
Under review as a conference paper at ICLR 2024

A COMPARISON OF DIFFERENT QUANTIZATION TYPES

To distinguish between traditional independent bit quantization, multi-bit joint quantization, and
the optimization of mixed-precision super-net, we have visualized the detailed training process
diagrams of different quantization types, as depicted in Figure 5. It is evident that for individual
bit quantization when different bit configurations are considered, the complete quantization process
needs to be repeated. Quantization-Aware Training (QAT) requires retraining, while Post-Training
Quantization (PTQ) necessitates fine-tuning (Jacob et al., 2017). Such costs are unacceptable for the
same model.

However, the multi-bit quantization method of once-joint training effectively addresses the problem
of repeated training for individual bits, allowing for model adaptation, especially in the domain
of autonomous driving, to respond to different scene changes. This enables a trade-off between
model size, accuracy, and latency, reducing hardware power consumption and contributing to energy
efficiency and emission reduction. Compared to once-joint multi-bit quantization, the mixed-
precision super-net offers a more finely-grained adjustment of bit-width allocation for different
layers, thus enhancing the overall model performance.

Additionally, the proposed Double Rounding quantization method in this paper facilitates the
seamless switching of bits in different layers of mixed-precision super-net during inference to
achieve a more reasonable trade-off between model size or FLOPs and accuracy. Importantly, the
entire bit-switching process requires no retraining or fine-tuning.

2bit 3bit 8bit

𝐿1

𝐿2

𝐿n

2bit 3bit 8bit

𝐿1

𝐿2

𝐿n

2bit 3bit 8bit

𝐿1

𝐿2

𝐿n

(a) Independent: Each bit-width requires

training a new network with independent

weights.

(b) Multi-Bit: A single network can

be quantized to any bit-width at

runtime, without any re-training.

(c) Mixed-Precision: A single network whose

individual layers can be quantized to any bit-

width at runtime, without any re-training.

Figure 5: Comparison between different network quantization types

B ALGORITHMS

The algorithm implementations of multi-bit joint quantization and mixed-precision super-net
optimization are provided in this section. Firstly, we discuss the differences between the
conventional multi-bit joint training method and the multi-bit joint training method based on Multi-
LR proposed in this paper. Next, we elaborate on the training implementation details of the mixed-
precision super-net with weighted probability. Lastly, we implement a decision-making scheme to
efficiently select the optimal subnetwork based on the trained mixed-precision super-net.

B.1 COMPARISON BETWEEN THE CONVENTIONAL MULTI-BIT TRAINING APPROACH AND
THE Multi-LR APPROACH

In general, during multi-bit joint quantization training, all candidate models with different
quantization precisions share the same model weights, typically the highest-bit model.

Since it can be difficult to achieve convergence when losses calculated by different bit-widths
directly update the shared weights separately, previous conventional multi-bit joint quantization
training primarily acquired the corresponding loss by forwarding each round of mini-batch data
multiple times. The model size for each forward pass is determined based on the current bit-width.

12



Under review as a conference paper at ICLR 2024

In other words, during each round of training iterations, the model goes through the same number
of iterations as the candidate bit-widths, accumulating a total loss, and then updating the parameters
accordingly. For specific implementation details, please refer to Algorithm 1.

We have discovered that the reason for the lack of convergence when updating shared parameters
according to the corresponding bit-width in each round is the inconsistency in the update pace of
different bit-widths. In other words, the gradient magnitudes of quantization scales of different
bit-widths vary, making it hard to attain stable convergence during training.

To address this issue, we introduce an adaptive approach to alter the learning rate for different
bit-widths, aiming to achieve a consistent overall update pace. This modification allows us to
directly update the shared parameters after calculating the loss for the current bit at a time. We have
named this training strategy Multi-LR, and it has been experimentally proven to result in improved
performance for multi-bit models.

In the actual implementation, we update both the parameters of weights and the parameters of
the quantization scales simultaneously using dual optimizers. We also set the weight-decay of the
quantization scales to 0 to achieve more stable convergence. This is done because the shared scales
learned during multi-bit joint training are more sensitive (Xu et al., 2022) than those in individual-bit
quantization training. For specific implementation details, please refer to Algorithm 2.

