
Published as a conference paper at ICLR 2024

A APPENDIX

As mentioned in the main body, the appendix contains additional materials and supporting information
for the following aspects: rational activation functions improving plasticity (4), comparison of rational
and rigid networks with different sizes on supervised learning experiments (A.1), results on replacing
residual blocks with rational activation functions (A.2), every final and maximal scores obtained by
the reinforcement learning agents used in our experiments (A.3), the evolutions of these scores (A.4),
the different environment types with illustrations of their changes (A.5), graphs of the learned rational
activation functions (A.6) and technical details for reproducibility (A.8).

Rational functions improve plasticity

0 50 100 150 200 250 300 350
Training images (K)

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

MNIST PERM. 1 PERM. 2

Task 0
Task 1
Task 2
ReLU
CReLU
Rational

Figure 6: Rational function improve plasticity
on the permutted MNIST experiment. Ratio-
nal networks obtain better accuracies on each
currently and previously trained datasets.

To prove that rational can help with plasiticy, we
tested them in continual learning settings (with
more abrupt distribution shifts). We included Con-
catenated RELU and rational functions to an ex-
isting implementation of continual AI3, in which
4 layers (2 convolutional ones and to fully con-
nected ones) networks are trained on MNIST. The
network then continues training on PERM.1, a
variation of the dataset, for which a fixed random
permutation is applied to every image. Another
permutation is used for PERM. 2, used after the
training on PERM1. As shown in Fig. 6, networks
with rationals are both better at modelling the new
data (higher accuracies on the currently trained
data), but are also able to retain more information about the data previously trained on. Networks
with Continual ReLU (Shang et al., 2016) better retain information on Task 1, while performing on
par with ReLU ones for the 2 other tasks.

A.1 RATIONAL EFFICIENT PLASTICITY CAN REPLACE LAYER’S WEIGHT PLASTICITY

We here show that networks with rational activations not only outperform Leaky ReLU ones with
the same amount of parameters, but also to outperform deeper and more heavily parametrised neural
networks (indicated by the colours). For example, a rational activated VGG4 not only performs better
than a rigid Leaky ReLU VGG4 at 1.37M parameters, but even performs similarly to the 4.71M
parameters rigid VGG6. Activation’s plasticity allowing to reduce the number of layers weights
is also shown by the experiments summarized in Tab. 2 in the next section, where blocks from a
pretrained ResNet are replaced by a rational function, and the resulting networks are able to recover
and surpass their accuracies.

Architecture VGG4 VGG6 VGG8

Activation function LReLU Rational LReLU Rational LReLU Rational

CIFAR 10
Training Acc@1 83.0±.3 87.1±.6 86.9±.2 89.2±.2 90.1±.1 92.4±.2
Testing Acc@1 80.0±1. 84.3±.5 83.1±.6 85.4±.6 85.0±1. 86.9±.3

CIFAR 100
Training Acc@1 64.6±.8 70.4±.9 70.7±.6 86.0±.9 87.7±.2 87.8±.1
Testing Acc@1 56.5±.9 58.9±.6 59.0±.5 59.9±.9 60.0±.9 59.9±.4

Network parameters 1.37M 4.71M 9.27M

Table 1: Shallow rational networks perform as deeper Leaky ReLU ones. VGG networks training and
testing top-1 accuracies with different numbers of layers are evaluated on CIFAR10 and CIFAR100.
Rational VGG4 has similar performances as VGG6 network, with 3.5 times less parameters, and
Rational VGG6 outperforms VGG8, with two times less parameters. Shaded colour pairs included
for emphasis.

3https://github.com/ContinualAI/colab/blob/master/notebooks/permuted_and_split_mnist.ipynb

14

Published as a conference paper at ICLR 2024

A.2 RESIDUAL BLOCK LEARN OF DEEP RESNET LEARN ACTIVATION FUNCTION-LIKE

BEHAVIOUR.

We present in this section lesioning experiments, where a residual block is lesioned from a pretrained
Residual Network, and the surrounding blocks are fine-tuned (with a learning rate of 0.001) for 15
epochs. These lesioning experiments were first conducted by Veit et al. (2016). We also perform
rational lesioning, where we replace a block by an (identity initialised)4 rational activation function
(instead of removing the block), and train the activation function along with the surrounding blocks.
The used rational functions have the same order as in every other experiment ((m,n) = (5, 4)), that
satisfies the rational residual property derive in the paper). We report recovery percentages, computed
following:

recovery = 100×
finetuned − surgered

original − surgered
. (1)

We also provide the amount of dropped parameters of each lesioning.

