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1 FURTHER ELABORATION ON BSMM
As depicted in Figure 1 for clarity, we have created an explanatory
diagram detailing the mechanism of the “read” process.Notably, in
experiments, we calculate similarity weights between behav-
ior and the first 𝐿𝑏 channels of all memory items.We select
the top 𝐾 vectors with the highest similarity weights as matching
weights 𝐶𝑏 ∈ R𝐾 and compute scene-related anomaly scores with
their corresponding scene similarity weights. In the experiments,
we utilize the four datasets mentioned in Section 4.6 of the paper
and split them into train, validation, and test sets with a 5:2:3 ra-
tio. We perform hyperparameter tuning on the validation sets and
select the optimal 𝐾 values of 4. For this explanatory diagram, we
assume a hypothetical value of 𝐾 equal to 2.

Specifically, consider two query items with identical behavioral
features but differing scene features, denoted as 𝑞1 and 𝑞2. Initially,
we compute the similarity between behavioral features and the first
𝐿𝑏 channels of each item in the Behavior-scene Memory. Similarly,
we calculate the similarity between scene features and the last 𝐿𝑠
channels of each item in the Behavior-scene Memory. The results,
as depicted in the figure 1 (without normalization for the illustrative
figure), are then used to form matching weights 𝐶𝑏 comprising the
top 𝐾 data points with the highest behavioral similarity. In the
illustrative diagram, the behavioral features of the third and fourth
items exhibit the highest similarity to those of the query. Next, we
compute the distance between the behavior matching weights 𝐶𝑏
and the corresponding scene similarity addressing weights 𝐶𝑠 to
derive the final scene-related anomaly score 𝑆𝑚𝑚 .

From the demonstration results, it is evident that for the query
item 𝑞2, the behavioral features are similar to the top 𝐾 items in
memory. However, the scene features exhibit low similarity with
the last 𝐿𝑠 channels of memory items, indicating a scene-related
anomaly.

2 FURTHER EXPERIMENTAL DETAILS
2.1 Statistical Testing
We further elucidated the effectiveness of our method from a statis-
tical perspective. To ascertain the consistency and stability of the
model’s AUC performance, we conducted 20 repetitions of experi-
ments in our approach and three open-source benchmark methods,
namely JIGSAW[4], HF2-VAD[2], and STG-NF[1]. We calculated the
average and standard deviation of the AUC metric for each method,
as shown in the table 1, the results indicate that while the standard
deviation of our algorithm is not the smallest, it still aligns with the
average level. Furthermore, the average outcomes of our method
in repeated experiments surpass those of other algorithms. Figure
2 further presents the distribution of AUC values from multiple
experiments of our algorithm on two datasets. Due to the Shang-
haiTech dataset being simpler compared to the UBnormal dataset,

Table 1: The AUC(%) of mean and standard deviation
(mean±std) across 20 repetitions of experiments.

Method ShanghaiTech UBnormal

HF2-VAD [2] 71.2±0.7 -
JIGSAW [4] 83.2±1.2 57.1±3.5
STG-NF [1] 85.3±1.8 68.9±2.1

Ours 86.9±1.2 74.3±1.8

Table 2: 𝑝-value (𝑝) computed using 𝑡-tests.

Method ShanghaiTech UBnormal

Ours with HF2-VAD [2] 2.1×10−10 -
Ours with JIGSAW [4] 1.8×10−7 2.1×10−41
Ours with STG-NF [1] 1.0 ×10−3 3.6 ×10−15

our algorithm demonstrates a higher median, a smaller box, and
shorter whiskers on the ShanghaiTech dataset, indicating superior
AUC performance.

To ascertain if there is a significant difference between our
method and the other three approaches, we conducted statisti-
cal calculations using 𝑡-test to calculate p-values. If the 𝑝-value
is less than 0.05, it indicates a significant difference between the
two algorithms. From the table 2, it is evident that the p-values for
our method in comparison to the other methods are all less than
0.05, indicating a significant difference between our algorithm and
baseline methods.

2.2 Ablation Experiments on Parameters
LSTA module count 𝐿. The motion features primarily focus on
the actions of individuals. In the field of action recognition, Spatial-
Temporal Excitation (STE)[5] is capable of effectively extracting the
spatiotemporal representation of actions. We observed that incor-
porating a large convolutional kernel on top of STE is advantageous
for capturing action anomalies. Subsequently, we investigated the
impact of the LSTAmodule count, denoted as 𝐿, on the performance
of abnormality scores’ Area Under the Curve (AUC). To control
variables, we specifically calculated the AUC performance of the
action anomaly detection branch.

As illustrated in Figure 3(1), the model’s performance exhibits
an increasing trend, with the number of modules experiencing
relatively rapid growth before reaching 5, and slowing down sig-
nificantly thereafter. In order to strike a balance between the speed
and performance of the model, we have determined that the optimal
quantity of LSTA modules is 5.

