of the invertible network
is restrictive because the invertible network requires invertible activation functions, regular weight
matrices, and the training tp converge to the solution of g; (ﬁl+1) = fljrll (iLl+1) = lerll(ﬁ_l (Bl+1).
For general networks, (D)TP does not necessarily lead to the GNT.

Remark on a connection between PC and TP. Some previous studies have argued that PC yields
GNT-like solutions, and thus can be connected to TP (Alonso et al., 2022; Millidge et al., 2022a).
These works attempt to gain an intuitive insight from the fixed point equation for each layer:

, —1 % *
hi = WiaWia + /) (Wikahiv + e /aWiki_y) 3

where hf means ¢(v;). For 11/ < 1, we approximate h; ~ W h, ;. If we multiply this

I+1
approximation across layers, the naive expectation is that b} ~ Hf: 41 Wje’i, which corresponds to
the GNT for linear networks. Thus, we can intuitively see that the PC may be linked to the GNT,
although its exact connection requires careful limit operations across layers. Additionally, taking
the limits ;41 /v < 1 for all layers means the exponential decay of +; with depth, raising concerns
regarding its practical relevance. For v; = 1, Innocenti et al. (2024) has recently derived an explicit
formulation of the free energy at the fixed point using an unfolding calculation of a hierarchical
Gaussian model. This formulation shows that the obtained gradient differs from that of the exact

GNT, supporting the idea that the connection to GNT would be weak.

'The final gradient dF /dW; is equivalent to the special case of K-FAC (Martens & Grosse, 2015) where the
preconditioners are applied only to the backward signals.

Published as a conference paper at ICLR 2025

Table 1: Parameterization for weight initialization scale: b; and learning rate scale: ¢;. Predictive
Coding (PC) with 41, = 0 reduces to SGD’s pP, while one with 4, = —1 reduces to uP for Gauss
Newton Target (GNT). TP (Target Propagation) has the distinctive property of by, = 1/2.

Layer SP (Default) SGD (2021) GNT (2024) PC (New) TP (New)

Input (07 O) (07 _1) (07 O) (0’ —YL — 1) (Oa 0)
Ouput (1/2,0) (L1) (1) Ly (12

3.2 uP AND LEARNING REGIMES

The abc-parameterization {a;, by, ¢; }, -, determines the scaling of weights and learning rates at
initialization. It scales the parameters by width as follows (Yang & Hu, 2021):

lewl/MC”, wlNN(O,O’/Q/M%l), nlznZ/Mcl. ©)]

1P and its conditions: Consider the temporal change of u; by the parameter update:
A’U,l’t =AUt — U0 = @ (1/M”) s (10)

where O(-) denotes the order with respect to the width and x = ©(M®) means +/||z||2/M = ©(M*?)

for x € RM The training dynamics and parameterization are referred to as stable when u, ¢ neither
vanish nor explode as the network width increases and Ah; ; do not explode as the network width
increases (Definition A.2). Yang & Hu (2021) introduced the following conditions and characterized
1P as a unique stable abc-parameterization under them:

Condition 3.1 (W; updated maximally). AW, h;_1, = O(1) where AW, , := W, — W,.
Condition 3.2 (W, initialized maximally). Wy, gAur_1, = O(1).

These conditions imply m; = 0 for all layers and feature learning. In contrast to this feature
learning regime, the previous work refers ;7 > 0 and r;, = 0 as the kernel regime. The NTK
parameterization corresponds to the kernel regime with r;;, = 1/2 Note that the original derivation
of the parameterization that satisfies the above conditions is based on the first (infinitesimal) one-step
update of the parameters (Yang & Hu, 2021; Ishikawa & Karakida, 2024) (see Section A.2). Our
work also follows the same approach.

1P for Gauss-Newton Target: The following work has recently derived the P scaling, including
both first-order and second-order optimizations.

Proposition 3.3 (Ishikawa & Karakida (2024)). Consider the first one-step update by the GNT:
Wiy = Wl,o—nl¢’(m7thl_1)o(515?—l—pI)*eB(Sldiag(eL)hltl where 6; = V,,,ur, and e, = y—hr.
In the infinite-width limit, this update admits the P for feature learning at

{91 =ep—1, bracp=ep, OL=1
b1 =0, bicicr =1/2, b =1,
where 0; := 2a; + ¢;. We obtain uP of SGD for eg = 0, and that of GNT for e = 1.

(11)

More precisely, we can also allow by, > 1 for the feature learning regime. However such initialization
reduces to the case of by, = 1 in the next parameter update. Thus, we can summarize it as by, = 1.
The scaling of b;, = 1 implies that a smaller initialization is required compared to the standard
parameterization (SP), which is PyTorch’s default, for sufficiently wide neural networks. It can also
be immediately verified that we can set a; = 0 due to shift invariance without loss of generality. In
Table 1, we summarize the uP from previous work and our results obtained in the following sections.

4 FEATURE LEARNING OF PREDICTIVE CODING

4.1 pP OF PC WITH SINGLE-SHOT SEQUENTIAL INFERENCE

As noted in section 3.1.1, PC involves such techniques as F-ini, FPA and SI, which must be clearly
distinguished when deriving the pP. It is well-established that when F-ini, SI, and FPA are all assumed,

Published as a conference paper at ICLR 2025

SP muP for SGD SP muP (5 =0) muP (. = —1)

. . width
128
256
512
1024
2048
4096
8192

80

70

60

Test Acc (w FPA)

Test Acc (w/o FPA)

50 . .
—22.5-20.0-17.5 =20 —15 —10 —22.5—-20.0 —-15 —10 —15 —10

log, LR logy LR logy LR logy LR logy LR

Figure 1: ;P enables the transfer of learning rates across widths. (Left) PC reduces to SGD when
F-ini, FPA, and SI are applied. In fact, using the uP of SGD, learning rates are successfully transferred
across different widths. (Right) Even without FPA, our P of PC also allows pTransfer across widths.
In this case, inference is performed only once, and the difference in test accuracy between 7y;, = 0
and 47, = 1 is small. Both figures show results with a 3-layer MLP on FashionMNIST.

PC reduces to the gradient computation of BP, and the pP matches that of standard BP. Figure 1 shows
that when F-ini, FPA, and SI are applied, the P of BP can be directly transferred to PC and leads to
learning rate transfer across width. However, this may not hold for general PC and BP as there is no
guarantee of their equivalence. To explore this, we first remove FPA. Although initialization (F-ini)
and sampling (SI) are inherently arbitrary, the justification for FPA is unclear from both machine
learning and biological perspectives. In PC without FPA, we find the pP as follows:

Theorem 4.1 (1P for PC (informal)). Let the inference step sizes be v« = O(1) and vy, = ~' /M~
with a positive constant '. Consider the first one-step update of the learning parameters after a first
single-shot SI with F-ini. Then, PC admits the uP for feature learning at

{91 =—L—-1, O =-720, O—r=1, (0, =2a+¢q)

12
by =0, bep=1/2, by=1 (12)

Rough sketch of the derivation. Section B.1 of the Appendix presents a detailed and comprehensive
derivation. It is based on the perturbation approach, which applies to general networks with nonlinear
activation functions. This method is inspired by the previous work that derived the uP by evaluating
Conditions 3.1 and 3.2 using the perturbations, such as 0, (AW 1h;—1,1) . O(1). This allows

for a systematic and transparent derivation. In PC, we extend the perturbation argument to the
inference step size and require

Ovyr Oy (AW 1hy—11)

o(1), (13)

n'=~'=0 =
which is an example of Condition 3.1 for the hidden layer. Under the assumption of F-ini (e; o = 0),

by putting §; = V,,ur, ((< L)and 6, =y — Wrvp_1,0, we obtain u; 1 — u0 = — HiL:l-H 01,
and
L L

e = (uo — Hz’:l—H Yi01) — d(Wio(ui—1,0 — Hi:l Yi0i-1))- (14)

For the hidden layers, the perturbation term (13) becomes M *(eﬁﬂ)(fél + ¢'(Wiuj—1,0) ©
Wl5l—1)h?,170hl—1,o and we obtain §; + 5, — 1 + (ar, + bz,) = 0. We can similarly evaluate
the other layers. The last condition, by, = 1, comes from Condition 3.2. We can derive the NTK
parameterization of PC in the same way.

As Figure 1 demonstrates, the obtained pP supports pTransfer in PC without FPA. Note that y/Transfer
is defined as satisfying both conditions: the optimal learning rate can be set independently of the order
of width, and the empirical rule that ‘wider is better’ holds (Yang et al., 2021). This means that the
optimal hyperparameters tuned for smaller-width models can be effectively re-used in larger-width
models. Additionally, consistent with previous work, we observed the empirical rule of “wider is
better” in uP (Yang et al., 2021), where test accuracy improves as the network width increases. The
derivation of uP through a one-step update can be immediately generalized to cross-entropy loss in
the same way as for yP of naive gradient descent. Thus, pTransfer can similarly be observed for
cross-entropy loss, as shown in Appendix (Figure S.5).

Published as a conference paper at ICLR 2025

1.00 1.0 (/fm 1.00 < 1.00 width
- = 128
g 5 0.9]
@ 0% a " 0.98 .w;r‘ A 0.98 256
@ 08 / / L A o 512
6 0.90 J / 'f, 1)
0.7 0.96 - g 096 — 1024
0.85 4 « g — 2048
23 27 26 29 —1.0 —0.5 0.0 @ 094 .
5 4096
a 'y b y c B 8
(a) M, (b) M, (c) o g <109
—e- BP Layerl CN Layerl =A= BP Layer2 =#=— GN Layer2 e e 00
L

Figure 2: (Left) Comparison of gradients with the analytical solution of a linear network. We
measured the cosine similarity between the gradients analytically derived in Theorem 4.2 and the
BP gradients or GN gradients for each layer. (a) As M}, approaches 1, PC’s gradient converges to
BP’s. (b) As M increases, the PC gradient approaches BP’s. (c) 71, = 0 yields gradients closer to
BP gradient (which means SGD in this experiment) compared to 47, = —1. (Right) In a nonlinear
MLP, PC’s gradient also approaches BP’s when 7, = 0.

Thus far, when considering the parameter gradients, it appears that 4, as a free parameter can be
absorbed into the learning rate, allowing the feature learning dynamics to remain stable. However,
as the following analysis shows, vz, modifies the preconditioning of the computed gradients, which
may influence pTransfer of both ~;, itself and the learning rate. The analysis also demonstrates the
validity of setting v, = ©(1).

4.2 ANALYSIS WITH LINEAR NETWORK

In the previous section, we derived the uP under the assumption that inference is performed only
once using F-ini and SI. However, in practice, the inference phase typically involves multiple update
steps. To address this, we found that it is possible to explicitly derive the following general solutions
(fixed points) of the inference phase for linear networks. See Section B.2 for the derivation.

Theorem 4.2. Suppose an L-layered linear network and a mean squared error loss L(y, Wrvr_1),
and put ef = v; — Wiv_,, with x denoting the fixed point of the inference process (3). The following
holds:

L
i = LWL+ C V) Wiaz =y, CW) = 3 WL, W, (19)
i=2 "'
-1

of = Wiaz + (%Wlm + 37 B WL W)+ O (W) y — f)- (16)
i=2 "7

—)
andef =y —Wpvi_y =1+ C,(W))*(Wrax —y) where Wr; = W Wir_y..W,.

1

From this general solution, we can also confirm the following property of the infinite width.

Corollary 4.3. Suppose the setting of Theorem 4.2, v, 1, = O(1) and the random weights given by
wPi.e, ar + by = 1. In the infinite-width limit, the PC’s gradient reduces to the first-order GD for
i = O(1). For v, = ©(M), the preconditioner part C., remains of order 1.

The exact solutions e; provide much clearer insight into the gradient computation compared to Eq.
(8), which was previously argued but not explicitly solved. First, it becomes evident that PC does
not generally coincide with GNT. Consequently, PC is also generally different from TP. In fact, PC
coincides with GNT only for the input layer in a shallow network (i.e., L = 2), where the update
vector for PC corresponds to a GNT update with a damping term. Although PC does not entirely
coincide with GNT, it is noteworthy that the scaling of ¢; in uP for 47, = —1 matches that of GNT. In
contrast, for 7, = 0, the PC’s gradient aligns with the first-order GD. Because the preconditioner part
scales as Cy = O(1/M) in the infinite-width limit, we observe that ej = ¢;, which reduces to the
first-order GD. Naturally, 1P matches that of first-order GD in this case. Intuitively, v, reflects how
effectively the last layer’s error propagates downward. Like linear regression, the last layer’s inference
solution inherently involves an inverse matrix. Thus, when ~y, is larger than other ~; values, the last
layer’s representation is computed first and propagated downward, making the solution resemble
GNT.