Table 2: Rational functions improve lesioning. The recovery percentages for finetuned networks
after lesioning (Veit et al., 2016) of a ResNet layer’s (L) block (B) are shown. Residual blocks
were lesioned, i.e. replaced with the identity (Base) or a rational from a pretrained ResNet101 (44M
parameters). Then, the surrounding blocks (and implanted rational activation function) are retrained
for 15 epochs. Larger percentages are better, best results are in bold.

Recovery (%) Lesioning L2B3 L3B19 L3B22 L4B2

Training
Original (Veit et al., 2016) 100.9 90.5 100 58.9
Rational (ours) 101.1 104 120 91.1

Testing
Original (Veit et al., 2016) 93.1 97.1 81.6 81.7
Rational (ours) 90.5 97.6 91.5 85.3

% dropped params 0.63 2.51 2.51 10.0

As the goal is to show that flexible rational functions can achieve similar modelling capacities to the
residual blocks, we did not apply regularisation methods and mainly focused on training accuracies.
We can clearly observe that rational activation functions lead to performance improvements that
even surpass the original model, or are able to maintain performances when the amount of dropped
parameters rises.

A.3 COMPLETE SCORES TABLE FOR DEEP REINFORCEMENT LEARNING

Through this work, we showed the performance superiority of reinforcement learning agents that
embed additional plasticity provided by learnable rational activation functions. We used human
normalised scores (cf. Eq. 2) for readability. For completeness, we provide in this section the final
raw scores of every trained agent. As many papers provide the maximum obtained score among
every epoch and every agent, even if we consider it to be an inaccurate and noisy indicator of the
performances, for which random actions can still be taken (because of ϵ-greedy strategy also being
used in evaluation). A fairer indicator to compare methods is the mean score. We thus also provide
final mean scores (of agents retrained among 5 seeded reruns) with standard deviation. We start off
by providing the human scores used for normalisation (provided by van Hasselt et al., in Table 5),
then provide final mean and maximum obtained raw scores of every agent.

4all weights are initially set to 0 but a1 (and b0), both set to 1.

15

Published as a conference paper at ICLR 2024

Algorithm DQN DDQN DQN with Plasticity

Activation LReLU SiLU d+SiLU LReLU PELU rational joint-rational

Asterix 1.85±1.2 0.52±0.6 2.14±1.4 48.9±17.7 25.8±3.7 242±23.5 168±32.6•

Battlezone 11.4±7.0 21.2±15.0 11.3±6.7 68.2±34.8 46.6±19.5 70.1±2.1• 77.4±8.7

Breakout 558±166 93.9±57.6 11.7±14.0 286±122 788±79.2 1134±130• 1210±36.0

Enduro 16.3±21.3 37.0±17.7 0.37±0.5 47.7±18.1 24.5±42.6 141±15.0 129±14.7•

Jamesbond 8.62±6.4 6.08±3.7 5.28±4.4 10.7±11.1 74.2±51.5 308±48.5• 312±59.5

Kangaroo 11.8±12.5 128±95.6• 13.9±18.5 17.2±14.5 57.7±14.6 107±43.1 193±86.8

Pong 101±5.5 96.1±12.0 104±3.3 91.3±30.8 106.4±2.2 107.0±2.4• 107.3±2.7

Qbert 55.4±17.1 14.2±17.0 2.74±0.2 74.0±21.7 101±6.6 120±2.8 117±4.9•

Seaquest 0.57±0.4 3.67±4.1 0.18±0.2 2.17±0.9 9.21±2.5 16.3±0.5• 18.4±3.3

Skiing -90.7±37.9 -111±-0.7 -85.5±43.4 -86.9±46.6 -111±-.7 -59.5±60.7 -60.2±56.1•