Algorithm 1 Conventional training approach
Require: Candidate bit-widths set bc ∈ B

1: Initialize: Model M with floating-value,
the quantization scales S including sh of
weights and sc of activations,
BatchNorm layers: {BN}nc=1,
optimizer: optim(W , S);

2: For one epoch;
3: Sample mini-batch data (x,y) ∈ {Dtrain}
4: for bc in B do
5: for each quantization layer do
6: ŵc = dequant(quant(w, sh))
7: x̂c = dequant(quant(x, sc))
8: oc = M(ŵc, x̂c)
9: end for

10: Update BN c layers
11: Compute loss: Lc = CE(Oc,y)
12: Compute gradients: Lc.backward()
13: end for
14: Update weight and scales using accumulated

gradients: optim.step()
15: Clear gradient: optim.zero grad();

Algorithm 2 Multi-LR training approach
Require: Candidate bit-widths set bc ∈ B

1: Initialize: Model M with floating-value,
the quantization scales S including sh of
weights and sc of activations,
BatchNorm layers: {BN}nc=1,
optimizers: optim1(W ),
optim2(S,wd = 0),
learning rate: λ,
the collapse function: Γc(·);

2: For one epoch;
3: Sample mini-batch data (x,y) ∈ {Dtrain}
4: for bc in B do
5: for each quantization layer do
6: ŵc = dequant(quant(w, sh))
7: x̂c = dequant(quant(x, sc))
8: oc = M(ŵc, x̂c)
9: end for

10: Update BN c layers
11: Compute loss: Lc = CE(Oc,y)
12: Compute gradients: Lc.backward()
13: Compute learning rate: λc = Γc(λ)
14: Update weights and scales:

optim1.step(λ)
optim2.step(λc)

15: Clear gradient:
optim1.zero grad()
optim2.zero grad()

16: end for

Note: n represents the number of candidate bit-widths, CE denotes CrossEntropyLoss(), wd
denotes weight decay, W denotes weights of the model.

B.2 EFFICIENT TRAINING OF MIXED PRECISION

Unlike multi-bit joint quantization, the training of the mixed-precision super-net is more random. In
multi-bit training, the bit-widths calculated in each round are fixed, such as [8,6,4,2]. However, in
mixed-precision super-net training, the bit-widths updated in each round are not fixed, for example,

13



Under review as a conference paper at ICLR 2024

[8,random-bit,2], similar to the sandwich strategy of Yu et al. (2018). Therefore, mixed precision
training often requires more training epochs to reach convergence compared to multi-bit training.

Bit-mixer (Bulat & Tzimiropoulos, 2021) conducts the same probability of randomly selecting bit-
width for different layers. However, we take the sensitivity of each layer into consideration which
uses sensitivity (e.g. Hessian’s trace (Dong et al., 2020)) as a weight to measure the random selection
probability of different layers. For more sensitive layers, preference is given to higher-bit widths,
and vice versa. We refer to this training strategy as the weighted probability approach for optimizing
the mixed-precision super-net. Specific implementation details can be found in Algorithm 3. It’s
worth noting that we also consider the sensitivities of different layers when selecting the optimal
subnetwork to ensure consistent decisions after training the mixed-precision super-net.

In additionally, different from multi-bit joint training, the BN layers are replaced by TBN
(Transitional Batch-Norm) (Bulat & Tzimiropoulos, 2021), which compensates for the distribution
shift between adjacent layers that are quantized to different bit-widths. The main difference between
our proposed method and Bit-Mixer lies in the 12th line of Algorithm 3. The average trace of the
Hessian matrix of each layer is considered when switching bits, which makes the training process of
mixed precision consistent with the decision-making for selecting a sub-network by Integer Linear
Programming (ILP) algorithm (Yao et al., 2021).

