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This is the supplementary material for EVA3D. We provide more information of the training datasets
in Sec. 1. More implementation details are introduced in Sec. 2. More visual results and comparisons
are provided in Sec. 3. We also attached a demo video for better viewing experience.

1 DATASETS

DeepFashion (Liu et al., 2016) collects fashion images from the internet. We only use images
that contain the full body and not wearing dresses, which results in 8,036 images for training. We
use SMPLify-X (Pavlakos et al., 2019) to estimate SMPL parameters and camera parameters. All
images are resized to 512 × 256 for training. The alignment of the human body is the same as that
proposed by Jiang et al. (2022).
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Figure 1: Head Angle Dis-
tribution of SHHQ and UBC-
Fashion.

SHHQ (Fu et al., 2022) collects a larger-scale fashion dataset from
the internet. It is processed similarly as DeepFashion, which re-
sults in 120,865 images in resolutions of 512 × 256. In our ex-
periments, we find that models trained using SMPL estimated by
SMPLify-X performs better than that of SPIN (Kolotouros et al.,
2019). The head direction distribution of SHHQ, like DeepFash-
ion, is also heavily imbalanced, as shown in Fig. 1 a). The accom-
panying blue line is the distribution of the proposed pose-guided
sampling.

UBCFashion (Zablotskaia et al., 2019) is a fashion video dataset
containing 500 sequences of models posing in front of the camera.
Most models wear dresses in this dataset. We estimate SMPL se-
quences from videos by VIBE (Kocabas et al., 2020). We use all
frames of the 500 videos and crop them to 512 × 256 for train-
ing, which leads to 192,179 samples. Although most models spin
in front of the camera, the head direction of UBCFashion is still
heavily imbalanced, as shown in Fig. 1 b).

AIST (Tsuchida et al., 2019) is a multi-view human dancing video
dataset that provides rich poses and accurate SMPL estimations.
We directly use the dataset processing scripts provided by ENARF-
GAN (Noguchi et al., 2022) and get 72,000 samples. Each sample
is resized to 256× 256 for training.

2 IMPLEMENTATION DETAILS

2.1 NETWORK ARCHITECTURE

As introduced in the main paper, we split the whole body into 16 parts, which is shown in Fig. 2
in specific. For each part, a subnetwork is assigned, which is developed based on StyleSDF (Or-El
et al., 2022). The architecture of each subnetwork is shown in Fig. 2 b). For each subnetwork,
multiple MLP and FiLM SIREN (Chan et al., 2021) activation layers are stacked alternatively. At
the end of each subnetwork, two branches are used to separately estimate SDF value and RGB value.
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a) Body Part Definitions b) Subnetwork Architecture

Figure 2: a) shows our definition of 16 parts of human body. The number in the bracket is the number
of corresponding subnetwork layers. b) shows the architecture of each subnetwork corresponding to
each body part.

We assign different numbers of network layers for different body part empirically. Specific numbers
are listed on Fig. 2 a). For the discriminator, we use the same architecture as that of StyleSDF (Or-El
et al., 2022).

2.2 TRAINING SETTINGS

Hyperparameters. We use Adam optimizer (Kingma & Ba, 2014) for the optimization of both
generator and discriminator. The learning rate for generator is 2 × 10−5. The learning rate for
discriminator is 2× 10−4. The loss weights as set empirically as λoff = 1.5 and λeik = 0.5. For one
ray, 28 query points are sampled. For the pose-guided sample, we choose to use σθ = 15◦.

R1 Scheduler. R1 regularization is used during training to penalize gradients of discriminator.
Because it is highly challenging for the generator to learn plausible human appearance, the dis-
criminator tends to overfit quickly if low R1 is set. But too high of R1 value would harm the final
generation quality. Therefore, we set a R1 scheduler empirically, where R1 decrease from 300 to
18.5. R1 is cut in half every 50,000 iterations.

Augmentation. Inevitably, the SMPL estimations for 2D human images are not accurate for most
samples. To compensate for the estimation error, we adopt small augmentations on real and fake
samples before sent to the discriminator. The augmentation includes random panning, scaling and
rotation in small ranges.

Runtime Analysis. The models are trained on 8 NVIDIA V100 GPUs for 5 days, with a batch size
of 8. At test time, our model runs at ∼ 5 FPS on one NVIDIA V100 GPU.

3 MORE QUALITATIVE RESULTS

Visual Comparison on UBCFashion & AIST. We further show renderings and corresponding
meshes of three baseline methods and EVA3D trained on UBCFashion and AIST in Fig. 3. UBC-
Fashion has dense views and simple human poses. Therefore, EG3D and StyleSDF succeeded in
generating reasonable renderings. But the corresponding meshes lack details due to training at low
native resolution (64 × 64). EVA3D gives the best visual results among the baseline methods and
also generates plausible meshes with reasonable details. Due to complex human poses, StyleSDF
fails on AIST. EG3D manages to generate reasonable 3D human, but fails to capture correct human
structure in some cases. ENARF-GAN, for its low-resolution training, loses most details and gener-
ates rough meshes. EVA3D not only gets the best RGB renderings, but also generates meshes that
preserve details like brims.