Space Inv. 33.9±4.3 33.1±11.9 32.4±12.4 31.0±1.0 50.1±3.3• 42.3±3.1 95.1±17.7

Tennis 8.94±17.3 26.3±53.3 78.5±64.3 32.1±51.6 106±53.3 257.8±2.8• 258.3±5.2

Timepilot 14.9±14.3 19.3±31.0 18.3±38.1 6.61±7.5 124±26.1 341±105 253±11.0•

Tutankham 0.03±2.8 58.2±48.6 2.89±4.0 24.4±-0.4 91.6±29.3 130±10.7• 134±29.3

Videopinball 440±123 55.8±61.9 -4.03±32.5 626±241 299±168 1616±1026 906±539•

Wins 0/15 0/15 0/15 0/15 0/15 6/15 9/15
Super-Human 3/15 1/15 1/15 2/15 6/15 11/15 11/15

Table 3: Neural plasticity leads to vast performance improvements. Normalised mean scores and
standard deviations (in percentage, cf. Appendix A.8 for the equation) of rigid baselines (i.e. DQN
and DDQN with Leaky ReLU, DQN with SiLU and SiLU + dSiLU), as well as DQN with plasticity:
using PELU, rational (full) and joint-rational (regularised), are reported over five experimental
random seeded repetitions (larger mean values are better). The best results are highlighted in bold
and runner-ups denoted with • markers. The last rows summarise the number of times best mean
scores were obtained by each agent and the number of super-human performances.

Final mean and maximum obtained scores of Rainbow agents:

Evaluation Final Mean Scores Max. Obtained Scores

Plasticity rigid full regularised rigid full regularised

Breakout 52 279 303 383 569 569
Enduro 844 1473 1470 1388 1973 1964
Kangaroo 40 2157 2139 6300 6000 4800
Q*bert 149 11931 11551 16125 23550 23550
Seaquest 82 247 282 920 1280 1280
Space Inv. 595 1263 1157 2070 3395 2875
Time Pilot 3926 5386 6411 12700 15900 15900

Table 4: Final mean and maximum obtained scores obtained by rigid Rainbow agents (i.e. using
Leaky ReLU), as well as Rainbow with full (i.e. using rational activation functions) and regularised
(i.e. using joint-rational ones) plasticity (only 1 run because of computational cost, larger values are
better).

16

Published as a conference paper at ICLR 2024

Final mean scores of all agents:

Algorithm Random DQN DDQN DQN with Plasticity

Network type - LReLU SiLU d+SiLU LReLU PELU full regularised

Asterix 67.9±2.2 206±90 107±45 228±108 3723±1324 1998±275 18109±1755 12621±2436

Battlezone 788±38 4464±2291 7612±4877 4429±2183 22775±11265 15807±6320 23403±701 25749±2837

Breakout 0.14±01 155±46 26.2±16 3.4±3.89 79.4±33.8 219±22 315±36 336±10

Enduro 0±0 121±158 274±131 2.77±3.41 353±134 181±315 1043±111 957±109

Jamesbond 6.39±0.41 37.6±23.6 28.4±13.8 25.5±16.2 45.2±40.7 275±187 1122±176 1137±216

Kangaroo 14.2±0.9 335±342 3500±2607 393±504 484±395 1586±398 2940±1175 5266±2365

Pong -20.2±0 15.9±2 14.1±4.3 16.9±1.2 12.4±11 17.8±0.8 18±0.9 18.1±1

Q*bert 40.6±2.8 6715±2058 1754±2048 371±28 8954±2616 12143±795 14436±336 14080±593

Seaquest 20.1±0.4 250±162 1504±1677 94.6±87.2 898±353 3740±991 6603±200 7461±1321

Skiing -16104±92 -27365±4794 -29890±4 -26725±5485 -26892±5881 -29912±10 -23487±7624 -23582±7058

Space Inv. 51.6±1.1 531±62 520±169 509±176 490±15 759±48 650±45 1395±251

Tennis -23.9±0.0 -22.4±3.0 -19.4±9.2 -10.4±11.1 -18.4±8.9 -5.6±9.2 20.5±0.5 20.6±0.9

TimePilot 688±30 1428±739 1644±1566 1594±1918 1016±401 6818±1323 17632±5242 13261±576

Tutankham 3.51±0.54 3.55±4.3 81.9±66 7.41±5.96 36.4±0 127±40 179±15 184±40

VideoPinb. 6795±461 45683±11383 11730±5941 6439±3336 62151±21791 42051±15356 149712±91219 86942±48143

Table 5: Final mean raw scores (with std. dev.) of rigid baselines (i.e. DQN and DDQN with Leaky
ReLU, DQN with SiLU and SiLU + dSiLU), as well as DQN with full plasticity (i.e. using rational
activation functions) and regularised plasticity (i.e. using joint-rational ones) on Atari 2600 games,
averaged over 5 seeded reruns (larger mean values are better).