Published as a conference paper at ICLR 2025

Loss after inference = . With F-ini Without F-ini

/8\ ; - 13 7 8 70

o ol - 16 2 muP

5 \f\ [- < s 60 = =0

=27 "9 12y muP

= -®- -1.0 © -

= - o 08 < 75 50 Gz =-1)

% -0 06 —— NTK

= 04 G 79 40 —-@— SP

2.5 5.0 7.5 10.0 12.5 83 210 912 510 12
10g‘2 A[l . My 1 My _4

Figure 3: (Left) v, = —1 steadily reduces the local loss as width increases. We observed the
inference loss in a randomly initialized linear network for various 7y,. For 7y, = —1, the inference

loss consistently decreases with increasing width. (Right) The "'wider is better'' trend holds for
pP with v, = —1. With F-ini, this trend holds for uP regardless of the 7, value. However, without

F-ini, the benefits of 7, = —1 become particularly prominent.
SP P (L =0 P (7L =-1 (1 g) i >
muP (5, = 0) muP (5.,) . Ahy (input) Ahy (hidden) ey
—~ 80 : . . wi 1.00
E 5 " 4 ;
= x = 16

g : : 0.75
o 5 . 8
= 60 5 ; < — 32
3 : 16 4 0.50 64
o 40 32 0.25 — 128
Ho . 64

20 128 0.00

—20 —15 —10 —15 —10 —15 —10 0 20 400 20 10
logy LR log, LR logy LR Epoch Epoch

Figure 4: (Left) uP can transfer the learning rate across widths (without F-ini). We trained a
3-layer CNN on FashionMNIST with 100 inference iterations. Without F-ini, the stability of the
inference becomes more crucial. As a result, unlike the single-shot SI with F-ini shown in Figure 1,
the stability provided by 47, = —1 becomes critical. Note that additional experiments under different
settings, including those with VGGS5 (Figure S.3) and cross-entropy loss (Figure S.5), are presented
in Section D.1.2 of the Appendix. (Right) A/ remains consistent across widths during training.
We confirm that the condition Ah = ©(1) required by uP holds throughout the training.

Second, the order of e} in the analytical solution for the linear network matches the order of e; ;
as derived in Theorem 4.1. Therefore, this theorem implies that in linear networks, the uP of PC
would remain unchanged regardless of the presence of F-ini or the number of inference iterations.
Moreover, as proved in Section B.2.3, the orders of e; and e; 1 align only when v,z = ©(1). In
practical settings with multiple inferences, it is desirable for the uP to be consistent both after a single
inference and after the inference has fully converged. Therefore, setting 7,7, = ©(1) is reasonable.

Additionally, we found that the dimension of the last layer plays a key role in determining the
similarity between PC and BP. According to the solution for linear networks, when My = 1, the
PC’s gradient aligns with GD. Figure 2 shows numerical results confirming that for M; = 1, the
gradient direction always corresponds to GD, and for M, >> M, = O(1), the gradient approaches
GD as well. We observed that both GN and BP get much closer to each other for sufficiently large
widths. In other words, even when we realize GNT by setting 47, = —1, it has a quite close direction.
A detailed view of the cosine similarity at the large width is shown in Figure 2(c). This result seems
reasonable because in the context of second-order optimization, it has also been reported that GNT
tends to collapse into an identity matrix owing to damping (Benzing, 2022). In summary, while PC’s
gradient switches between first-order GD and GNT depending on the parameterization, it is important
to highlight that GNT behaves similarly to GD in the infinite-width limit.

As a minor extension, we can also analyze the nudge-type loss of PC defined by Eq. (S.10) (Alonso
et al., 2022; Millidge et al., 2023; Pinchetti et al., 2024). In this case, the damping term I in Eq. (15),
is replaced by (1 + 7/3)I. Thus, the dependence on the parameterization remains essentially the
same as that of the naive PC. Further discussion on nudge-type PC can be found in Appendix B.2.4.

4.3 STABILITY OF INFERENCE PHASE

To ensure feature learning in SGD, the P framework requires stable activations, i.e., Au;<z, = O(1).
It seems natural to apply this requirement to the inference phase of PC. That is, let us suppose u;<r, s

Published as a conference paper at ICLR 2025

SP muP (3, =0)muP (7, = —1) SP muP (3, =0)muP (3, = —1)
with ;=1 Wlth yi=1 with ;=1 with v;=1e-2 with v;=1e-2 with y;=1e-2 width
2 80
= 128
£ 60 256
Q —
< 4o 512
- ﬂ — 1024
Hg 20 — 2048
10 —10 10 —10 0 10 0 10 = 4096
log2 L 1082 L 108;2 7L log2 L logy 77, logy 77, — 8192
Figure 5: yP with 7; = —1 performs consistently well, regardless of +;. When ~; is small

(71 = 0.01), uP with 4, = 0 performs poorly, while uP with 4, = —1 shows significantly better
performance. This difference is likely due to slower inference convergence in P with 47, = 0. For
larger values of v; (y; = 1), both uP configurations exhibit high accuracy. However, for yP with
1 = 0, vz does not transfer effectively across widths, whereas P with 47, = —1 demonstrates the
successful transfer of vy, across widths.

varies by ©(1) during the inference. Note that in Eq.(3) at L —1, the feedforward signal from the lower
layer is yr_1er—1,s = O(1), and the error feedback from the last layer is v, ¢ (up—1,s)© W;eL,S =
S (1 JMLtbr) Both terms should be of order O(1) for the inference to successfully merge both
feedforward and feedback signals. When b;, = 1, this condition requires v;, = O(M), and we
can expect the local loss in the last layer ey, to decrease most prominently during the inference.
Additionally for ;7 = (1), the inference remains stable for layers [< L — 1. Empirical results
in Figure 3 (left) confirm that when 7y, = —1, the inference loss decreases consistently as the width
increases, verifying that the “wider is better”” hypothesis holds even in inference. This facilitates the
hyperparameter transfer of +;, for the inference dynamics.

We also observe the benefits of using 7, = —1 for the parameter updates. Without F-ini, the
convergence of inference usually deteriorates for SP, making inference stability especially critical in
this scenario. As shown in Figure 3 (right), the “wider is better” trend holds with F-ini regardless of
~1. However, without F-ini, this trend holds only when 4, = —1. Figure 4 demonstrates that the
pTransfer of the learning rate holds for 4, = —1. Additionally, Figure 5 indicates that y;, = —1 is
also preferable from the perspective of pTransfer of .

5 FEATURE LEARNING OF TARGET PROPAGATION

5.1 uPoOFTP

As overviewed in Section 3.1.2, TP reduces to GNT in the highly restrictive case of invertible
networks. However, TP is not equivalent to GNT or BP in general cases (Meulemans et al., 2020;
Ernoult et al., 2022). While TP involves two networks trained using different manners, and one may
feel it challenging to obtain a stable parameterization for learning, we demonstrate that, under the
assumption that the feedback network uses a linear activation function v, we can systematically
derive uP for both TP and DTP.

Theorem 5.1 (P for TP and DTP (informal)). Consider a linear feedback network. The forward
network is allowed to have nonlinear activation functions. After the first training phase of Q,, take
the first one-step update of W. Then, we obtain uP as follows:

{61 =0, cici<r =1, cr=1,

17
b1:0, bl<l<L:]./27 bL:1/2 ()

The derivation is presented in Section C.1. Note that the linear feedback network has trained weights
in a pseudo-inverse form, that is, Q7 = hy_1(h; by + uI)~1h; . Stable parameterization can also be

discussed for the training of the feedback network. For further details, see Section C.2.

As demonstrated in Figure 6, using the pP for TP results in the pTransfer appropriately across widths.
Furthremore, Figure S.14 in Appendix tracks Ah; during training. In uP, Ah; remains consistent
across different widths, whereas in SP, Ah; either diverges or diminishes as the width changes.

Published as a conference paper at ICLR 2025

SP muP . BP DTP
ekl o 10 param
80 12812 0o SP
. 256 = I
3 2 08 —
< 70 512 % (TP)
i — 1024 E o7 muP
& 60 — ooug Xos (SGD)
= muP
— 4096 o0 05 /N T (GNT)
50 ' —_ <= 04
—25 0.0 25 50 —25 00 25 50 8192 o g1t g g0 i
log, LR log, LR 16384 width width

Figure 6: (Left) uP can transfer the learning rate across widths in TP. (Right) TP does not
have kernel regime. We measured wy, = 1og;(||Wr.0Ahr—1,7|lrMs/|WL.ollrMs || AhL—1,7]rRMS)
across different parameterizations following Everett et al. (2024). In the infinite-width limit, wy,
converges to «. Therefore, in TP, where wy, remains fixed at 1/2 even as the width increases, the
kernel regime disappears.

5.2 DISAPPEARANCE OF THE KERNEL REGIME

It is notable that 1P in the previous work on the gradient methods requires by, = 1; in TP, 4P requires
by, = 1/2. For the usual gradient methods, a stable parameterization with by, = 1/2 leads to the
kernel regime. This raises the question: does a kernel regime exist in TP? Interestingly, in TP, the
kernel regime disappears (see Corollary C.1 for the details).

Rough sketch of derivation. Condition 3.2 must hold to achieve stable learning in the hidden layers.
Note that this condition is required in both the feature learning and kernel regimes. By expressing
Ahp_1 =0(1/M"), we obtain

ar, +bp +r—a=0. (18)

When the inner product Wy Ahy,_; follows the Law of Large Numbers (LLN), & = 1, and when
it follows the Central Limit Theorem, o = 1/2 (Everett et al., 2024). Additionally, to prevent the
output of the last layer from exploding, it is necessary that h;, = O(1), that is, ar, + by, > 1/2.
Consequently, 7 < o — 1/2. In BP, the dependence between Wi, and Ahy,_4 results in & = 1 by the
LLN. We have r < 1/2, allowing for the kernel regime. In contrast, in TP, updating the feedforward
network weights does not induce a dependence between Wp, and Ahy,_1, leading to o« = 1/2. This
is because the gradient is computed based on the feedback weight Q% = hy,_1(h hr + pl)~th],
rather than Wp,. Consequently, » < 0 and the kernel regime cannot be achieved in TP.

Figure 6 empirically confirms o = 1/2 in TP. TP seems to be the first example in the infinite-width
limit where by, = 1/2 induces feature learning.

6 CONCLUSION

In this work, we revealed uP for local loss optimization that can effectively scale toward the infinite
width in a stable manner, supported by our analysis of linear networks. Our study covers two of
the most fundamental settings: the local targets computed during the inference phase (i.e., PC) and
the feedback network (i.e., TP). Although neither method generally reduces to BP or GNT, making
gradient computation non-trivial, we identified the ©P and highlighted its intriguing properties, such
as the gradient switching depending on the parameterization and the disappearance of the kernel
regime. Additionally, we empirically confirmed that the derived pP facilitates hyperparameter transfer
across widths.

Limitation and future direction. The derivation of yP assumes a one-step gradient and linear
networks, although this prerequisite is not unique to our work (Yang & Hu, 2021; Yang et al., 2024).
Ensuring the existence of feature learning dynamics for more general steps in the infinite width
limit would require the development of a tensor program. However, handling the dependencies
between variables that differ from standard BP, such as those arising from the inference phase and
feedback pass, is non-trivial and presents an interesting direction for future research. Additionally,
it would also be valuable to explore the learning dynamics of local learning and its convergence
properties by extending the infinite width theory or further analyzing linear networks. We believe
that understanding the universal behavior of large-scale limits will provide a foundation for the
development of more effective algorithms.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work is supported by JST FOREST (Grant No. JPMJFR226Q) and JSPS KAEKENHI (Grant
Nos. 22H05116, 23K16965). S.I. and R.Y. also acknowledge support from JST CREST Grant
Number JPMJCR2112.

REFERENCES

Mohamed Akrout, Collin Wilson, Peter Humphreys, Timothy Lillicrap, and Douglas B Tweed. Deep
learning without weight transport. In Advances in Neural Information Processing Systems, 2019.

Nicholas Alonso, Jeffrey Krichmar, and Emre Neftci. Understanding and improving optimization
in predictive coding networks. In AAAI Conference on Artificial Intelligence, volume 38, pp.
10812-10820, 2024.

