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Abstract

The design of advanced energy storage materials is hindered by vast and complex1

compositional spaces that are intractable for traditional trial-and-error methodolo-2

gies. High-entropy ceramics (HECs) represent a promising class of dielectrics,3

but their multi-element nature exponentially expands this search space. To ad-4

dress this challenge, we deployed an ‘AI Materials Scientist’—an autonomous5

research agent—to navigate the high-dimensional landscape of lead-free per-6

ovskite HECs. The AI agent successfully identified a novel, non-intuitive7

five-component composition: 0.36BaTiO3–0.32BiFeO3–0.09Bi0.5Na0.5TiO3–8

0.19CaZrO3–0.04Sr0.7La0.2TiO3. Experimental synthesis and characterization9

validated the AI’s prediction, revealing a phase-pure ceramic with a dense, fine-10

grained microstructure. This material exhibits a breakthrough recoverable energy11

density (Wrec) of 10 J/cm3 and a high energy efficiency (η) of 80% at a breakdown12

strength of ∼850 kV/cm, outperforming most existing lead-free dielectric ceramics.13

This work not only introduces a state-of-the-art energy storage material but also14

demonstrates the transformative potential of AI-driven autonomous systems to15

accelerate the discovery of complex, high-performance materials.16

1 Introduction17

As global reliance on renewable energy and electrification technologies deepens, the development of18

advanced energy storage devices has become critical for technological progress [1]. In particular,19

high-performance dielectric capacitors are indispensable components in pulsed power systems that20

demand high power density and rapid energy release, such as in advanced radar, electric vehicles,21

and medical equipment [2,3]. Among various candidate materials, dielectric ceramics are considered22

one of the most promising for next-generation high-power applications due to their high permittivity,23

excellent thermal resistance, and robust chemical stability [4].24

To enhance energy storage performance, defined by recoverable energy density (Wrec) and efficiency25

(η), researchers have traditionally focused on the compositional modification of classic perovskite26

ceramics such as BaTiO3 and BiFeO3 [5,6]. However, conventional design strategies often encounter27

a trade-off dilemma, where the synergistic optimization of dielectric constant and breakdown strength28

is difficult to achieve [7], thereby limiting breakthroughs in energy density. Recently, the concept of29

high-entropy ceramics (HECs) has emerged as a novel paradigm to overcome this bottleneck [8]. By30

incorporating five or more principal cations into a single lattice, the high-entropy effect can induce31

unique microstructures and pronounced relaxor behavior, offering the potential to discover ‘islands’32

of superior properties within highly complex compositional landscapes [9,10].33

While the high-entropy strategy is promising, it presents an unprecedented challenge: a dimen-34

sionally explosive and virtually infinite chemical space [11]. Within this high-dimensional space,35
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the relationship between composition and material properties is highly non-linear, rendering the36

traditional Edisonian ‘trial-and-error’ approach—which relies heavily on researchers’ experience and37

intuition—ineffective [12]. Exploring this vast landscape manually is akin to searching for a needle in38

a haystack. Consequently, the development of a new paradigm capable of intelligently navigating this39

complex compositional space to accelerate the discovery of high-performance materials has become40

imperative [13].41

To address this challenge, we moved beyond conventional R&D models and entrusted the task42

of materials discovery to an ‘AI Materials Scientist’. This AI agent, powered by deep learning43

on a vast body of published material data, establishes complex composition-structure-property44

relationships and is empowered to autonomously explore and create novel formulations [14,15].45

In this work, we deployed the AI Materials Scientist to navigate the uncharted territory of high-46

entropy ceramics. It successfully proposed and identified a novel five-component, lead-free high-47

entropy ceramic: 0.36BaTiO3–0.32BiFeO3–0.09Bi0.5Na0.5TiO3–0.19CaZrO3–0.04Sr0.7La0.2TiO3.48