Maximum obtained scores:

Algorithm Random DQN DDQN DQN with Plasticity

Network type - LReLU SiLU d+SiLU LReLU PELU full regularised

Asterix 71 9250 3400 3800 20150 9300 84950 49700
Battlezone 843 88000 81000 70000 97000 68000 78000 94000
Breakout 0 427 370 344 411 430 864 864
Enduro 0 1243 928 1041 1067 1699 1946 1927
Jamesbond 6 5600 5750 700 7500 6150 9250 13300
Kangaroo 15 14800 15600 10200 13000 12400 16200 16800
Pong -20 21 21 21 21 21 21 21
Q*bert 45 19425 11700 5625 19200 18900 24325 25075
Seaquest 20 7440 8300 740 15830 14860 9100 26990
Skiing -15997 -5987 -6505 -6267 -5359 -5495 -5368 -5612
Space Inv. 53 2435 2205 2460 2290 2030 2490 3790
Tennis -23 8 1 -1 4 -1 24 36
Time Pilot 730 11900 15500 12500 12200 16300 72000 28000
Tutankham 4 249 267 267 274 397 334 309
VideoPinb. 7599 998535 950250 338512 991669 322655 997952 998324

Table 6: Maximum obtained scores (with std. dev.) of rigid baselines (i.e. DQN and DDQN with
Leaky ReLU, DQN with SiLU and SiLU + dSiLU), as well as DQN with full plasticity (i.e. using
rational activation functions) and regularised plasticity (i.e. using joint-rational ones) on Atari 2600
games, averaged over 5 seeded reruns (larger values are better).

Human scores used for normalisation:
Asterix: 7536, Battlezone: 33030, Breakout: 27.9, Enduro: 740.2, Jamesbond: 368.5,
Kangaroo: 2739, Pong: 15.5, Q*bert: 12085, Seaquest: 40425.8, Skiing: −3686.6, Space
Invaders: 1464.9, Tennis: −6.7, Time Pilot: 5650, Tutankham: 138.3, Video Pinball: 15641.1

17

Published as a conference paper at ICLR 2024

A.4 EVOLUTION OF THE SCORES ON EVERY GAME

The main part present some graphs that compares performance evolutions of the Rainbow and DQN
agents with plasticity, as well as Rigid DQN, DDQN and Rainbow agents. We here provide the
evolution of the scores of every tested DQN and the DDQN agents on the complete game set. DQN
agents with higher plasticity are always the best-performing ones. Experiments on several games (e.g.
Jamesbond, Seaquest) show that using DDQN does not prevent the performance drop but only delays
it.

0 100 200 300 400 500
0K

5K

10K

15K

20K

Asterix
DQN RN
DQN RRN
DQN Leaky ReLU
DDQN LReLU
DQN PELU
DQN SiLU+dSiLU
DQN SiLU

0 100 200 300 400 500

0K

5K

10K

15K

20K

25K

30K
BattleZone

0 100 200 300 400 500

0

50

100

150

200

250

300

350

Breakout

0 100 200 300 400 500
200

0

200

400

600

800

1000

1200
Enduro

0 100 200 300 400 500

0

200

400

600

800

1000

1200

1400

Jamesbond

0 100 200 300 400 500

0K

1K

2K

3K

4K

5K

6K

7K

Kangaroo

0 20 40 60 80 100

20

10

0

10

20
Pong

0 100 200 300 400 500

0K

2K

4K

6K

8K

10K

12K

14K

Qbert

0 100 200 300 400 500

0K

2K

4K

6K

8K

Seaquest

0 25 50 75 100 125 150 175 200

-30K

-25K

-20K

-15K

Skiing

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400
SpaceInvaders

0 100 200 300 400 500
30

20

10

0

10

20

Tennis

0 100 200 300 400 500
0K

5K

10K

15K

20K

TimePilot

0 100 200 300 400 500

0

50

100

150

200

Tutankham

0 25 50 75 100 125 150 175 200
0K

50K

100K

150K

200K

250K
VideoPinball

Figure 7: Smoothed (cf. Eq. 3) evolutions of the scores on every tested game for DQN agents with
full (i.e. using rational activation functions) and regularised (i.e. using joint-rational ones) plasticity,
and original DQN agents using Leaky ReLU, SiLU and SiLU+dSiLU, as well as for DDQN agents
with Leaky ReLU.