Nick Alonso, Beren Millidge, Jeffrey Krichmar, and Emre O Neftci. A theoretical framework for
inference learning. In Advances in Neural Information Processing Systems, 2022.

Ehsan Amid, Rohan Anil, and Manfred Warmuth. Locoprop: Enhancing backprop via local loss
optimization. In International Conference on Artificial Intelligence and Statistics, pp. 9626-9642.
PMLR, 2022.

Yasaman Bahri, Jonathan Kadmon, Jeffrey Pennington, Sam S Schoenholz, Jascha Sohl-Dickstein,
and Surya Ganguli. Statistical mechanics of deep learning. Annual Review of Condensed Matter
Physics, 11(1):501-528, 2020.

Peter L Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: a statistical viewpoint.
Acta Numerica, 30:87-201, 2021.

Y Bengio. Deriving differential target propagation from iterating approximate inverses.
arXiv:2007.15139, 2020.

Yoshua Bengio. How auto-encoders could provide credit assignment in deep networks via target
propagation. arXiv:1407.7906, 2014.

Frederik Benzing. Gradient descent on neurons and its link to approximate second-order optimization.
In International Conference on Machine Learning, pp. 1817-1853. PMLR, 2022.

Blake Bordelon and Cengiz Pehlevan. The influence of learning rule on representation dynamics in
wide neural networks. In International Conference on Learning Representations, 2022a.

Blake Bordelon and Cengiz Pehlevan. Self-consistent dynamical field theory of kernel evolution in
wide neural networks. In Advances in Neural Information Processing Systems, 2022b.

Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. How feature learning can improve neural
scaling laws. arXiv:2409.17858, 2024.

Colin Bredenberg, Ezekiel Williams, Cristina Savin, Blake Richards, and Guillaume Lajoie. For-
malizing locality for normative synaptic plasticity models. In Advances in Neural Information
Processing Systems, 2024.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
In Advances in Neural Information Processing Systems, 2019.

Maxence M Ernoult, Fabrice Normandin, Abhinav Moudgil, Sean Spinney, Eugene Belilovsky,
Irina Rish, Blake Richards, and Yoshua Bengio. Towards scaling difference target propagation
by learning backprop targets. In International Conference on Machine Learning, pp. 5968-5987.
PMLR, 2022.

Katie E Everett, Lechao Xiao, Mitchell Wortsman, Alexander A Alemi, Roman Novak, Peter J Liu,
Izzeddin Gur, Jascha Sohl-Dickstein, Leslie Pack Kaelbling, Jachoon Lee, and Jeffrey Penning-
ton. Scaling exponents across parameterizations and optimizers. In International Conference on
Machine Learning, 2024.

11

Published as a conference paper at ICLR 2025

Karl Friston. Learning and inference in the brain. Neural Networks, 2003.

Karl Friston. A theory of cortical responses. Philosophical transactions of the Royal Society B:
Biological sciences, 2005.

Mario Geiger, Leonardo Petrini, and Matthieu Wyart. Perspective: A phase diagram for deep learning
unifying jamming, feature learning and lazy training. arXiv:2012.15110, 2020.

Stephen Grossberg. Competitive learning: From interactive activation to adaptive resonance.
Cognitive science, 1987.

Francesco Innocenti, Ryan Singh, and Christopher Buckley. Understanding predictive coding as a
second-order trust-region method. In ICML Workshop on Localized Learning, 2023.

Francesco Innocenti, El Mehdi Achour, Ryan Singh, and Christopher L Buckley. Only strict saddles
in the energy landscape of predictive coding networks? In Advances in Neural Information
Processing Systems, 2024.

Satoki Ishikawa and Ryo Karakida. On the parameterization of second-order optimization effective
towards the infinite width. In International Conference on Learning Representations, 2024.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in Neural Information Processing Systems, 2018.

Ido Kanter and Haim Sompolinsky. Associative recall of memory without errors. Physical Review
A, 35(1):380, 1987.

Ryo Karakida and Kazuki Osawa. Understanding approximate fisher information for fast convergence
of natural gradient descent in wide neural networks. In Advances in Neural Information Processing
Systems, volume 33, pp. 10891-10901, 2020.

Axel Laborieux, Maxence Ernoult, Benjamin Scellier, Yoshua Bengio, Julie Grollier, and Damien
Querlioz. Scaling equilibrium propagation to deep convnets by drastically reducing its gradient
estimator bias. Frontiers in Neuroscience, 15:633674, 2021.

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Miiller. Efficient backprop. In Neural
Networks: Tricks of the Trade, pp. 9-50. Springer, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436-444,
2015.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation.
In Machine Learning and Knowledge Discovery in Databases, pp. 498-515. Springer, 2015.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. In Advances in Neural Information Processing Systems, 2019.

Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Akerman, and Geoffrey Hinton. Backprop-
agation and the brain. Nature Reviews Neuroscience, 2020.

James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored approximate
curvature. In International Conference on Machine Learning, pp. 2408-2417. PMLR, 2015.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of
two-layer neural networks. Proceedings of the National Academy of Sciences, 115:E7665-E7671,
2018.

Alexander Meulemans, Francesco Carzaniga, Johan Suykens, Jodo Sacramento, and Benjamin F
Grewe. A theoretical framework for target propagation. In Advances in Neural Information
Processing Systems, 2020.

Beren Millidge, Yuhang Song, Tommaso Salvatori, Thomas Lukasiewicz, and Rafal Bogacz. A
theoretical framework for inference and learning in predictive coding networks. arXiv:2207.12316,
2022a.

12

Published as a conference paper at ICLR 2025

Beren Millidge, Alexander Tschantz, and Christopher L Buckley. Predictive coding approximates
backprop along arbitrary computation graphs. Neural Computation, 2022b.

Beren Millidge, Yuhang Song, Tommaso Salvatori, Thomas Lukasiewicz, and Rafal Bogacz. Back-
propagation at the infinitesimal inference limit of energy-based models: Unifying predictive
coding, equilibrium propagation, and contrastive hebbian learning. In International Conference on
Learning Representations, 2023.

Lorenzo Noci, Alexandru Meterez, Thomas Hofmann, and Antonio Orvieto. Super consistency of
neural network landscapes and learning rate transfer. In Neural Information Processing Systems,
2024.

Luca Pinchetti, Chang Qi, Oleh Lokshyn, Gaspard Olivers, Cornelius Emde, Mufeng Tang, Amine
M’ Charrak, Simon Frieder, Bayar Menzat, Rafal Bogacz, et al. Benchmarking predictive coding
networks—made simple. arXiv:2407.01163, 2024.

Shikai Qiu, Andres Potapczynski, Marc Anton Finzi, Micah Goldblum, and Andrew Gordon Wilson.
Compute better spent: Replacing dense layers with structured matrices. In International Conference
on Machine Learning, 2024.

Rajesh PN Rao and Dana H Ballard. Predictive coding in the visual cortex: a functional interpretation
of some extra-classical receptive-field effects. Nature neuroscience, 1999.

Mengye Ren, Simon Kornblith, Renjie Liao, and Geoffrey Hinton. Scaling forward gradient with
local losses. In International Conference on Learning Representations, 2023.

Robert Rosenbaum. On the relationship between predictive coding and backpropagation. Plos One,
17(3):¢0266102, 2022.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533-536, 1986.

Tommaso Salvatori, Ankur Mali, Christopher L Buckley, Thomas Lukasiewicz, Rajesh PN Rao, Karl
Friston, and Alexander Ororbia. Brain-inspired computational intelligence via predictive coding.
arXiv:2308.07870, 2023.

Tommaso Salvatori, Luca Pinchetti, Amine M’ Charrak, Beren Millidge, and Thomas Lukasiewicz.
Predictive coding beyond correlations. In International Conference on Machine Learning, 2024a.

Tommaso Salvatori, Yuhang Song, Yordan Yordanov, Beren Millidge, Lei Sha, Cornelius Emde,
Zhenghua Xu, Rafal Bogacz, and Thomas Lukasiewicz. A stable, fast, and fully automatic
learning algorithm for predictive coding networks. In International Conference on Learning

Representations, 2024b.

Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between energy-
based models and backpropagation. Frontiers in Computational Neuroscience, 11:24, 2017.

Yuhang Song, Thomas Lukasiewicz, Zhenghua Xu, and Rafal Bogacz. Can the brain do
backpropagation?—exact implementation of backpropagation in predictive coding networks. In
Advances in Neural Information Processing Systems, 2020.

Nikhil Vyas, Alexander Atanasov, Blake Bordelon, Depen Morwani, Sabarish Sainathan, and Cengiz
Pehlevan. Feature-learning networks are consistent across widths at realistic scales. In Advances
in Neural Information Processing Systems, 2023.

James CR Whittington and Rafal Bogacz. An approximation of the error backpropagation algorithm
in a predictive coding network with local Hebbian synaptic plasticity. Neural Computation, 29(5):
1229-1262, 2017.

Greg Yang. Tensor programs II: Neural tangent kernel for any architecture. arXiv:2006.14548, 2020.

Greg Yang and Edward J. Hu. Feature learning in infinite-width neural networks. In International
Conference on Machine Learning, volume 139, pp. 11727-11737. PMLR, 2021.

13

Published as a conference paper at ICLR 2025

Greg Yang and Etai Littwin. Tensor programs IVb: Adaptive optimization in the infinite-width limit.
In International Conference on Learning Representations, 2023.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural networks via zero-shot
hyperparameter transfer. In Advances in Neural Information Processing Systems, 2021.

Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Feature learning in infinite-depth neural
networks. In International Conference on Learning Representations, 2024.

14

Published as a conference paper at ICLR 2025

Appendices

A EXTENDED BACKGROUND
A.1 EXTENDED RELATED WORK

Table S.1 : List of Abbreviations

Abbreviation Full Name Reference
BP BackPropagation -

SGD Stochastic Gradient Descent -

GNT Gauss Newton Target Proposition 3.3
up Maximal Update Parameterization Definition A.5
NTK Neural Tangent Kernel -

HP HyperParameter -

PC Predictive Coding Section 3.1.1
F-ini Forward initialization Technique i
FPA Fixed prediction assumption Technique ii
TP Target Propagation Section 3.1.2
DTP Difference Target Propagation EqS.13

A1l pP

While yP was introduced as a parameterization to induce a feature-learning regime in the infinite-
width limit for theoretical interest (Yang & Hu, 2021), one practical advantage highlighted by Yang
et al. (2021) is its ability to transfer the learning rate across different widths, a phenomenon they
experimentally validated. This phenomenon, known as pTransfer, has also been examined from a
theoretical perspective (Noci et al., 2024). Another notable advantage of uP is the improvement in
the scaling law exponent, which has been investigated both experimentally (Qiu et al., 2024) and
theoretically (Bordelon et al., 2024).

It is noteworthy that ;P depends on the learning algorithm used and thus should be derived for
each specific method. The pP for Adam was introduced in Yang et al. (2021), with its theoretical
justification provided in Yang & Littwin (2023). For the second-order optimization, including the
Gauss-Newton algorithm, K-FAC, and Shampoo, the uP was derived in Ishikawa & Karakida (2024).
These works emphasize the importance of adjusting not only the learning rate but also the damping
term in second-order optimization using uP. Additionally, P was derived for Adafactor in Everett
et al. (2024) and empirically demonstrated that the scaling of the € term in Adam is also crucial in pP.

A.1.2 PREDICTIVE CODING

Recent progress in deep learning has largely been achieved by the success of backpropagation (Rumel-
hart et al., 1986; LeCun et al., 1998; 2015). This success has increased the interest in exploring
whether deep networks can also be trained using training algorithms other than backpropagation.
This includes exploration into biologically plausible training methods and the benchmarking of
local learning rules at modern-scale networks on deep-learning benchmark datasets; equilibrium
propagation (Scellier & Bengio, 2017; Laborieux et al., 2021), target propagation (Bengio, 2014;
Lee et al., 2015), predictive coding (Whittington & Bogacz, 2017; Song et al., 2020; Salvatori et al.,
2023), and forward-forward algorithms (Ren et al., 2023).