Masking Rate 𝛾 . In this section, we analyze the impact of mask
coverage 𝛾 in Section 3.3 of the main text on performance . It is
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Figure 1: Flowchart of the BMSS read process and scene-related anomaly score calculation.

Figure 2: Our algorithm’s boxplots for two datasets.

important to note that during inference, tests are grouped into 1
𝛾

sets, and if the count is less than two sets, they are grouped into two
sets. As depicted in Figure. 3(2), within the five numerical groups
we defined the algorithm’s AUC performance peaks at 50%. This
could be attributed to the excessively small mask coverage, allowing
the model to effectively learn high-level appearance features from
adjacent patches. Conversely, an excessively large mask coverage
hampers the normal learning of appearance features.

𝛼 and 𝛽 in Loss Function.We conduct a two-stage fine-tuning
process. Initially, we set the 𝛼 parameter in the loss function at
intervals of 0.1 within the range of 0 to 1 to determine the optimal
performance range, which was identified as 0 to 0.2. Subsequently,
we fine-tuned the parameters at intervals of 0.05 to determine the
final parameter settings. As depicted in Figure. 3(3), firstly, for
values of 𝛼 below 0.1, its effect on the experiments is minor. As 𝛼
increases, its influence becomes more pronounced. However, once
the parameter exceeds 0.1, there is a notable decline in performance.
Ultimately, we select a value of 0.1 for 𝛼 . For the value of 𝛽 , we
employ the same value as [3], which is set to 0.0001.
𝜆𝑎𝑝𝑝 in Anomaly Score. Similarly, we employed a two-stage

approach for 𝜆𝑎𝑝𝑝 , ultimately choosing the range of 0 to 0.2. As
depicted in Figure. 3(4),the impact of 𝜆𝑎𝑝𝑝 on performance exhibited
a similar trend to that of 𝛼 in the loss function, showing an initial
increase followed by a decrease within the range of 0.1 to 0.2. It
peaked at 0.1. Hence, the final choice for 𝜆𝑎𝑝𝑝 was also 0.1.

Table 3: The AUC(%) performance of Cross-dataset.

Algorithm Test on SHT Test on UBN
HF2-VAD [2] 74.7 ↓ 2.0 -
JIGSAW[4] 81.3 ↓ 3.6 55.7↓ 1.2
STG-NF[1] 84.0 ↓ 2.2 67.9↓ 2.6

Ours 85.1↓ 1.9 72.6↓ 2.3

2.3 Cross-Dataset Generalization Capability
As shown in Table 3, our study not only addresses model perfor-
mance on specific datasets but also emphasizes its broader applica-
bility. Therefore, we employ cross-dataset validation, training on
one dataset’s training set and evaluating on another dataset’s test-
ing set. "Test on ShanghaiTech" referred to here implies the model
is trained on the UBnormal dataset and tested on the ShanghaiTech
dataset. This method provides a comprehensive insight into the
model’s adaptability under varied conditions. It is worth noting that,
due to significant differences in the scenarios covered by the two
datasets, training on one dataset to detect scene-related anomalies
in another dataset is not effective. Therefore, we only discuss the
robustness of the Two-level Guidance-Exploration Network. We
conduct a comparison between our method and publicly available
algorithms, and the experimental results reveal that our approach
exhibits a slight superiority over other algorithms. Furthermore,
in comparison to training and testing on the same dataset, our
approach exhibits only a small degradation in performance.

3 DISCUSSION
The paper introduces a multi-level guided exploration network,
resembling a teacher-student network in some aspects. The method
takes a multimodal approach to detect different types of anomalies.
Despite achieving considerable performance improvements, there
are still some issues that require further discussion:

First, our Method relies on the extraction of skeleton keypoints.
Therefore, if keypoints are poorly extracted for blurry video frames,
it may negatively impact the performance of our action anomaly
detection.
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Figure 3: The AUC(%) performance of (1) LSTA module count 𝐿 ,(2) masking rate 𝛾 , (3)𝛼 in loss funtion and (4)𝜆𝑎𝑝𝑝 in anomaly
score Value on Impact.

Second, many video anomaly detection methods , including ours,
are considered video anomaly detection as an Out-of-Distribution
(OOD) detection. Consequently, some unobserved normal actions
are also treated as anomalies. In the future, we aim to design meth-
ods that can perceive such anomalies as normal occurrences.

Finally, scene-releted anomaly detection is a worthwhile research
direction. However, currently, anomalies related to scenes are com-
plex and challenging to detect. While our method can address these
issues, it is also limited. Performance may be compromised when
encountering unseen scenarios. This might require extensive data
or domain-specific knowledge, making it an exploration-worthy
direction for anomaly detection.
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