18

Published as a conference paper at ICLR 2024

A.5 ENVIRONMENTS TYPES: STATIONARY, DYNAMICS AND PROGRESSIVE

The used environments have been separated in 3 categories, describing their potential changes through
agents learning. This categorisation is here illustrated with frames of the tested games. As one can
see: Breakout, Kangaroo, Pong, Skiing, Space Invaders, Tennis, Tutankham and VideoPinball can
be categorised as stationary environment, as changes are minimal for the agents in these games.
Asterix, BattleZone, Q*bert and Enduro present environment changes, that are early reached by the
playing agents, and are thus dynamic environments. Finally, Jamesbond, Seaquest and Time Pilot
correspond to progressive environments, as the agents needs to master early changes to access new
parts of these environments.

Asterix BreakoutBattle Zone Enduro Jamesbond Kangaroo Pong Q*bert

Seaquest Space Inv.Skiing Tennis Time Pilot Tutankham Video Pinb.

Figure 8: Images extracted from DQN agents with full plasticity playing the set of 15 Atari 2600
games used in this paper. Stationary environments (e.g. Pong, Video Pinball) do not evolve during
training, dynamic ones provide different input/output distributions that are early accessible in the
game (e.g Q*bert, Enduro) and progressive ones (e.g. Jamesbond, Time Pilot) require the agent to
improve for the it to evolve.

19

Published as a conference paper at ICLR 2024

A.6 LEARNED RATIONAL ACTIVATION FUNCTIONS

We have explained in the main text how rational functions of agents used on different games
can exhibit different complexities. This section provides the learned parametric rational functions
learned by DQN agents with full plasticity (left) and by those with regularised plasticity (right) after
convergence for every different tested game of the gym Atari 2600 environment. Kernel Density
Estimations (with Gaussian kernels) of input distributions indicates where the functions are most
activated. Rational functions from agents trained on simpler games (e.g. Enduro, Pong, Q*bert) have
simpler profiles (i.e. fewer distinct extremas).

10 5 0

As
te
rix

4 2 0 4 2 0 10 5 0 10 5 0

20 10 0

Ba
ttl
eZ

on
e

10 5 0 2 0 4 2 0 2 5 0 5

50 0

Br
ea

ko
ut

2 0 2 1 0 10 0 10 20 10 0

40 20 0

En
du

ro

5.0 2.5 0.0 2.5 4 2 0 5 0 20 10 0

40 20 0

Ja
m
es
bo

nd

6 4 2 0 2 0 5.0 2.5 0.0 2.5 20 10 0

10 5 0 5

Ka
ng

ar
oo

5.0 2.5 0.0 2 1 0 5 0 10 5 0

10 5 0

Po
ng

1.0 0.5 0.0 0.5 2 1 0 4 2 0 2 2 1 0

10 5 0

Qb
er
t

4 2 0 2 1 0 5 0 10 5 0

0 10

Se
aq

ue
st

4 2 0 6 4 2 5.0 2.5 0.0 2.5 10 5 0

20

Published as a conference paper at ICLR 2024

20 10 0 10

Sk
iin

g

4 2 0 2 2 0 2 5 0 5 0 20

20 0Sp
ac

eI
nv

ad
er
s

6 4 2 0 6 4 2 0 10 5 0 5 10 5 0

20 10 0

Te
nn

is

4 2 0 2 4 2 0 5 0 10 5 0

20 0

Ti
m
eP

ilo
t

4 2 0 2 4 2 0 5.0 2.5 0.0 2.5 20 10 0

5 0

Tu
ta
nk

ha
m

7.5 5.0 2.5 0.0 2 1 0 10 5 10 5 0

20 10 0

Vi
de

oP
in
ba

ll

4 2 0 2 0 5.0 2.5 0.0 2.5 10 5 0

Figure 9: Profiles (dark blue) and input distributions (light blue) of rational functions (left) and
joint-rational ones (right) of DQN agents on the different tested games. (Joint-)rational functions
from agents of simpler games have simpler profiles (i.e. fewer distinct extrema).