Subsequent experimental synthesis and characterization confirmed the breakthrough nature of this49

discovery: the ceramic exhibits a superior recoverable energy storage density of 10 J/cm3 and a high50

efficiency of 80%, outperforming most previously reported lead-free dielectric ceramics [16,17]. This51

paper details the AI’s design process alongside the structural, microstructural, and exceptional energy52

storage properties of the novel ceramic, thereby validating the immense potential of AI as a research53

partner in accelerating scientific discovery [18].54

2 Methods55

2.1 System architecture of the AI Materials Scientist56

The AI agent constructed in this work, the AI Materials Scientist, operates within a human-machine57

collaboration framework. The high-level design of this system is intended to comprehensively enhance58

and accelerate the end-to-end materials research workflow—from initial knowledge acquisition59

to final experimental validation. Its system architecture is composed of three core engines: the60

Knowledge Engine, the Exploration Engine, and the Experiment Engine. These engines operate both61

independently and collaboratively.62

Knowledge Engine The Knowledge Engine serves as the cognitive core of the AI Materials63

Scientist, with its primary mission being the construction of a comprehensive, multi-modal knowledge64

base that surpasses human capabilities. It integrates heterogeneous data from diverse sources,65

including scientific literature, specialized databases, and knowledge graphs. The engine leverages66

Large Language Models (LLMs) and prompt engineering techniques to achieve automated extraction67

and structured processing of key information—such as material compositions, processing protocols,68

and performance metrics—from unstructured text. Through deep learning models optimized for69

materials science, the engine further integrates this textual information with physicochemical features70

to support complex knowledge mining and property prediction tasks.71

Exploration Engine The Exploration Engine functions as the innovation and decision-making72

core of the AI Materials Scientist, specifically designed for the efficient exploration of the high-73

dimensional and complex compositional spaces inherent in materials research. This engine integrates74

a suite of advanced machine learning algorithms, including active learning, Bayesian optimization,75

and generative adversarial networks, enabling it to accurately predict the potential performance76

of new materials based on existing knowledge. Its core capability lies in intelligent experimental77

design, where it identifies the most valuable candidate formulations by optimizing experimental plans,78

thereby replacing the traditional trial-and-error paradigm and accelerating the discovery of materials79

with breakthrough performance using a minimal number of iterations.80

Experiment Engine The Experiment Engine is the physical execution terminal of the AI Materials81

Scientist, responsible for transforming the digital design blueprints generated by the preceding82

engines into tangible physical samples and experimental data. This engine integrates and controls83

an end-to-end automated robotic hardware platform, with capabilities covering the entire materials84

preparation and characterization process, from high-precision powder dispensing, ball milling, and85

pellet pressing to automated electrical property measurements. This achieves a high degree of86

2



automation in experimental operations, with only a few non-standard or complex steps requiring87

manual assistance.88

The synergistic integration of the three engines described above establishes a complete “design-89

manufacture-test-learn” closed-loop autonomous research system (Self-driving Laboratory). In this90

workflow, the Exploration Engine first proposes a new material formulation design. The Experiment91

Engine then automatically completes the sample preparation and performance characterization,92

feeding the newly acquired experimental data back to the Knowledge Engine for absorption and93

integration. Once the knowledge base is updated, the Exploration Engine can proceed with the next,94

more optimized design iteration.95

2.2 Ceramic preparation96

The high-entropy dielectric ceramic with the composition 0.36BaTiO3–0.32BiFeO3–97

0.09Bi0.5Na0.5TiO3–0.19CaZrO3–0.04Sr0.7La0.2TiO3 was fabricated using a conventional98

solid-state reaction method. High-purity raw materials, including BaCO3 (Aladdin, 99.8%), Bi2O399

(Aladdin, 99.9%), Fe2O3 (Aladdin, 99.9%), TiO2 (Aladdin, 99.8%), Na2CO3 (Aladdin, 99.9%),100

CaCO3 (Aladdin, 99.5%), ZrO2 (Aladdin, 99.9%), SrCO3 (Aladdin, 99.9%), and La2O3 (Aladdin,101

99.9%) were used as starting powders.102

The powders were weighed according to the stoichiometric ratio, with an additional 5 wt% excess of103

Bi2O3 added to compensate for potential bismuth volatilization during high-temperature sintering.104

The weighed powders were placed in a nylon jar with zirconia balls and ball-milled in ethanol for105