Computation of predictive coding for supervised learning: Predictive coding was originally
introduced as an algorithm for solving inverse problems where the goal is to find the parameters
W that maximize the marginal likelihood p(vy; W) where vy, denotes a variable representing the

15

Published as a conference paper at ICLR 2025

network output and vy, = z for the input data x (Rao & Ballard, 1999). In this inverse problem, we
consider latent variables v; (also referred to as causes) and a generative function p(v;|v;—1; W;). If
we assume a hierarchical Gaussian generative model, the marginal probability of the causes is as
follows:

=

p(vo,...,vp; W) = p(vo) | | p(vilvi—1; W7) (S.1)

1

L
=N (vo,% 1) T[N (Wig(vi-1), 7 'T) - (S2)
=1
Friston (2003) framed this inverse problem as an EM algorithm aimed at minimizing the following
variational free energy:

F =KL(q(vo, - ..,vr)|lp(vo, - .., vL; W)), (S.3)

where g(vg, . . ., vr,) is a tractable posterior probability distribution for the EM algorithm. In particular,
the E-step, referred to as inference, minimizes variational free energy by causes v;, while the M-step,
referred to as learning, minimizes by parameters 1W;. We usually apply a mean-field approximation
or a Laplace approximation to the tractable probability distribution (Friston, 2005; Salvatori et al.,
2024a;b). Under these formulations, we can derive the variational free energy for PC.

L
1

F= ;%5 loe — Wi (vi—1)| - (S.4)
While predictive coding networks were originally discussed primarily in the context of generative
models for unsupervised learning, Whittington & Bogacz (2017) reformulated PC networks for
supervised learning and highlighted their potential for use in the context of deep learning. Specifically,
if we fix vy = x and v, = y for data, this corresponds to supervised learning using the mean squared
loss.

Heuristic techniques in PC: After Whittington & Bogacz (2017), there has been an increasing
amount of studies evaluating the performance of PC networks as local learning on deep-learning
benchmark datasets (Salvatori et al., 2023; Pinchetti et al., 2024). They revealed that the original
implementation of PC networks is insufficient for achieving stable training performance, and heuristic
modifications have played an important role. For instance, Fixed prediction assumption (FPA) has
been introduced to achieve higher performance by approximating the gradient computation of PC
networks closer to that of BP (Millidge et al., 2022b; Rosenbaum, 2022). Under FPA, ¢’ (v; 5) is
replaced with ¢’ (v;0), resulting in an inference phase given by

41 = s — mers + e (v0) o Wilkieris, (1< L) (S.5)
and a learning phase is given by

Wiier = Wi +mmersd(vi—10) - (S.6)
Additionally, FPA is typically used with Forward initialization (F-ini). In Forward initialization, the
state vy g is initialized with the forward value u; 9. While F-ini has been implicitly utilized in most
studies on PC (Whittington & Bogacz, 2017; Song et al., 2020; Rosenbaum, 2022), its role was
explicitly highlighted in Alonso et al. (2022), where the authors compared the convergence with and
without F-ini.

Rosenbaum (2022) pointed out that when both F-ini and FPA are assumed, PC networks are entirely
reduced to BP and that if the algorithms are fully equivalent to BP, the advantages of biological
plausibility and local updates are lost. In this study, we aim to identify a parameterization that enables
stable local learning while maintaining distinctions from BP. By leveraging several recently developed
heuristics, we clarify the desirable scales for stable and efficient local learning.

Nudged PC: The design of loss functions in PC networks has also been a focus of algorithmic
improvements. In most of the ML research, classification tasks generally use cross-entropy loss
rather than mean squared loss. Accordingly, PC networks sometimes use cross-entropy loss as
well (Pinchetti et al., 2024). The free energy for a general loss function is given by

L-1

1
F =Ly, Wro(vp—1)) + Z mny o — Wi (1)1 - (8.7
=1

16

Published as a conference paper at ICLR 2025

Algorithm 1 PC Algorithm (Simultaneous or Sequential inference)

1: for s =1tondo
20 eps < Vi, L(Wrér(ur-1,5),v)

3 forl=L—1to1do

4: €ls < Uls — Wl(blfl(ulfl,s)

5: €l14+1,s < Wi+1,541 — Wix101(u s) (Sequential Inference)
6 Up 51 Ups — Vi€rs + V19 (urs) o Wik e s

7 end for

8: end for

and its update rule for the inference phase is given by

Vist1 = Vs — Wels + Y418 (vis) o Wilierpr,s, (1< L) (S.8)
oL

1= =Y —. S.9

VL,s+1 = VL,s — VL oL (S.9)

Furthermore, there are formulations of PC networks that incorporate the nudge term introduced in
equilibrium propagation (Scellier & Bengio, 2017). PC networks with a nudge term update the state
v; and weights W, to minimize the following free energy function (Alonso et al., 2022; Millidge
et al., 2023; Pinchetti et al., 2024):

L
1
F=BLy,vr) + 3wy o= Wig (o) (.10)
1=1
Here, 3 is a nudge coefficient parameter that covers some variants of the PC algorithms in the previous
work.

There are several possible orders for computing this inference (Alonso et al., 2024) as illustrated in
Algorithm 1. Specifically, e; can be calculated sequentially from the output layer to the input layer, or
it can be updated synchronously across all layers simultaneously from the output to the input. While
the main text focuses on Sequential Inference (SI), where computations proceed layer-by-layer from
the output to the input, Predictive Coding with synchronous inference is also a valid approach worth
considering.

A.1.3 TARGET PROPAGATION

Target propagation offers a learning rule that is more biologically plausible and easier for the brain
to implement compared to BP (Bengio, 2014). Specifically, it addresses the following two issues
inherent to BP (Meulemans et al., 2020).

1. Signed error transmission problem: BP propagates the error gradient to the lower layers,
whereas the brain propagates target values for the neurons (Lillicrap et al., 2020).

2. Weight transport problem: BP requires exact weight symmetry between the forward and
backward paths. However, the brain cannot transport weights (Grossberg, 1987; Akrout
et al., 2019).

Target propagation aims to address the two issues by:

1. Propagating the target value hy = hp — NV, L instead of the error gradient Vj,, £ for
signed error transmission problem.

2. Utilizing a feedback network ¢; distinct from the feedforward network f; to propagate the
target value A, for weight transport problem.

The feedback network g; has the weights @; distinct from those in the feedforward network.

hi=gilhisr), gi(z) =9(@Qz) (1=1,..,L—1). (S.11)

Here, 1/ denotes the activation function. While it is often the same as the activation function used in
the feedforward network, it is also possible to consider a different activation function. We set ¢ = ¢

17

Published as a conference paper at ICLR 2025

in experiments and assume) as the identity function only in Theorem 5.1. The feedback network is
trained to minimize the following reconstruction loss:

Leee(Q) = gt (Fi(hi—1 + €)) — hy—1 +€||*, (S.12)

where € is a small Gaussian noise to improve the robustness of the feedback network. Target
propagation attempts to approximate the inverse function of the feedforward network by learning the
feedback network through the optimization of this reconstruction loss.

Difference target propagation (DTP) is an improved method of TP, which adjusts the propagation in
the feedback network as follows (Lee et al., 2015).

hi = gi (ili+1, hit1, hi) =i (ﬁiﬂ) = (g (hix1) = hi) . (5.13)

In TP, the accumulation of the reconstruction error g;(f;(h;)) — h; during propagation poses an
obstacle to optimization. In DTP, subtracting (g; (h;+1) — h;) mitigates the accumulation of the
reconstruction error and improves the progress of learning.

As a side note, Meulemans et al. (2020) and Bengio (2020) pointed out that TP can be related to
the Gauss-Newton method for invertible networks. Additionally, Meulemans et al. (2020) proposed
Direct Difference Target Propagation so as to establish this correspondence even in non-invertible
networks under some infinitesimal conditions. Ernoult et al. (2022) reported that one can stabilize
TP by introducing the additional Local Difference Reconstruction Loss which makes the gradient
align more closely with Backpropagation rather than Gauss-Newton Targets. In our work, we aim to
clarify the fundamental properties of TP and DTP from the perspective of parameterization and do
not consider such additional conditions or loss functions.

A.2 DEFINITIONS FOR STABLE PARAMETERIZATION

As is common in the P theory, we also assume that the firing activities are of order 1 at random
initialization:
Assumption A.1. w0, k10 =0(1) (<L), fo=uro=0(1).
As shown in Theorem H.6 of Yang & Hu (2021), this assumption immediately leads to

a1 +b1=0, aicicr +bicicz =1/2, arp +bp >1/2. (S.14)
In addition, the stability of learning is defined as follows (see Definition H.4 in Yang & Hu (2021) for
more detail):

Definition A.2 (Stability of learning). We say an abc-parameterization is stable if, for [< L and for
any fixedt > 1,
Ahyy = 0O(1), Afy = O(1), (S.15)

under Assumption A.1.

Condition S.15 ensures avoiding exploding dynamics with respect to the width, i.e., Ah;; =
O(1/M*) with k < 0.

We follow the derivation based on the infinitesimal one-step update from random initialization (Yang
& Hu, 2021; Ishikawa & Karakida, 2024), which involves taking the limit of a sufficiently small
coefficient of the learning rate 7)’. This formulation clarifies the proof and enables the systematic
derivation of uP across various problems. In the infinitesimal formulation, Conditions 3.1 and 3.2 are
expressed as follows:

Condition A.3 (IW; updated maximally).

Oy AW hi_1 1 y=0 = o(1) (S.16)
where AW := W1 — W.
Condition A.4 (17, initialized maximally).
Oy WiroAur_11 =0 = o(1). (S.17)

18

Published as a conference paper at ICLR 2025

As described in the previous work (Yang & Hu, 2021; Ishikawa & Karakida, 2024), Condition 3.1 (or
A.3) naturally appears from the expansion of Eq. (10) by the parameter update, yielding

Oy AWihi_1 1 —— O(1/M™), (S.18)
for abc-parameterization. The stability requires
>0 (S.19)

and, in particular, feature learning is characterized by r; = 0. Condition 3.2 (or A.4) is required to
eliminate an uninteresting case in which the hidden layer provides no contribution to the network
output. Both NTK and feature learning regimes are characterized by this condition.

As is shown in Yang & Hu (2021), uP is the unique stable parameterization satisfying Condition A.3
for | < L and Condition A.4 for Wp,. Thus, we can admit this characterization as a definition of pP.

Definition A.5 (uP). uP is the stable abc parameterization satisfying Condition A.3 for [< L and
Condition A.4 for W7p,.

Note that Condition A.3 is required not only for hidden layers but also for the last layer. In the
previous work, this eliminates a frivial case of learning, i.e., Ahr s = O(1/M k) with k > 0, where
the effect of learning vanishes.

B P OF PREDICTIVE CODING

B.1 DERIVATION FOR PREDICTIVE CODING WITH SINGLE-SHOT SI

Theorem B.1 (Stable parameterization for PC). Ser inference step sizes vy« = O(1) and vy, =
v /M7t with a positive constant ¥'. Suppose F-ini and single-shot sequential inference, and consider
a one-step update of parameters after the inference. For infinitesimal step sizes vy and 1/, PC admits
the pP for feature learning at

a=-7-1 a«<r=-7, a=L=1,
S.20
{61:0, bep =1/2, by =1. (5.20)
Additionally, it admits the NTK parameterization at
€1 =9) c =1-% s c, =1
1 L 1<I<L L L (S21)
by =0, bp=1/2.
Proof. Assuming F-ini, considering the single-shot SI for v;, we have
i1 = w0 + W19 (v0) 0 Wikseria (S.22)
=10 + Y419 (v10) o Wiy (Vg1 — Wigrhio) (5.23)
=0+ Y410 (vi0) © WZTH(UZHJ —U41,0), (S.24)

for ! < L where ep g = y — Wrvp_1,0 =: 1. When the CE loss is used instead of MSE loss,
dr, =y — f becomes ¢;, = y — softmax(f), and the order analysis remains unchanged. To keep the
notation concise, we set My, = 1 in this proof. A generalization for M, = ©(1) is possible. Next,
we define

5l<L = 8uL/8ul. (525)
Note that a batch gradient can be used with N training samples where N = O(1). One can regard v;
as an M x N matrix in the derivation.