21

Published as a conference paper at ICLR 2024

A.7 EVOLUTION OF RATIONALS ON THE PERM-MNIST CONTINUAL LEARNING EXPERIMENT

Figure 10 depicts the evolutions of rational functions through the permuted MNIST experiment. One
can see that while the function of the first layer remains stable through the successive datasets, the
second one flatten at its most activated region (around 0), while the third one increase its slope in
this region, leading to higher gradients. This suggests that rational functions can help adapting the
gradient scales at each layer. Further investigating this is an interesting line of future work.

B
e

fo
re

 t
ra

in
in

g
A

ft
e

r
M

N
IS

T
A

ft
e

r
P

E
R

M
1

A
ft

e
r

P
E

R
M

2

Evolution of the rational functions on the Permuted MNIST experiment

Layer 1 Layer 2 Layer 3

Figure 10: Evolution of the rational activation functions on the permuted MNIST experiment (cf. 4).
The 3 rational activation functions used for training (and retraining) are adapting to fit the data
(depicted in semi transparent).

A.8 TECHNICAL DETAILS TO REPRODUCE THE EXPERIMENTS

We here provide details on our experiments for reproducibility. We used the seed 0, 1, 2, 3, 4 for
every multi-seed experiment.

SUPERVISED LEARNING EXPERIMENTS

For the lesioning experiment, we used an available5 pretrained Residual Network. We then remove
the corresponding block (and potentially replace it with an identity initialised rational activation
function) (surgered). We finetune the new models, allowing for optimisation of the previous and next
layers (and potentially the rational function) for 15 epochs with SGD (learning rate of 0.001).

5https://download.pytorch.org/models/resnet101-5d3b4d8f.pth

22

Published as a conference paper at ICLR 2024

For the classification experiments, we run on CIFAR10 and CIFAR100 (Krizhevsky et al., MIT
License), we let every network learn for 60 epochs. We use the code provided by Molina et al. (2020),
with only one classification layer in these smaller VGG versions (VGG4, VGG6 and VGG8, against
3 for VGG16 and larger). We use SGD as the optimisation algorithm, with a learning rate of 0.02
and 128 as batch size. The VGG networks contain successive VGG blocks that all consist of n
convolutional layers, i input channels and o output channels, stride 3 and padding 1, followed by an
activation function, and 1 Max Pooling layer. For each used architecture, the (n, i, o) parameters of
the successive blocks are:

• VGG4: (1, 3, 64) −→ (1, 64, 128) −→ (2, 128, 256)

• VGG6: (1, 3, 64) −→ (1, 64, 128) −→ (2, 128, 256) −→ (2, 256, 512)

• VGG8: (1, 3, 64) −→ (1, 64, 128) −→ (2, 128, 256) −→ (2, 256, 512) −→ (2, 512, 512)

The output of these blocks is then passed on to a classifier (linear layer). Only activation functions
differ between the Leaky ReLU and the Rational versions.

REINFORCEMENT LEARNING EXPERIMENTS

To ease the reproducibility of our the reinforcement learning experiments, we used the Mushroom RL
library (D’Eramo et al., 2020) on the Arcade Learning Environment (GNU General Public License).
We used states consisting of 4 consecutive grey-scaled images, downsampled to 84× 84. Computing
the gradients for rational functions takes longer than e.g. ReLU. However, we used a CUDA optimized
implementation of the rational activation functions that we open source along with this paper. In
practice, we did not notice any significant training time difference.