24 hours to ensure homogeneous mixing. After milling, the slurry was dried at 100°C for 12 hours106

and then calcined at 850°C for 4 hours in a muffle furnace.107

The calcined powders were subsequently ball-milled again for 24 hours to reduce agglomeration.108

The resulting fine powder was dried, mixed with a polyvinyl alcohol (PVA) solution as a binder, and109

pressed into pellets 10 mm in diameter under a pressure of 200 MPa. The green pellets were heated110

to 600°C for 4 hours to burn out the binder, followed by sintering in a range of 1150–1250°C for111

4 hours in air. The sintered pellets were then polished to a final thickness of 50–100 µm, and circular112

gold (Au) electrodes with an area of 0.00785 cm2 were sputtered onto both surfaces for electrical113

measurements.114

3 Results and discussion115

3.1 Crystal structure analysis116

To determine the phase composition and crystal structure of the AI-designed ceramic, X-ray diffraction117

(XRD) was conducted at room temperature. Figure 1 shows the XRD pattern of the sintered118

0.36BaTiO3–0.32BiFeO3–0.09Bi0.5Na0.5TiO3–0.19CaZrO3–0.04Sr0.7La0.2TiO3 ceramic, scanned119

over a 2θ range from 20° to 80°. All major diffraction peaks can be unambiguously indexed to120

a single-phase perovskite structure, consistent with standard perovskite reference patterns (e.g.,121

PDF#22-0153 for BaTiO3). No secondary or impurity phases were detected within the instrument’s122

resolution limit, confirming that the five components have thoroughly diffused into the host lattice to123

form a chemically homogeneous solid solution.124

The pattern displays all characteristic reflections of the perovskite lattice. The most intense peak, a125

hallmark of the perovskite structure, appears at 2θ ≈ 31.4° and corresponds to the (110) plane. Other126

principal peaks observed at approximately 22.5°, 38.7°, 45.0°, 56.0°, and 65.7° are indexed to the127

(100), (111), (200), (211), and (220) planes, respectively. The sharpness and high intensity of these128

peaks indicate a high degree of crystallinity, implying that the designed composition and solid-state129

reaction route promote the development of a well-ordered crystal structure.130

Closer inspection of the reflections—particularly the (200) peak near 45.0°—shows a symmetric131

profile without noticeable splitting, suggesting that the multicomponent ceramic adopts a pseudocubic132

symmetry. The high configurational entropy resulting from the incorporation of multiple cations133

with diverse ionic sizes and valences at both A-sites (Ba2+, Bi3+, Na+, Ca2+, Sr2+, La3+) and134

B-sites (Ti4+, Fe3+, Zr4+) likely suppresses the formation of long-range polar domains typical135

of simpler perovskites, thereby stabilizing a highly symmetric lattice. This result is critical, as it136

experimentally validates the AI’s underlying hypothesis: the novel, complex composition is not only137
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Figure 1: X-ray diffraction pattern of the AI-designed high-entropy ceramic 0.36BaTiO3–0.32BiFeO3–
0.09Bi0.5Na0.5TiO3–0.19CaZrO3–0.04Sr0.7La0.2TiO3 sintered at optimal temperature.

synthesizable but also crystallizes into a phase-pure perovskite structure—providing the essential138

structural foundation for achieving superior energy storage performance.139

3.2 Microstructural analysis140

Following the phase identification, the microstructure of the ceramic, which is critically linked to its141

electrical properties, was investigated using scanning electron microscopy (SEM). Figure 2 displays142

the micrograph of the as-sintered surface of the AI-designed high-entropy ceramic. The image143

reveals a highly dense and uniform microstructure, composed of fine, sub-micron sized grains with144

a generally spherical or slightly irregular morphology. The average grain size is estimated to be145

in the range of 200–500 nm. The grains are observed to be tightly packed with well-defined grain146

boundaries, and there is a notable absence of large pores, voids, or microcracks. This indicates that a147

high relative density was successfully achieved through the solid-state sintering process, which is a148