Using
L
v —vo=— [[v, (S.26)
i=l+1
we have
eini=u,1 — o(Wiv_1,1) (S.27)
L L
= (w0 — H 7i01) — p(Wi(ui—1,0 — H%'(slq)) (S.28)
i=l+1 1=l

19

Published as a conference paper at ICLR 2025

forl =1,...,L — 1. Recall that v; ¢ = ;0 for F-ini. For [= L,
ep1:=y—Wrhp_11 (S.29)
=y~ Wré(ur—1,0 —v26r-1diag(dr)) (S.30)

where diag(z) denotes a diagonal matrix whose diagonal entries are given by . The above equation
comes from

VL—1,1 = UL—1,0 — %VUL,l ly — Wrhr_1|? (S.31)
=ur 10— YLy _1 0 W[o =ur_10 — yror_1diag(dr). (S8.32)

The first one-step update of the weight is expressed as

/

AWy = et 11, (8.33)

"
M?2ar+c

In PC, in addition to the usual learning rate 7, there also exists . Therefore, in addition to the
infinitesimal update of the learning rate 7 for the weight update, we also consider the infinitesimal
inference step size . By applying the perturbation of vz, to Conditions A.3 and A.4, we derive

AU, + &WLAUZM,L:OV’L =0(1), (S.34)
AV, + 8V/LAVL|7,L:07’L =0(1) (S.35)

where we define

AUl = 8»,,/AVV171]'L1_LS:1 (536)

n'=0’
AVL = 8,,/ WL,OAhl—l,SZI

(S.37)

n'=0"
It is noteworthy that we retain the zero-th order terms, namely, AU; and AV} in the conditions. This
is because, even without the inference phase, parameter updates can progress while the internal states
remain at their initialization. Therefore, even if the maximalization of the order is less than O(1)
in the first-order perturbation terms, stable learning can still occur. Since pP aims to maximize the
order of updates as much as possible, we require the first-order terms of Egs. (S.34,S.35) to be ©(1)
whenever possible.

We introduce the following kernel matrix:

K .= h/ hy/M. (S.38)
For the random initialization 1, from Eq. (S.14), we asymptotically obtain
Kt =0(1), Kif=0(1/Mm*artbr)) (S.39)
in the infinite-width limit (Yang, 2020).

On Condition A.1.
(i)Caseof 1 <l < L.

1
Dy, AU, =0 (Wel,s_lhf_l,s_lhl_175_1) <0 (S.40)
1 1
= Wa(el,a:l)th_1,s:1hl—1,s=1 V/LZO + Wel,szla(h7_17s:1hl—l,s:l) WIL:O
1
= gz ers=1)l, _ohii1smoli-1,5=0 (S:41)
1
= Mot (=01 + ¢'(Wiuy—1,0) o Wiy 1) K, (5.42)
where we used €;<r, s=1 —o = 0 and hy s=1 yi—o = his=o. Since §i = O(Wr) =
L— L—
O(1/M=+b2) and AU; ~ MO +er+br=1 e have
AU, + &/iAUl y 70'7/L ~ 1/Mmin{9l+aL+bL_1»‘91+’7L+aL+bL_1}_ (S.43)
' =

20

Published as a conference paper at ICLR 2025

[T3RL

The similarity symbol (“~”) denotes that the left-hand side is of the same order as the right-hand
side. Note that if the first-order term becomes negligible, the contribution of the inference phase
disappears in the parameter update. To maximize the order of the first-order term, we require

¥ <0 (S5.44)
and obtain
r=0,+7L+ap +by — 1. (S.45)
(ii) Case of I = 1.
1 A
8»Y£AU[’YLZO = —W(leo . (546)
~ 1/M91+'?L+GL+bL (S.47)

Here, we used el<L75:1’7, =0 and hy o—1 0= hi,s=o. Similar to the case of 1 < [< L,
' =

Condition (S.34) leads to ¥ < 0 and

VL=

r =0 4+ +ar +br. (5.48)
(iii) Case of = L.
Oy, AULL,, _o (S.49)
1 1
— ma(eL,s:1)hzfl"g:lhllfl’szl}’Y,LZO + m@[l’s:la(hzfl_ﬁ:lhL—l,g:l) ’Y},:O (SSO)
1 . 1 -
= ma(eL,s:ﬂ w/L:OhL*LSZUhL*LS:O + WGL,s:ﬂa(thl,S:lhL71,5:1) - (S8.51)
1 1
= W(ZS/(WLUL,L()) o WL(SLflefl + WéLﬁ(hszszth,Lszl)|W,L:0 (8.52)
1 2
= ﬁj@;;gzjf¢%vVLuL7Lo)°‘Vi5L4¢f(ffl*‘515;5thflﬁ:18(thlﬁ:1ﬂwizo (S.53)
Note that from Eq. (S.30), we have
€L, s=1 ¥, =0 = *(WL(Q/)IL_l o 6L_1)) o 5L/MA7L, (S.54)
Since e, s—1 0 = o #0,
Wr(¢h 1 00L_1)) 00 = O(1/M>artbe)=1y (S.55)
For the second term in Eq. (S.53), we have
hi 1 e=1O(hr—1,6=1) . hzq,s:o%(WLflefz,l)|¢ 0 (8.56)
L L
::hz;1(¢2_1olVi_lavL_llﬂvizo (S.57)
:<—}§;;hz;1(¢£_lol@i_15L_2) (S.58)
where we used vy, 21 — Vr—2,0 = —Yr—17r0r—2 from Eq. (S.26). Let us recall that a variable

without an index indicates the initial state at s = 0. The variable d;,_; includes Wy, whereas hy,_1 is
independent of it. Therefore, by applying the Central Limit Theorem with respect to Wp,, we have

hi szla(hL_Lszl)’V, S 1/MtatbL=1/2, (5.59)
, ‘=
Then,
av/ AUL o~ 1/Mnlin{gL+7YL+2(GL+bL)—2»9L+7YL+aL+bL—1/2}. (S.60)
L ,Y/: .
In contrast, we have
AUp ~ 1/MO2~1, (S.61)

21

Published as a conference paper at ICLR 2025

Comparing the zero-th and first order terms (S.60,S.61), we obtain
min{fr — 1,0 + 7L + 2(ar, +br) — 2,0, +5L +ar + by, —1/2} =0 (S.62)
Because ay, + by, — 1/2 > 0 from Eq. (S.14), we obtain
0, —1=0. (5.63)

On Condition A.2.

dy, AV,)

=0 = Wro(¢' (ur—1) 0 dy; Oy (AWL—MhL—z,l)}n,zoﬁizo

1
= eM(dL,l o ma,y/ (AWLfth72) (564)

= O(1/Martbrtri-i—1) (S.65)

where e); denotes an M-dimensional vector with all entries equal to 1. Note that the product with
eps means the summation over M.

“/’L=0)

Finally, from Conditions 1 and 2, the uP is given by

01+ +ar +b, =0 (121)7 (S.66)
0,+7L+ar,+b, —1=0 (1<Z<L)7 (8.67)
0, -1=0 (I=1L) (S.68)
ar, +bp, —1=0, (5.69)

and v, < 0. That is,

a=—-—"r—1, ¢ =—7 20, c¢=r=1,
{ 1 L 1<i<L VL = =1L (5.70)

by =0, bep=1/2, by=1

The above P case assumes a; = 0. It is important to note that there is no issue in replacing ¢; with
0; = 2a; + ¢, which introduces an indeterminacy of a; = a; + o and ¢; = ¢; — 2.

We can also derive the NTK parameterization, which is a commonly used term for the kernel regime
for ri«;, = 1/2 (Yang & Hu, 2021):

01+ +ap+br=1/2 (I=1), (S.71)
0+, +ar +br—1=1/2 (1<Il<L), (8.72)
0 —1=0, (I=1L) (S.73)
ar +bp, —1/2=0. (S.74)

O

It is noteworthy that the gradient computed by Eq. (S.28) differs from ¢; in standard SGD, implying
that the NTK matrix also deviates from Vy f Vo f. Even in this case, the NTK regime can emerge
with a certain modified kernel composed of e; and h;. A similar situation arises in the NTK regime
of second-order optimization (Karakida & Osawa, 2020). Although the preconditioner modifies the
NTK matrix, the linearization of the model still holds, allowing the emergence of the kernel regime.

B.2 FIXED POINTS OF PC IN LINEAR NETWORKS
B.2.1 PROOF FOR THEOREM 4.2

In this section, we analyze the fixed point of the inference phase using a linear network:

flz) = WiW,_1.. Wiz (S.75)

Even for linear networks, the properties of the fixed points have rarely been analyzed. An exception
is a recent study by Innocenti et al. (2024). They explicitly derived the free energy at a fixed point
to analyze the parameter loss landscape of a naive PC. However, their analysis uses an unfolding
calculation of a hierarchical Gaussian model to directly derive the free energy. Although this is an
elegant derivation, it is not a method for explicitly obtaining the fixed points themself. Additionally,

22

Published as a conference paper at ICLR 2025

since their proof is based on v = 1, we need another method to determine the dependence on the
inference size. Here, we provide a derivation of the states at the fixed point that can be used more
generally for various inference sizes and add a nudge term (in Section B.2.4).

Proof . We consider the inference of naive PC:
L—1

(o1, o) = 2lly = Weopa|? + ; Sllor = Wiwa . (S.76)

Taking g—fl = (, we obtain the following fixed-point equations:
—vtW, (y = Wrvp—1) +vp—1(vp—1 — Wi_1vp—2) =0, (I=1L) (8.77)
W (o = Wivre1) + -1 (v = Wicio2) =0, (L<I<L) (S.78)
—o Wy (vy — Wovy) + 71 (vy — Wiz) =0 (I =1). (S.79)

These equations are summarized in the following matrix form:

I O @] WL,16271 ’}/LWEQE
—WE 1 0] e 0] 7L726272 O
o) Wi, I ... O . _ (0] (S.80)
: : Y263 5
0] o -W) I me; 0]

where e; := v — W/, and e} ==y — Wrvi_;.

Here, we use the following lemma:
Lemma B.2. Define

I (0] O
w 1 0] (0]
A,=| O Wi I O (S.81)
L O o W, I
Its inverse matrix is given by
r I 0] O
Wl 1 0 0]
A= Wi Wiy o (S.82)
L wy, . Wi, w1

Proof. One can easily derive this inverse matrix. A simple derivation is achieved by induction. We
can express

Ap = [II(A?—1:| (S.83)
where KT = [Wy, 0, ..., O]. Suppose that the inverse of A7,_; is given by Eq. (S.82). Then,
40t ez, an) o
Since KAZi1 = [Wr,Wr_1.,..., Wa.r] T, the inversion of Ay is also given by Eq. (S.82).
O
By using Lemma B.2, we can transform Eq. (S.80) as follows:
€] _4 Inlq VKLTe*L)
€L—2 L2 Wp_i.rer
: =L : . (S.85)
€
e LWolper

23

Published as a conference paper at ICLR 2025

Although this equation can not be solved explicitly for v;"_;, we can, nonetheless, solve it by summing
over ¢; as follows:

vi_1 — Wroax (S.86)
=ej_ 1 +Wp_ie]_o+ - +Wp_1.0€]

1 1 1
=L (I+ WoaW/_ +- + WL_MWJM) Wi ep. (S.87)
YL-1 YL—-2 71

This leads to

-1
/UI*J—l = ([+ L W;WL + L WL71W[T,1W[:|—WL + -+ %WLI:QWEIQWEWL)
YL-1 YL—-2 Al

1 1 1
: (WL1:1£C +7L (I+ Wi W/l +-+ WL1:2WE1:2> Wgy) .
YL-1 YL-2 et
(S.88)
Set an My, x M7y, matrix
L
W) =3 L w Wi (S.89)
i—o Vi1
Then,
e} =y—Wrvj_, (S.90)
=y— I +C,(W) " (Wraz + (I+C,(W))y)
=(I+C,(W) ™ (y— 1) (S.91)
Thus, at the fixed point, the local loss is explicitly obtained as
«_ _
ef = Wi +C Ny =). (5.92)
We can also obtain v;". From e}, we have
v = Wiz + %W&(H@(W))*(yff)- (5.93)
By induction, we have
v =ef + Wiy (5.94)
-1
= Wiz + (”;vv;lﬂ + J_Ll mm;) (I+C, (W) y - f)- (5.95)
i=2 '
O

B.2.2 PROOF FOR COROLLARY 4.3

Proof. We consider the order of WL:Z-W;:i inCy(W) = Zf:g 77: WLZWE—7 Note that computing

the vector v = WLTl is equivalent to signal propagation in a deep linear network with random
weights W/I, | and an input vector W, . Therefore, as in Eq. (S.39), we can evaluate ||v||3 using
kernel computations in existing studies of random neural networks. Specifically, this is equivalent to
computing h;" h; in the following random neural network:

Uk = thkfl, hk = qb(uk) (k = 1, ey l), (S.96)
x; ~ N(0,1/MO=Fbry (i =1,..., M), (8.97)
Wi ~N(0,1/VM) (i,j=1,...,M). (S.98)
From Theorem 7.2 in Yang (2020), for any z, q; = h,: hi /M converges almost surely to
1 u?
=—— [due” 7 ¢? “1u), S.99
i \/%/ o™ (/ae—1u) (5.99)

24

Published as a conference paper at ICLR 2025

in the infinite-width limit. Since we are considering a linear activation function, we have q; = ¢;_;
and
1

M
Since x is an i.i.d. Gaussian vector, the law of large numbers leads to ¢; of ©(1/M?(@2+bL)) For
random weights given by uPi.e., ar, + by, = 1, we find W, W/, = ©(1/M). Consequently, for
v = O(M), C, (W) remains of order 1. In contrast, for v, = 0(1), C, (W) is O(1/M), causing
I+ C’,Y(W) to approach [in the infinite-width limit. As a result, e; = J; and v;; = wu;, and the
gradient in the infinite-width limit matches that of first-order gradient descent. O

qQq=-—x x. (S.100)

B.2.3 BALANCE CONDITION DETERMINING 7«1,

Here, we consider the order of ¢; ; with respect to ;.. For a linear network with one-shot SI, we
obtain

L
eri == [T % —nWidioy) ~ 1M O (s.101)
i=l+1
In contrast, recall that the order of e; at the fixed point is
ef ~ 1/M7tmin(03) (S.102)

Therefore, to satisfy ¢; 1 ~ ej, the following is necessary:

L
> %= (S.103)

i=l+1
foralll < L. This is equivalent to 7; = 0 forall I < L. Thus, ¢; 1 ~ ¢j holds if and only if 7,7, = 0.