Network Architecture. The input to the network is thus a 84x84x4 tensor containing a rescaled, and
gray-scaled, version of the last four frames. The first convolution layer convolves the input with 32
filters of size 8 (stride 4), the second layer has 64 layers of size 4 (stride 2), the final convolution layer
has 64 filters of size 3 (stride 1). This is followed by a fully-connected hidden layer of 512 units.
All these layers are separated by the corresponding activation functions (either Leaky ReLU, SiLU,
SiLU for convolution layers and dSiLU for linear ones, PELU, rational functions (at each layer) and
joint-rational ones (shared accross layers) of order m = 5 and n = 4, initialised to approximate
Leaky ReLU). We used the default PeLU initial hyperparameters (a=1, b=1, c=1) and let the weights
optimizer tune them through training, as for rational functions. For CRELU, we took the implementa-
tion from ML Compiled 6, and halves the number of filters in the following convolutional layers to
keep the same network structure intact, as done by Shang et al. (2016).

Hyper-parameters. We evaluate the agents every 250K steps, for 125K steps. The target network is
updated every 10K steps, with a replay buffer memory of initial size 50K, and maximum size 500K,
except for Pong, for which all these values are divided by 10. The discount factor γ is set to 0.99 and
the learning rate is 0.00025. We do not select the best policy among seeds between epochs. We use
the simple ϵ-greedy exploration policy, with the ϵ decreasing linearly from 1 to 0.1 over 1M steps,
and an ϵ of 0.05 is used for testing.

The only difference from the evaluation of Mnih et al. (2015) and of van Hasselt et al. (2016)
evaluation is the use of the Adam optimiser instead of RMSProp, for every evaluated agent.

Normalisation techniques. To compute human normalised scores, we used the following equation:

scorenormalised = 100×
score agent − score random

score human − score random

, (2)

For readability, the curves plotted in the Fig. 4 and Fig. 8 are smoothed following:

scoret = α× scoret−1 + (1− α)× scorest, (3)

with α = 0.9.

Overestimation computation. We used the following formulae to compute relative overestimation.

overestimation =
Q-value −R

R
(4)

6https://ml-compiled.readthedocs.io/en/latest/activations.html

23

Published as a conference paper at ICLR 2024

RL NETWORK ARCHITECTURE

The DQN, DDQN and Rainbow agents networks architecture, rational plasticity (with rational
activations functions at each layer) and of the regularized ones (with one joint-rational activation
function shared across layers). For the other activation functions, the "Rat." blocks are replaced with
Leaky ReLU, CReLU, SiLU, or PELU. For the d+SiLU networks, SiLU is used on the convolutional
layers (i.e. first two), and dSiLU in the fully connected ones (i.e. last two).

Loss

Addmm

PAU

Addmm

View

PAU

Add

View

(64)

Convolution

(64, 64, 3, 3) PAU

Add

View

(64)

Convolution

(64, 32, 4, 4)PAU

Add

View

(32)

Convolution

(32, 4, 8, 8)

(6) (4)

(512) Mult

(512, 3136)

(6)
Mult

(6, 512)

Loss

Addmm

PAU

Addmm

View

PAU

Add

View

(64)

Convolution

(64, 64, 3, 3) PAU

Add

View

(64)

Convolution

(64, 32, 4, 4) PAU

Add

View

(32)

Convolution

(32, 4, 8, 8)

(6) (4)

(6) (4)

(6) (4)

(512) Mult

(512, 3136)

(6) (4)

(6) Mult

(6, 512)

Joint Rat.

Joint Rat.

Joint Rat.Rat.

Rat.

Joint Rat.Rat.

Rat.

Figure 11: left: The DQN agents’ neural network equipped with Rational Activation Functions (Rat.).
Any other network with classical activation functions (as Leaky Relu or SiLU) would be similar, with
the corresponding activation function instead of the rational one. right: The agents’ network using the
regularized joint-rational version of the network. The same activation is used across the layers. The
parameters of the rational activation (in orange) function are shared. In both graphs, operations are
placed in the grey boxes and parameters in the blue ones, (or orange for the rationals’ ones).

24

	Appendix
	Rational efficient plasticity can replace layer's weight plasticity
	Residual block learn of deep ResNet learn activation function-like behaviour.
	Complete scores table for Deep Reinforcement Learning
	Evolution of the scores on every game
	Environments types: stationary, dynamics and progressive
	Learned rational activation functions
	Evolution of rationals on the Perm-MNIST continual learning experiment
	Technical details to reproduce the experiments
	Supervised Learning Experiments
	Reinforcement Learning Experiments
	RL network architecture