2



Published as a conference paper at ICLR 2023

Qualitative Evaluations on Ablation Studies. As shown in Fig. 4, we visualize renderings and
geometry generated by baseline methods described in the ablation studies in the main paper. The
“Baseline”, due to being trained at lower resolution (256 × 128), generates blurry renderings. The
geometry fails to capture correct human structure (see broken knees). The compositional 3D human
representation (“+ Composite”) facilitates high resolution training (512 × 256). But lack of human
prior leads to low-quality geometry (see unreasonable “wrinkles” on the upper bodies). By intro-
ducing a 3D human template and predicting delta SDF (“+ Delta SDF”), the visual quality increases
and the geometry is mostly reasonable. However, the facial area is still flat due to the highly imbal-
anced viewing angle distribution. By using the pose-guided sampling (“+ Pose-Guided Sample”),
we alleviate the imbalance issue and generate both high fidelity renderings and plausible geometry.
To further validate our choice of Gaussian distribution in the pose-guided sampling, we visualize the
results of models trained using uniform distribution (“+ Uniform Sample”). The middle of generated
heads have severe artifacts.

More Qualitative Results of EVA3D. More qualitative results of EVA3D on four datasets are shown
in Fig. 6, 7, 8, 9. For each sample, we show its novel view renderings and novel pose rendering.

4 MORE DISCUSSIONS

4.1 MORE RESULTS AND COMPARISON OF INTERPOLATION AND INVERSION

We show more results of applications of EVA3D, which are latent space interpolation and inver-
sion in Fig. 5. We also show latent space interpolation and inversion results on StyleSDF (Or-El
et al., 2022) for comparison. Because StyleSDF has no control over human poses, pose changes
are observed (see left hands) when interpolating between latent codes. The texture stitching prob-
lem (Karras et al., 2021) can also be seen during pose changing. Moreover, some middle results are
semantically incorrect due to inferior generation quality of StyleSDF. In contrast, EVA3D demon-
strate consistently high quality interpolation results during latent space interpolation. For the in-
version, StyleSDF fails to recover detailed appearances of input target even with the second stage
fine-tuning of PTI (Roich et al., 2021). Though the geometry are hard to be inverted with a single
image as input, EVA3D manages to recover fine details of the input image. Admittedly, the inverted
results are blurry, especially when changing camera views. We think that is because the ambiguity
of a single image as input and errors introduced by single image SMPL estimation (Pavlakos et al.,
2019). Besides, PTI (Roich et al., 2021), as an inversion method designed for 2D GANs, might not
be suitable for 3D-aware GAN inversion. We expect more explorations (Cai et al., 2022; Lin et al.,
2022) in 3D-aware GAN inversion in the future, which might inspire tasks like single image 3D
reconstruction and 3D-aware editing.

4.2 NECK LINE ARTIFACT ISSUE ON DEEPFASHION

As shown in Fig. 6, there are apparent geometric line artifacts around the neck areas. After careful
comparison, we find that these line artifacts can only be found on the samples generated from Deep-
Fashion training and can only be found on the necks and shoulders. Moreover, as shown in Fig. 4, the
“Baseline” results do not have line artifacts. Based on the observations, we think the problem should
be caused by DeepFashion, the compositional representation and head area modeling. Firstly, Deep-
Fashion only contains 8, 036 samples, which is an order of magnitude less than other three datasets.
It is known that generation models trained with small data are prone to artifacts (Karras et al., 2020).
Moreover, unlike other datasets, many models in DeepFashion have long hair hanging in front of the
shoulder, causing trouble for the compositional representation to model. The “head” and “shoulder”
sub-modules try their best to composite the hanging-down hair and manage to give relatively contin-
uous renderings. But due to the lack of 3D supervision, it is difficult for both modules to composite
continuous surfaces at edges of their bounding boxes. The bigger limitation behind this observation
is that the current compositional representation cannot model loose garments, accessories or other
body parts (like hair). Using separate modules to handle loose parts (like hair) might alleviate the
problem. Since it is not a trivial operation and out of the focus of this work, we will leave that to the
future work.
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Figure 3: Visual Comparison on UBCFashion & AIST. Zoom in for the best view.
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Figure 4: Qualitative Evaluations on Ablation Studies. Zoom in for the best view.

5



Published as a conference paper at ICLR 2023

a) Interpolation on Latent Space b) Target Inversion Result

St
yl
eS
D
F

O
ur
s

Figure 5: More Results of EVA3D Applications and Comparison with Baseline Methods. a)
Interpolation on the latent space gives smooth transition between two samples. b) Inversion results
(right) of the target image (left).
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Figure 6: More Qualitative Results of EVA3D on DeepFashion. Zoom in for the best view.
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Figure 7: More Qualitative Results of EVA3D on SHHQ. Zoom in for the best view.
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Figure 8: More Qualitative Results of EVA3D on UBCFashion. Zoom in for the best view.

Figure 9: More Qualitative Results of EVA3D on AIST. Zoom in for the best view.
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