B.2.4 NUDGED PREDICTIVE CODING

We can extend Theorem 4.2 to the nudged PC.

Theorem B.3. Suppose an L-layered linear network and put e = v;' — Wjv;_,, where * denotes the
fixed point of the inference given by Eq. (S.10). The following holds:

-1
ef =vf — W, = %WLH (I + %14- CV(W)) (Wpaz —y) (S.104)
—1
e} =v; —Wrvp_, = (I + %I + C,Y(W)> (Wrax —v) (S.105)
where WL:i = WLWLfl---Wi-
Proof . Put
= Bl
F(vy,...,v) = Blly — vi||> + ; o llvi = W1 || (S.106)
Taking g—i =0, we have
Blvr —y) +vr(vp —Wrvp—1) =0 (S.107)
W (o = Wiwer) + e (Ve = Wisioe) =0 (1< 1< L) (S.108)
—7o Wy (v2 — Wavy) +y1(v1 — Wiz) =0 (I=1). (S.109)
Putting x = vy, — v, the system of equations can be written in a matrix form as follows:
IT 0] O fyLe’Z 76)(*
_WL IT O ce O 'yL_lez_l O
o W, I .. O : | O . (S.110)
: ; Y2€5 :
@) o -W,) I 1€} @)

25

Published as a conference paper at ICLR 2025

From Lemma B.2, the above equation is transformed into

1 %
ez 1’Y7LXT *
€r-1- YL-1 Wr x
: =8 . (S.111)
€
€1 %W;Lx*

Take the following summation:

* * * * *
er, + WLeL,l + WL71€L72 + -+ WL71;2€1 =vr — WL;]_.T}

= —E(I—FCV(W))X*. (S.112)
YL
Thus, we can explicitly obtain vy, as
. (B, B - B
v = | —I+ —C, (W) Wiaz+ — T +C,(W))y). (S.113)
YL YL YL
Thus, x can be written as follows:
X" =y—vp (S.114)
B B. . B - B
=y—(—1+—C, (W) Wraz + — I+ Cy(W))y (S.115)
YL YL YL
B BB -
=(I4+—I+—C,(W) (y—f). (S.116)
YL YL
From the above, we conclude that
-1
i = 2wl (14 21 o) -) s.117)
m YL YL
—1
= %WZHI (I+WBLI+CW(W)> (y— 1) (S.118)
at the fixed point.
O

C uP OF TARGET PROPAGATION

C.1 DERIVATION OF THEOREM 5.1

Assume that the feedback network is linear: ¢;(x) = Q;z. Here, we consider a reconstruction loss
with L2 regularization:

L(Qrs) = 1Qusd(Wihi_1) — hy_1||* + Q.51 (S.119)

with ; > 0. Note that while some work adds noise to h;_1, it does not affect the order; therefore,
we will ignore it in this derivation. As described below, by taking the ridge-less limit of 1, we can

evaluate the parameterization of the original TP and Difference Target Propagation (DTP) in a clear

and unified manner. Considering the fixed point for @), since 818(—57) = 0 holds, we have

Qf = hia(h b+)~} (S.120)

where h; = ¢(Wih;—1). The feedback network is given by the network with Eq. (S.120). As a side
note, this weight is essentially the same as the pseudo-inverse weight, which is known as an extension
of the Hebbian weight (Kanter & Sompolinsky, 1987).

Local targets of DTP. DTP is an improved method of TP, where hy is propagated as follows:

hi = giifh (;ll+17 hita, hz) = gi+1 (ilz+1> = (9141 (hug1) =) - (S.121)

26

Published as a conference paper at ICLR 2025

For the last layer, the error is given by

h =h + B(y — hy) (S.122)

For a linear feedback network, we have
hy = gi+1 (ﬁz+1> — (g1+1 (hy+1) —) (S.123)
=hi+ Qui1(hiv1 — hiyr) (S.124)
=y + Qa1 ((hiy1 + Qura(hirs — hiya)) — husr) (S.125)
= hi+ Qi1 Qrio(huya — huyo) (S.126)

L

=h —B H Q.01 (S.127)

i=l+1

Therefore, at the equilibrium point for @y, for [< L — 2, we have

L
h—h=-8 [] Qiér (S.128)
i=l+1
L—-1
=Bl [[(A hs+ D) A hi(h L he + mI) " hi oy (S.129)
i=l+1
L—-1
=Bl [(K + D) KN KR 4 pi, D) hor (S.130)
i=l+1

where 6;, = 0L/0f and for | = L — 1, we have hi 1 —hp | = —BhL_l(Kf + /,L’LI)_lhzéL.
To avoid an uninteresting change of order, we introduce y;; = pj/M* and require that it have
the same order as K lA. This is essentially equivalent to the valid condition argued in Ishikawa &
Karakida (2024), which requires the damping term to have the same order as the preconditioner in the
second-order optimization. We note that we can take the ridge-less limit y; — 0+ because K lA (S.39)
is typically set to be regular at random initialization in the neural tangent kernel literature (Jacot et al.,
2018; Yang, 2020). For instance, this holds true for normalized input samples with ||z|| = 1.

Local targets of original TP. The signal propagation in the feedback network is

hi=Qfr - Qihe (S.131)
L—1
=h [(b hi+ wD)" RS hi(hp b + p)" b (hy — B5L) (S.132)
i=l+1
L—1
— =B [] (KKK b (4 — 04). (S.133)
i=l+1

Thus, the target is reduced to essentially the same as that in DTP (S.130) and we can treat both in the
same manner.

On Condition A.1. The update for the last layer is identical to that of SGD with BP, thus

Oy AWLhr 14, _, = —ﬁﬁdﬂ(ﬁ_l (S.134)

Next, we consider the L — 1 layer.
Oy AW _rhp 2|,y = ﬁ(m_l —hp—1)h] yhp (S.135)
= ey B (R b+ D) RLGLEE (5.136)
= e B (K D) R~ MUK (8.137)

27

Published as a conference paper at ICLR 2025

Similarly, when hy—h; = - HiL:l—i-l Q;0r,, we have
1

Oy AWihi—1 1], = W(ﬁl — h)h) hiy (S.138)
1 L—-1
= — a1 Pl I i+)70 (b, + D) B 6L KR
i=l+1
(S.139)
1 L—-1
= _Wﬁhl H (K + i) KK+ p, D)KL = M hy) KL
i=l+1
(S.140)

for! =1,..., L — 2. On the right-hand side, hy, ~ 1/M“L+bb’1/2, and from Eq. (S.39), we have
K — M7h]y ~ max{1/M>@r+b) 1/ppartbe+l/2y (S.141)
=1/MaorFbLtl/2, (S.142)

In the last line, we used ar, +by, > 1/2. Here, from Assumption A.1, which states that a, +by, > 1/2,

we obtain
0 —ar —br +1/2 (I=1),

=40, —-1—a,—b,+1/2 (1<l<L), (S.143)
0p—1 (I=1L).
On Condition A.2.
Oy (WroAhr_11) =0 = WWL,Odiag(d),L—l)(ﬁL—l —hr_1)h]_, (S.144)
1
= *WBhL(hZhL +up D) h 0L KT, (S.145)
1 _ _
= *WﬂhL(fo +up D) TN KR = M hy) K, (S.146)
Thus, its order is
an’(WL,OAhL—Ll) o ™ 1/M9L—1—1+((lL+bL—1/2)—2(0L+bL)+(aL+bL+1/2) (S.147)
= 1/MOr-1=1=rioat(entb)=1/2, (S.148)

Finally, from Conditions A.1 and A.2, the uP is given by

91—aL—bL+1/2:0 (121), (S.149)
Ql—aL—bL—1/2:0 (1<Z<L>, (S.150)
0, -1=0 (I=L), (S.151)
ap + by, —1/2 = 0. (5.152)

O

C.1.1 DISAPPEARANCE OF KERNEL REGIME
Corollary C.1. Stable learning satisfying Condition A.2 leads to r;,_1 = 0 for TP and DTP.
Proof. From Eq. (S.148), we have
rp—1+ (ar, +br) —1/2=0. (S.153)
From Eq. (S.14), ar, + by, > 1/2 and we have r;,_; > 0. In contrast, from the stability of learning,

we have r;,_1 < 0. Thus, r;,_1 = 0.]

28

Published as a conference paper at ICLR 2025

Note that, precisely speaking, 7,1 = 0 does not necessarily imply 7,1 = 0. However, it is often
considered unnatural (or uninteresting) to examine cases in which the progress of learning depends on
individual layers. Therefore, the P typically assumes a uniform parameterization, meaning r;«;, = r
(see Theorem G.4 of Yang & Hu (2021)). In this sense, r,—; = 0 indicates the disappearance of the
kernel regime.

One might be surprised by the fact that b;, = 1/2 is allowed in the feature learning and that the kernel
regime disappears. Note that the feedback weight in the last layer (S.120) essentially differs from
Wr.. The feedback weight receives hy, as input whereas W receives hy,_1. This makes

Qp ~ 1/M*/2(ertbe) (S.154)

Wy ~ 1/M@:+bL The gradient is proportional to 7, in TP and W, in BP. The feedback weight
contributes more significantly to TP’s gradient when ay, + b;, > 1/2. This eventually makes the
index r of the hidden layer (S.143) get quite large even for ay, + by, = 1/2. We also need to be
careful about the order of condition A.2 (S.148). Because the feedback weight (S.120) has a lower
alignment exponent (Everett et al., 2024), this causes the condition 2 of TP to be smaller than that of
SGD (or K-FAC), i.e., 1/M rr-1+(ar+b)~1 Therefore, stable feature learning is possible even for
ar, +br, =1 / 2.

Remark on zero head initialization. Related to the size of by, the parameter initialization with
by, > 1/2 (br, > 1 for SGD) reduces to the uP of by, = 1/2 (by, = 1 for SGD) because W o becomes
negligible compared to AW, . To illustrate the intuition, let us introduce the case where the weight
of the last layer in a feedforward network is initialized as W, = O, that is, by, = oc.

In this case, only the last layer is updated during the first step because)7 = O does not propagate
the local error to the downstream layers. After the first-step update, the weight is given by

Wpi = —ML;L(;LhI,l. (S.155)
and Wi 1 = Wi<p0. Thus,
Oy AWihy—1,4|,,_y = —ﬁéLhZ_th_l (S.156)
_ _ﬁgﬂq“_l. (8.157)
and
hpi =01 /M%) K} =0(1/M*t-1), (S.158)

Substituting these into Egs. (S.137,S.140), we obtain

0, —0r +1 (121),
=< 0, —0g (1 <l<L)7 (S.159)
0, -1 (I=1L).

From Eq. (S.146),

Oy (WroAhr-11)],,_o = O(1/M =71). (S.160)
Finally, Conditions A.1 and A.2 lead to
0—0Or—-1)=0 (I=1), (S.161)
0,—1—0,—-1)=0 (1<i<Ll), (S.162)
0, —1=0 (S.163)

Thus, the uP is the same as in the case of random head initialization.