Algorithm 3 Mixed-precision training approach
Require: Candidate bit-widths set bc ∈ B, the average hessian trace of different layers of float-point

model: tl ∈ {T}Ll=1
1: Initialize: Model M with floating-value, the quantization scales S including sh of weights and

sc of activations, BatchNorm layers: {BN}n
2

c=1, optimizer: optim(W , S), the probability of
bit-switching: σp = 0, the probability threshold of bit-switching: σk = 3/4, the total number
of epochs: ep, the epoch of unincreasing probability of bit-switching: ep = 2/3 · etotal, the
probability step of bit-switching: δp = σk/ep, the current number of epochs: ecur;

2: For one epoch;
3: Sample mini-batch data (x,y) ∈ {Dtrain}
4: for bc in B do
5: if σp >= σk then
6: σp = σk

7: else
8: σp = δp · ecur
9: end if

10: for each quantization layer do
11: if random() >= (1− σp) then
12: bc = random.choice(B, tl)
13: end if
14: ŵc = dequant(quant(w, sh))
15: x̂c = dequant(quant(x, sc))
16: oc = M(ŵc, x̂c)
17: end for
18: Update BN c layers
19: Compute loss: Lc = CE(Oc,y)
20: Compute gradients: Lc.backward()
21: end for
22: Update parameters using accumulated gradients: optim.step(); optim.zero grad()

Note: n represents the number of candidate bit-widths.

B.3 DECISION-MAKING OF CANDIDATE BIT-WIDTHS OF MIXED PRECISION

After training the mixed-precision super-net, the next step is to select the appropriate optimal
subnetwork based on criteria like model size or FLOPs for actual deployment and inference.
Optimizing mixed-precision supernets is discussed in Section B.2, and it takes into account the
sensitivities of different layers when considering the random selection of bit-widths.

14



Under review as a conference paper at ICLR 2024

To achieve solutions for bit allocation candidates under given FLOPs or model size conditions, we
employ the Iterative Pareto Learning (IPL) approach. Since each IPL run can provide only one
solution, we obtain multiple solutions by altering the types of different average bit-widths. This
enables us to create several subnets and form a Pareto optimal frontier. From this frontier, we can
select the appropriate subnet for deployment. For a detailed step-by-step process, please refer to
Algorithm 4.

Algorithm 4 Decision-Making of candidate bit-widths of mixed prccision
Input: Given candidates of average bit-width: ωj ∈ {Ω}mj=1, candidate bit-widths set bc ∈ B,

the average hessain trace and parameter of different layers of float-point model:tl ∈ {T}Ll=1,
nl ∈ {N}Ll=1

Output: Candidate bit-widths for different layers:pk ∈ {P}K≪ BL

k=1
1: for ωj in Ω do
2: Objective function: Oh =

∑L
l=1

tl
nl

· lbc

3: Constraints: ωj ==

∑L
l=1 lbc
L

4: The solve of problem: s1 = pulp.solve() and S.append(s1)
5: for lbc

in p1 do
6: for bc in B do
7: if bc < max(s1) and bc ̸= lbc

then
8: Add constraint: lbc

== bc

9: Problem solve: pc = pulp.solve()
10: if sc not in S then
11: P.append(pc)
12: end if
13: Pop last constraint
14: end if
15: end for
16: end for
17: end for
18: return P

C THE GRADIENT STATISTICS OF LEARNABLE SCALE OF QUANTIZATION

In this section, we analyze the changes in gradients of the learnable scale for different models during
the training process. Figure 6 and Figure 7 display the gradient statistical results for ResNet20 on
CIFAR-10. Similarly, Figure 8 and Figure 9 show the gradient statistical results for ResNet18 on
ImageNet, and Figure 10 and Figure 11 present the gradient statistical results for ResNet50 on
ImageNet. These figures reveal a similarity in the range of gradient changes between higher-bit
quantization and 2-bit quantization. Notably, they illustrate that the value range of 2-bit quantization
is noticeably an order of magnitude higher than the value ranges of higher-bit quantization.

1 2 3 4 5 6 7 8 9 1011121314151617181920
Layer

6

4

2

0

2

4

Th
e 

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

1e 2 8bit

1 2 3 4 5 6 7 8 9 1011121314151617181920
Layer

3

2

1

0

1

2

3

Th
e 

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

1e 2 6bit

1 2 3 4 5 6 7 8 9 1011121314151617181920
Layer

3

2

1

0

1

2

3

Th
e 

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

1e 2 4bit

1 2 3 4 5 6 7 8 9 1011121314151617181920
Layer

8

6

4

2

0

2

4

6

8

Th
e 

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

1e 2 2bit

Figure 6: The scale gradient statistics of weight of ResNet20 on CIFAR-10 dataset. Note that the
outliers are removed for exhibition.