crucial prerequisite for high-performance dielectric materials.149

Figure 2: Scanning electron microscopy (SEM) micrograph of the as-sintered surface of the
0.36BaTiO3–0.32BiFeO3–0.09Bi0.5Na0.5TiO3–0.19CaZrO3–0.04Sr0.7La0.2TiO3 high-entropy ce-
ramic
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The observed microstructural characteristics are fundamentally important for the superior energy150

storage performance of this ceramic. Firstly, the high density is essential for ensuring high dielectric151

breakdown strength (Eb). Pores and voids, which have extremely low breakdown strength, can152

cause local electric field concentration, leading to premature dielectric breakdown and a catastrophic153

failure of the device at low applied fields. The dense structure observed here minimizes these defects,154

allowing the material to withstand a much higher electric field before breaking down. According to155

the energy storage formula (Wrec ≈ 1
2ε0εrE

2
b ), this enhancement in Eb is the most effective way to156

drastically increase the energy storage density.157

Secondly, the fine-grained nature of the ceramic plays a pivotal twofold role. On one hand, the158

proliferation of grain boundaries in a fine-grained material acts as an effective barrier to the propa-159

gation of electrical breakdown channels, further enhancing the overall breakdown strength. On the160

other hand, the small grain size can disrupt the long-range ferroelectric order, promoting relaxor-like161

behavior. This leads to the development of slim polarization-electric field (P-E) hysteresis loops162

with low remnant polarization (Pr), which directly translates to lower energy loss (Wloss) and conse-163

quently, higher energy storage efficiency (η). Therefore, the combination of high densification and a164

fine-grained microstructure, as observed in Figure 2, provides the ideal microstructural foundation165

for the simultaneous realization of high breakdown strength and high efficiency, corroborating the166

outstanding performance metrics achieved by the AI-designed material.167

3.3 Energy storage performance analysis168

To evaluate the energy storage capabilities of the AI-designed high-entropy ceramic, the polarization-169

electric field (P-E) hysteresis loops were measured at room temperature under various applied electric170

fields. Figure 3 presents the resulting P-E loops, which provide direct insight into the material’s171

dielectric and ferroelectric response. A series of remarkably slim and slanted loops were observed,172

which is a hallmark characteristic of relaxor ferroelectrics or linear dielectrics, ideal for energy173

storage applications. Even at the maximum applied electric field of approximately 850 kV/cm, the174

ceramic exhibits a very low remnant polarization (Pr) and coercivity, indicating that the polarization175

can return to near zero upon removal of the field. This behavior leads to a large difference between176

the maximum polarization (Pmax ≈ 33 µC/cm2) and the remnant polarization (Pr), which is critical177

for obtaining high recoverable energy density. The slim nature of the loops signifies minimal energy178

dissipation during the charge-discharge cycle, predicting a high energy storage efficiency.179

The quantitative energy storage performance, including the recoverable energy density (Wrec) and180

efficiency (η), was calculated from the P-E loop data and is plotted as a function of the applied181

electric field in Figure 4. The recoverable energy density (Wrec, purple curve) is observed to increase182

monotonically with the electric field, reaching a remarkable value of 10 J/cm3 at a breakdown strength183

of ∼850 kV/cm. This outstanding energy density surpasses that of most previously reported lead-free184

bulk ceramics. Concurrently, the energy storage efficiency (η, orange curve) demonstrates excellent185

stability, maintaining a high value across the entire measurement range. Even at the maximum electric186

field, the efficiency remains high at over 80%.187

The simultaneous achievement of ultrahigh energy density and high efficiency is a significant break-188

through. This exceptional performance is a direct manifestation of the desirable material characteris-189

tics predicted and targeted by the AI Materials Scientist. The high breakdown strength is underpinned190

by the dense, fine-grained microstructure discussed previously, while the high efficiency is a direct191

result of the strong relaxor behavior induced by the high-entropy design, as evidenced by the slim192