29

Published as a conference paper at ICLR 2025

iteration vs similarity width vs similarity [r—
1.0 B Figure S.1 : During the
2 o0 GNT training of the linear net-
e \ ‘9. e work, it converges to the an-
z 08 g 1 7 Qayern) alytical solution. We trained
S o7 \ |2 (./"_)::w * (oyers) a 3-layer linear network using
I —— O) synthetic data.

50 7.5 100 125
log, width

0 100 200 300

Analytical
O (layor2
. By
Iteration

C.2 STABLE PARAMETERIZATION FOR FEEDBACK NETWORK

The feedback network minimizes the following loss function:

LQ) = g 19(Qubn) = b (5.164)

where dividing by M,_; is to ensure that L(Q);) = ©(1), which is the default setting in PyTorch.
We consider the parameterization in the feedback network:

!
Qu~ N (0,02 /M%), 7 =L (S.165)

M

where 7; denotes the learning rate for the feedback network.

To ensure that the update AQ;h; = O(1) holds, we have

/

-
AQih = 3= ((Quhn) = hi1) & (Qihn) T (S.166)
Here, because h)_; i<, = ©(M) and hj hy, = ©(1/M?*=~1), assuming AQ,;h; = O(1/M™),
we obtain: (<1<
T << s
= S.167
& {TL—‘rQbL (1=1L) (-167)
Therefore,
Ti< =0, Tp=-2bp. (S.168)
If we optimize the feedback network for one step, we have
T 1
Ql<L,1 = Ql<L,O - Whl—lhlT ~ m, (8169)
T’ . 1
Qr1=Qro— Wh[,—lh[, ~ A (/2 b) (S5.170)
And,
1
Qicp = hi—1 (W by +pl)™ R ~ e (S.171)
” _ 1
Qr =hpa(hihy +pl) " by ~ M1/2=br” (8.172)
Therefore, in this case, Q;,1 = @} holds when
Qi< >1, qL>1/2—bL. (S.173)

D ADDITIONAL EXPERIMENTS

D.1 PREDICTIVE CODING

D.1.1 LINEAR NETWORK

In Figure S.1 , we measure the similarity of the inference vector with BP, GNT, and the analytical
solution. With fewer inference iterations, the model behaves more like BP; however, as the number of
iterations increases, the model converges toward the analytical solution. Furthermore, as the middle
layer width M; increases, the gap between GNT and BP decreases. Figure S.2 further demonstrates
that reducing the output dimension M}, brings the model closer to BP. However, increasing M7,
moves the model away from BP, though this divergence is more gradual as 7y, approaches zero.

30

Published as a conference paper at ICLR 2025

Sim with BP gradient
1.000

oo Figure S.2 : As M, approaches 1, the update vector

g 0o o3 in PC converges to that of BP. We conducted infer-
B 090 -®- 06 epce training on a 3-layer linear network and measured
= - @ 038 .. .
= 0.925 -o- 10 the similarity between PC and BP. The results demon-
£ 0.900 x 2 strate that PC approaches BP as M, decreases and 77,
© 0.875 -~ 16 increases.
s
0 5 10
logy, My,
SP NTK muP (57, = 0) muP (, = —1)
= 85 : : : : width
(==}
oS 1
<L:> | 80 —)
' —
25 —s
o
z
70 - -
—10 —20 —15 —10 —20 —15 —10 —20 —15 —10
logy LR logy LR logy LR logy LR
SP NTK muP (7, =0) muP (y, = —1)
.8 : = - - width
i
Sl 80 —_— 2
<z —
20
= 8 75 _— 8
z
0 i i i
—20 —15 —10 —20 —15 —10 —20 —15 —10 —20 —15 —10
log, LR log, LR log, LR log, LR

Figure S.3 : In VGGS, the learning rate also transfers across widths. In SP, the optimal learning
rate shifts based on model width, whereas in uP, it remains fixed. Additionally, we trained with two
different v; values, and under P (7, = —1), the learning rate consistently transfers across widths,
regardless of ;. The model was trained for 40 epochs on 1024 samples from FashionMNIST.

D.1.2 ADDITIONAL EXPERIMENTS ON i TRANSFER FOR PC

Architecture In the main text, we primarily focused on MLP and CNN. However, our uP is
architecture-independent. The results for VGGS5 are presented in Figure S.3 . Furthermore, the
pTransfer observed in Figure 4 also holds for MLP, as demonstrated in Figure S.4 .

Loss Type In the main text, we mainly used mean squared error (MSE) loss. However, this can be
replaced with cross-entropy (CE) loss. As demonstrated in Figure S.5 , uP for PC also transfers the
learning rate across widths when using cross-entropy loss.

Optimizer In this paper, we primarily focus on weight updates using SGD. However, it is also
possible to update the weights using Adam instead of SGD. In this case, the corresponding iP is as

follows: . o b U2 b)
1 =Y I<Il<L — / 5 L — 1 (8174)
=0, ¢>1=1.

For Adam, the scaling of b; and ¢; does not depend on 7;,. Additionally, in Adam, the gradients
are normalized, which means that yP remains unchanged regardless of whether the gradients are
generated by BP or PC. When considering the stability of the inference, scaling with respect to 7y,
can be treated in the same manner as in the case of SGD.

Vi< =0, =1L (S.175)

Train sample We reduced the number of training samples in most of the graphs for pTransfer. By
reducing the number of training samples, finite-width models are known to behave more similarly to

31

Published as a conference paper at ICLR 2025

Sp NTK muP (7 =0) muP (7, = —1)
S, 80 . . : : width
= : : : 128
gl : : :
<=9 : : - 256
P : : : — 512
& g 40 — 1024
=0 | ol i\ =
& : — 4096
—20 —15 —10 —20 —15 —10 —20 —15 —10 —20 —15 —10 8192
log; LR log; LR log, LR log, LR
SP NTK muP (7, =0) muP (3, = —1)
= 80 : : : : width
= : : : 128
<8 = 60 : : 256
= : : — 512
AN A E —
[
— 2048
& 20 m
& A] : —
—20 —15 —10 —20 —15 —10 —20 —15 —10 —20 —15 —10 8192
logy LR logy LR logy LR logy LR
Figure S.4 : Without F-ini, 4P with 7, = —1 transfers the learning rates across widths also in
MLP. We trained a 3-layer MLP on FashionMNIST without F-ini.
SP NTK muP (3, = 0) muP (5, = —1)
85 S H 5 . width
80 128
2)/8\ 75 256
%< 7 — 512
S E — 1024
65 — 2048
0 : : : . — 4096
—20 —10 —20 —10 —20 —10 —20 —10 8192
log, LR logy LR logy LR logy LR

Figure S.5 : 1P for PC transfers learning rates across widths even with Cross Entropy. We train
3-layer MLP for 40 epochs on 1024 samples from FashionMNIST.

32

Published as a conference paper at ICLR 2025

SP NTK muP (5, =0) muP (3, = —1)
g 80 = = width
. E [. . 128
{o o S 60 256
= B - 512
&—o 40
B ad — 1024
= [20 B — 2048
< ’ — 4096
—20 —10 —20 —10 —20 —10 —20 —10 8192
log, LR log, LR log, LR log, LR
SP NTK muP (5, = 0) muP (y;, = —1)
~Z 80 = = = = width
g 5 5 H 128
Sl H H H
SE 460 : : : 256
<o :
cof : — 512
8BS 40 :
S : — 1024
E [20 — 2048
<) — 4096
—15 —10 —5 —15 —10 —5 —15 —10 —5 —15 —10 -5 8192
logy LR log, LR logy LR logy LR
SP NTK muP (77, =0) muP (7, = —1)
_.— 80 . . H width
g° H H 128
8 & ‘L 60 256
<L‘Q 2
LA — 512
25— 40
g<o — 1024
E HN 20 — 2048
< — 4096
—20 —10 —20 —10 8192
log, LR log, LR log, LR
SP NTK muP (3, =0) muP (37, = —1)
= 80 = = -
= H .
=Rl 5 5
daa® =
EE/S 40
g3
S 4
=
—20 —10 —20 —10 —20 —10
logy LR logs LR log, LR
SpP NTK muP (51, =0)
= 80 =
=
I
60

Test Acc
cnn (w/o F-ini)

Y = 0.01,vL
N =
(=} (=]

128
—20 —10 —20 —10 —20 —10 —20 —10 256
log, LR logy LR logy, LR log, LR
Sp NTK muP (51, = 0) muP (7, = —1)
.~ 80 C . : width
£7 : : 4
Q! 60 . .
<58 : : 8
o - 2 : — 16
£ 5~ a0 :
) ?ﬁ ﬂ . —u
5 <20 ﬂ% 64
a . — 128
—20 —10 —20 —10 —20 —10 —20 —10 256
logy LR log, LR logy LR logy LR
Figure S.6 : ;P with 4, = —1 can constantly transfer the learning rates across width We
confirmed pTransfer when training PC with Adam to update parameters in both MLP and CNN. In
the training of MLP without F-ini, we observe that 4P with v, = —1 consistently stabilizes training

and performs well. All experiments were conducted on FashionMNIST with 1024 samples.

33

Published as a conference paper at ICLR 2025

SP NTK muP (37, = 0)
0 0 width
128
256
512
1024
2048
4096
8192

—10 0 10—10 0 10—10 0 10—10 0 10
logy 77, logy 7, logy 7, logy 77,

Figure S.7 : When training with Adam, muP with 7;, = —1 transfer ~;, across width. We trained
a 3-layer MLP on FashionMNIST with Adam.

Sp NTK muP (7, =0) muP (y, = —1)
R - B . width
128

256

1024
2048
4096
8192

40

—10 —20 —10 —20 —10 —20 —10
logy LR logy LR logy LR log, LR

Sp NTK muP (Y, = 0) muP (Y, = —1)
5 E E width
128
256
512
1024
2048
4096
8192

(mlp)

Test Acc

0 10-10 0 10-10 0 10-10 0 10
logy 77, logy 77, logy 77, logy 77,
SP NTK muP (51, = 0) muP (5, = —1)
H H width

128
256
512
1024
2048
4096
8192

(mlp)

Test Acc
S
o

—10 0 —10 0 —10 0 —10 0
logs 7 logs] logy] logy]

Figure S.8 : The results of /P for PC are independent of the number of training samples. We
train a 3-layer MLP on FashionMNIST with full training samples. The stability of uP holds even
with all training samples.

34

Published as a conference paper at ICLR 2025

SP NTK muP (3 = 0) muP (3, = —1)

width
gz 10 §\%/ 128
;- — -

8 10° o
53 _— \[— 1024
E& 107! \ — 2048
— 4096
—20 —15 —10 —20 —15 —10 —20 —15 —10 —20 —15 —10 —_ 8192

log, LR log, LR log, LR log, LR

muP (3, =0) muP (5, = —1)

SP NTK
10° width
N\ 128
10 \ 256
\\ 512

Inference Loss
MLP w/o F-ini

1 — 1024
10 — 2048
— 4096
—-20 —15 —10 —20 —15 —10 —20 —15 —10 —20 —15 —10 |__ g199
log, LR log, LR log, LR log, LR
Figure S.9 : When evaluating the loss after inference, only P with 7, = —1 satisfies the empir-
ical rule of “wider is better” Regardless of whether F-ini is applied, P with 74, = —1 consistently

reduces the loss during inference with stability. We trained a 3-layer MLP on FashionMNIST.

infinite-width models, as has often been seen in papers examining the theoretical aspects of feature
learning (Geiger et al., 2020; Ishikawa & Karakida, 2024). However, even when training on the full
dataset, uP remains stable across widths, as shown in Figure S.8 .

Inference Loss When considering the stability of inference, we can observe the loss before
updating the parameters after inference. As shown in Figure S.9 , when training a 3-layer MLP on
FashionMNIST, only P with 4, = —1 consistently reduces the inference loss as the model width
increases.”

Base width and inference iterations In p-transfer, some research set the width of the smaller
model used for tuning the learning rate, as the base width, denoted by M’, and adjusts the learning
rate using 1, = n;/(M/M’)%. As shown in Figure S.10 , the choice of M’ (a smaller M’) can
sometimes make P with 47, = 0 more sensitive.

As shown in Figure S.11 , the shift in the optimal learning rate at v, = 0 with M’ = 128 becomes
more evident as the number of inference iterations increases. This is likely because, with more
iterations, the dynamics of inference play a more critical role in weight updates. In summary, to
achieve stable pTransfer independent of the base width and the number of inference iterations, we
should use pP with vy, = —1.