15



Under review as a conference paper at ICLR 2024

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

2.5

2.0

1.5

1.0

0.5

0.0

Th
e 

gr
ad

ie
nt

 o
f a

ct
iv

at
io

n 
sc

al
e

1e 3 8bit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

3

2

1

0

1

Th
e 

gr
ad

ie
nt

 o
f a

ct
iv

at
io

n 
sc

al
e

1e 4 6bit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

Th
e 

gr
ad

ie
nt

 o
f a

ct
iv

at
io

n 
sc

al
e

1e 3 4bit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

4

3

2

1

0

1

Th
e 

gr
ad

ie
nt

 o
f a

ct
iv

at
io

n 
sc

al
e

1e 3 2bit

Figure 7: The scale gradient statistics of activation of ResNet20 on CIFAR-10 dataset. Note that the
first and last layers are not quantized.

1 2 3 4 5 6 7 8 9 10111213141516171819
Layer

6

4

2

0

2

4

6

Th
e 

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

1e 2 8bit

1 2 3 4 5 6 7 8 9 10111213141516171819
Layer

4

3

2

1

0

1

2

3

Th
e 

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

1e 2 6bit

1 2 3 4 5 6 7 8 9 10111213141516171819
Layer

4

2

0

2

4

Th
e 

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

1e 2 4bit

1 2 3 4 5 6 7 8 9 10111213141516171819
Layer

2

1

0

1

2

Th
e 

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

1e 1 2bit

Figure 8: The scale gradient statistics of weight of ResNet18 on ImageNet dataset. Note that the
outliers are removed for exhibition.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Layer

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Th
e 

gr
ad

ie
nt

 o
f a

ct
iv

at
io

n 
sc

al
e

1e 3 8bit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Layer

6

4

2

0

2

4

6

Th
e 

gr
ad

ie
nt

 o
f a

ct
iv

at
io

n 
sc

al
e

1e 4 6bit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Layer

4

2

0

2

4

Th
e 

gr
ad

ie
nt

 o
f a

ct
iv

at
io

n 
sc

al
e

1e 4 4bit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Layer

4

2

0

2

4

Th
e 

gr
ad

ie
nt

 o
f a

ct
iv

at
io

n 
sc

al
e

1e 4 2bit

Figure 9: The scale gradient statistics of activation of ResNet18 on ImageNet dataset. Note that the
outliers are removed for exhibition.

16



Under review as a conference paper at ICLR 2024

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849505152

Layer

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Th
e 

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

8bit

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849505152

Layer

4

2

0

2

4

Th
e 

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

6bit

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849505152

Layer

6

4

2

0

2

4

6

Th
e 

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

4bit

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849505152

Layer

3

2

1

0

1

2

3

Th
e 

gr
ad

ie
nt

 o
f w

ei
gh

t s
ca

le

1e2 2bit

Figure 10: The scale gradient statistics of weight of ResNet50 on ImageNet dataset. Note that the
outliers are removed for exhibition, and the first and last layers are not quantized.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748

Layer

2

1

0

1

2

Th
e 

gr
ad

ie
nt

 o
f a

ct
iv

at
io

n 
sc

al
e

1e 5 8bit

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748

Layer

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Th
e 

gr
ad

ie
nt

 o
f a

ct
iv

at
io

n 
sc

al
e

1e 5 6bit

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748

Layer
1.5

1.0

0.5

0.0

0.5

1.0

1.5

Th
e 

gr
ad

ie
nt

 o
f a

ct
iv

at
io

n 
sc

al
e

1e 3 4bit

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748

Layer

6

4

2

0

2

4

6

8

Th
e 

gr
ad

ie
nt

 o
f a

ct
iv

at
io

n 
sc

al
e

1e 2 2bit

Figure 11: The scale gradient statistics of activation of ResNet50 on ImageNet dataset. Note that
the outliers are removed for exhibition.

17