Sequential Inference and Synchronous Inference In the main text, we focused on Sequential
Inference, where u; is updated layer by layer, starting from the output layer. However, Synchronous
Inference, where all layers are updated simultaneously, can also be considered. For the differences
between Sequential Inference and Synchronous Inference, see Algorithm.1. As shown in Figure S.12
, since pP for PC is validated at fixed points, it is also applicable to Synchronous Inference.

Additional Experiments with Figure 3 Figure S.13 presents the results of the same experiment
shown in Figure 3 (Right), but with the CIFAR-10/CIFAR=100 dataset and the VGG5 model. It is
evident that even with CIFAR-10, CIFAR-100 and VGGS, P achieves higher accuracy compared to
SP and NTK.

35

Published as a conference paper at ICLR 2025

Sp NTK muP (3, =0) muP (y, = —1)
80 . : - . width
: : 128
256
512
1024
2048
4096
8192

1)

60

Test Acc

40

(base

20
—20 —15 —10 —20 —15 —10 —20 —15 —10 —20 —15 —10
logy LR logy LR logy LR logy LR
SP NTK muP (77, = 0) muP (Y, = —1)

80 : - - - width

: : 128

256

512
1024
2048
4096
8192

8)

60

Test Acc
(base=

40

20

—10 —20 —15 —10 —20 —15 —10
logy LR log, LR logy LR logs LR
SP NTK muP (37, =0) muP (y, = —1)

80 . : : " width

5 0 S 128
256
512
1024
2048
4096
8192

64)

60

40

Test Acc

(base

20

—20 —15 —10 —20 —15 —10 —20 —15 —10 —20 —15 —10
logy LR logy LR logy LR logy LR

SP NTK muP (5, = 0) muP (77, = —1)

. . - ~ width
2 128
256
512
1024
2048
4096
8192

128)

60

40

Test Acc

(base

20

—20 —15 —10 —20 —15 —10 —20 —15 —10 —20 —15 —10
log, LR log, LR logy LR logs LR

Figure S.10 : When the base width M’ is large, P with 7, = 0 tends to fail with ptransfer. We

train a 3-layer MLP on FashionMNIST. This suggests that 4P with y;, = —1 should be used when
setting the base width, even with F-ini. The inference is performed for 100 iterations.

36

Published as a conference paper at ICLR 2025

80

60

40

Test Acc

(Inf Tter = 30)

20

80

60

40

Test Acc

(Inf Tter = 3)

20

80

60

Test Acc

(Inf Iter = 10)

40

20

—15
log, LR

SpP

—20 —15
logy LR

—15
log, LR

—10 —20

—10

—10 —20

NTK

—15
logy LR

NTK

—20 —15
logy LR

NTK

—15
logy LR

—10

—10

muP (= 0)

muP (7, = —1)

—20 —15 —10 —20 —15 —10
logy LR logy LR

muP (7, =0) muP (y, = —1)

—20 —15 —10 —20 —15 —10
log, LR logs LR

muP (3, =0) muP (7, = —1)

—20 —15 —10 —20 —15 —10
logy LR logy LR

width
128
256
512
1024
2048
4096
8192

width
128
256

1024
2048
4096
8192

width
128
256
512
1024
2048
4096
8192

Figure S.11 : ;P with 7, = —1 maintains high inference stability and successfully performs
p~transfer even with a large number of inference iterations. We conducted the experiment shown
in Figure S.10 with varying numbers of inference iterations. Even with a larger number of inference
iterations, uP with v, = —1 consistently transfers the learning rate across different widths.

80

0.1

60

mlp
v =0.01,v,

40

Test Acc

20

80

0.01

60

mlp
v =0.01,7L

40

Test Acc

20

SP

—-20 —15
logy LR

SP

—10

—25

—20 —15
logy LR

—10

NTK

-20 —15
logs LR

NTK

—10

—25

—20 —15
logy LR

—10

muP (3, = 0) muP (y, = —1)

-25 -20 —-15 —-10 —-25 —20 —15 —10
log, LR log, LR

muP (77, =0) muP (3, = —1)

—-25 -20 -—-15 —-10 -25 —20 —15 -—10
logy LR logy LR

width

1024
2048
4096
8192

width
128
256
512
1024
2048
4096
8192

Figure S.12 : u P for PC also transfers learning rates across widths in synchronous inference.
P for PC can also be applied in synchronous inference. Note that when the base width is set to 128,
as in SI, the learning rate does not transfer in uP with 47, = 0.

37

Published as a conference paper at ICLR 2025

CNN on CIFARI0 CNN on CIFAR100 VGG on FashionMNIST
65 50 91
- muP
L . 90 = Gr=0)
S 55 40
g 59 muP
50 a5 = =)
2 . 88 -- NTK
=4 30
- - SP
40 25 87
3 20 86
20 510 o1 512 13 2 210 gn 212 13 g 29 210 11
My My Mg

Figure S.13 : 4P scales better than SP and NTK. We trained a CNN by PC with F-ini on
CIFAR10/CIFAR100 and a VGGS on the full FashionMNIST dataset. The "wider is better" principle
holds for uP.

SP muP SP muP .
0.8 width
0.8 _ 128
= 06 0.6 g 30 2 256
£ £ 20 0 Blz
=04 0.4 = 1 — 1024
< . 10 —
3 00 0.2 3 2048
0o o 0 — 4096
0 20 40 0 20 40 0 20 40 0 20 40 8192
— 16384
Epoch Epoch Epoch Epoch

Figure S.14 : In Target Propagation, using uP ensures that Ah; remains consistent across
widths. This figure shows the RMS norm of Ah; during training. For SP, Ah; in the input layer
diminishes as the width increases, while Ah; in the output layer diverges with increasing width.
Consequently, the training dynamics become unstable. In contrast, with uP, Ah; remains consistent
across different widths in both the input and output layers.

Feedback Network (TanH) Feedback Network (ReLU)
width 1.0 + width
256 : 256
0.6 :
2 Bl 2 0.8 512
5 0.4 — 1024 3 . — 1024
— 2048 o X — 2048
.6
00 — 4096 ; — 4096
— 8192 — 8192
0 ° 10 — 16384 0 2 4 5 — 16384
log, LR logy LR

Figure S.15 : Learning rate transfer in Feedback networks. We demonstrate that the learning rate
in feedback networks transfers effectively across widths using toy data. Both the feedforward and
feedback networks include a Tanh/ReL.U activation function following the linear layer.

S SpP muP
muP
1.2 width
1.00 - P
. E =) 256
=R :

. E 0.75 . Vlg 1.0 512

2= E)

5 Q —

Sp 050 Sa os 1024
= 0 = — 2048
= 0.25 2 s
S - = — 4096

0.00 : 0.6 8?;2
0 5 10 0 5 10 0 5 10 0 5 10
log, LR log, LR logy LR logy LR

Figure S.16 : Learning rate transfer in Feedback networks (output layer). We show that the
learning rate in feedback networks transfers across widths using toy data. Unlike the hidden layers,
the learning rate in the output layer does not transfer under the default setting, which requires P
scaling. Both the feedforward and feedback networks include a Tanh/ReL.U activation function after
the linear layer.

38

Published as a conference paper at ICLR 2025

SP (FashionMNIST) muP (FashionMNIST)

Figure S.17 : Even when training
the feedback network with DRL, yP

width
1928 demonstrates greater stability com-
o 256 pared to SP. We trained a 3-layer
26 —— 512 MLP on the FashionMNIST using DRL.
2 —— 1024 While SP exhibits a shift in the maxi-
& —— 2048 mum learning rate as the model width
—— 4096 increases, uP consistently transfers the
0 5 10 — 8192 optimal learning rates across different
log, LR — 16384 widths.
SP (FashionMNIST) muP (FashionMNIST) - SP (CIFAR10) muP (CIFAR10) width
50
00 128 128
g al \ 256 g 5 256
< 80 — 512 < 10 — 512
% — 1024 § — 1024
&7 — 2048 F g5 — 2048
“ —— 4096) — 4096
—25 00 25 50 -25 00 25 50 — 8192 % 45 00 25 50-25 00 25 50— 8192
log, LR log, LR — 16384 log, LR log, LR

Figure S.18 : yP for TP remains stable regardless of the dataset or the number of training
samples. We trained a 3-layer MLP on both FashionMNIST and CIFAR-10 using the full training
samples. With uP, the learning rate successfully transfers across widths, ensuring that the maximum
learning rate remains consistent regardless of the model width.

D.2 TARGET PROPAGATION
D.2.1 ADDITIONAL EXPERIMENTS ON ' TRANSFER FOR TP

Temporal change of activation In Figure S.14 , we observed Ah during the training of an MLP
on FashionMNIST. SP exhibits a dependency of Ah on width, whereas ;P demonstrates consistent
behavior, independent of width.

Feedback Network As discussed in Section C.2, stable parameterization is crucial not only for
feedforward but also for feedback networks. We verified this with pP, as shown in Figures S.15 and
S.16.

DRL Meulemans et al. (2020) proposes the difference reconstruction loss (DRL) for constructing
feedback networks. In Figure S.17 , we empirically confirm that our P works effectively with DRL
when training an MLP on FashionMNIST.

Training samples As with PC, in the case of TP, Figure 6 uses 1024 training samples. Similar
results were observed when using the full training dataset, as shown in Figure S.18 .

39

Published as a conference paper at ICLR 2025

E EXPERIMENTAL SETTINGS

Architecture and dataset We trained the following three models:

* MLP: We trained a 3-layer multilayer perceptron (MLP) with Tanh activation. The MLP
models do not include bias.

* CNN: We trained a 3-layer CNN with Tanh activation. The models consist of two-layer
convolutional layers and a linear layer. We trained with different hidden widths where the
width is proportional to the input dimension of the output layer. (For example, when the
width is set to 4, the input dimension of the final layer is 512.) Max pooling is applied after
the activation function.

* YVGGS5: We trained a VGG-like model consisting of 4 convolutional blocks and 3 linear
blocks, based on the structure described in (Pinchetti et al., 2024). When the width is set to
8, it matches the VGG5 model in Pinchetti et al. (2024), with the channel sizes being [128,
256,512, 512].

Dataset and batch size 'We used FashionMNIST and CIFAR-10 datasets without applying any data
augmentation. The settings for batch size and training samples were as follows:

* PC In the experiments on pTransfer, FashionMNIST was generally trained with 1024
training samples and a batch size of 1024, except for Figure S.8 . However, when training
VGGS3, the batch size was reduced to 64 due to memory constraints. In the experiment
verifying the scaling of P with respect to width (Figure 3), all training samples were used,
with a batch size of 1024.

* TP In Figures S.14 and 6, we trained a 3-layer MLP using 1024 training samples. Note that
in Figure S.18 in the Appendix, FashionMNIST, and CIFAR-10 were trained using the full
datasets. For the activation function of feedback networks, the same activation function as
one used in the forward pass is utilized (i.e., ¥ = ¢).

Training recipe Weight decay was not applied during the parameter updates for feedforward
networks. For SGD, the momentum was set to 0.9, and for AdamW, the parameters (31, 52) were set
to (0.9,0.99).

* PC The reduction mode for the loss function was set to "sum" to align the order of all terms
in the free energy function.

« TP For feedback networks, weight decay was set to 10~* and the learning rate for the target
was set to 7 = 0.01. Before starting the main training, only the feedback network was
trained for 5 epochs with the feedforward network fixed.

40

	Introduction
	Related Work
	Preliminaries
	Overview of Local Learning
	Predictive Coding
	Target Propagation

	P and Learning Regimes

	Feature Learning of predictive coding
	P of PC with single-shot sequential inference
	Analysis with Linear Network
	Stability of inference phase

	Feature Learning of target propagation
	P of TP
	Disappearance of the Kernel Regime

	Conclusion
	Extended Background
	Extended related work
	P
	Predictive Coding
	Target Propagation

	Definitions for stable parameterization

	P of Predictive Coding
	Derivation for Predictive Coding with single-shot SI
	Fixed points of PC in Linear Networks
	Proof for Theorem 4.2
	Proof for Corollary 4.3
	Balance condition determining l<L
	Nudged Predictive Coding

	P of Target Propagation
	Derivation of Theorem 5.1
	Disappearance of Kernel regime

	Stable parameterization for feedback network

	Additional Experiments
	Predictive Coding
	Linear Network
	Additional Experiments on transfer for PC

	Target Propagation
	Additional Experiments on Transfer for TP

	Experimental Settings