P-E loops. These results experimentally confirm the AI’s success in identifying a novel compo-193

sition within the vast chemical space that overcomes the typical trade-off between energy density194

and efficiency, thereby validating this AI-driven approach as a powerful paradigm for discovering195

next-generation materials.196

3.4 Analysis of the AI agent’s recommendation197

The successful synthesis and verification of this high-performance ceramic serve as a pivotal validation198

of our AI Materials Scientist’s predictive capabilities. The central question remains: how did the agent199

navigate the near-infinite chemical space to pinpoint this specific, non-intuitive composition? The200

agent’s success can be attributed to its ability to identify and optimize the highly complex, non-linear201

relationships between composition, structure, and properties—a task that is exceptionally challenging202
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Figure 3: Unipolar polarization-electric field (P-E) hysteresis loops of the high-entropy ceramic
measured at room temperature under various electric fields up to 8̃50 kV/cm. The color bar indicates
the magnitude of the applied electric field.

Figure 4: Recoverable energy storage density and energy storage efficiency as a function of the
applied electric field for the high-entropy ceramic at room temperature.
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for human researchers. By analyzing the chosen components, we can deconstruct the sophisticated203

design strategy the agent likely discovered:204

A synergistic strategy for polarization and breakdown strength The agent did not simply205

maximize a single parameter but instead learned to strike a delicate balance. It selected components206

with distinct, complementary functions:207

• High-polarization sources: BaTiO3 and BiFeO3 are canonical ferroelectrics known to208

provide a high maximum polarization (Pmax), a prerequisite for high energy density.209

• Relaxor and linearity inducers: The agent simultaneously introduced components known210

to disrupt long-range ferroelectric order. The inclusion of Bi0.5Na0.5TiO3 (BNT) and the211

overall high-entropy state—derived from mixing five distinct A-site cations—promotes the212

formation of polar nanoregions (PNRs) instead of large ferroelectric domains. This is the213

key to achieving the slim, relaxor-type P-E loops, which ensures low energy loss and high214

efficiency.215

• Breakdown strength enhancers: As a wide-bandgap linear dielectric, CaZrO3 is known to216

significantly increase the breakdown strength (Eb) and thermal stability of titanate-based217

perovskites. The agent identified this crucial role and assigned it a substantial fraction (19%)218

to elevate the breakdown strength to the experimentally observed high of ∼850 kV/cm.219

Implicit optimization of microstructure The composition recommended by the AI implicitly220

promotes the ideal microstructure observed in the SEM analysis. The chemical complexity and the221

presence of ions such as Zr4+ and La3+ can act as grain growth inhibitors during sintering. By222

learning from thousands of literature examples, the agent likely correlated specific compositional223

features with the formation of dense, fine-grained microstructures. It “understood” that achieving224

superior intrinsic properties is futile without also ensuring the optimal extrinsic microstructure (i.e.,225

high density and fine grains) required to realize those properties in a bulk ceramic. Therefore, the226

agent effectively solved a multi-objective optimization problem, concurrently targeting electronic227

properties and the microstructural features that enable them.228

4 Limitations and future directions229

Despite its remarkable success, the current AI Materials Scientist agent has several limitations that230

represent important directions for future research:231

The “black box” problem While we can rationalize the agent’s choice post-hoc, its internal232

decision-making process remains largely opaque. The agent does not explicitly state why it chose233

a particular ratio, making it difficult to extract new, fundamental scientific principles from its234

recommendations. Future work will focus on implementing Explainable AI (XAI) techniques to235

enhance the model’s transparency and interpretability.236

Data dependency The agent’s knowledge is bounded by its training data. It excels at interpolating237

and discovering novel combinations within known chemical systems but struggles to extrapolate and238

propose materials containing entirely new elements or crystal structures not well-represented in the239

literature. Expanding the training datasets and developing physics-informed neural networks are240

crucial next steps.241

Neglect of synthesis feasibility The current agent predicts a target composition but offers no242

guidance on the experimental synthesis route (e.g., sintering temperature, duration, atmosphere).243

The actual fabrication process still relies on human expertise. A key future objective is to develop244

a system that co-predicts the composition, its properties, and the optimal processing parameters245

required to create it.246

5 Conclusion247

In this study, we have successfully demonstrated the power of an AI-driven approach to accelerate248

the discovery of high-performance materials. By deploying an ‘AI Materials Scientist’, we navigated249
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the vast and complex compositional space of high-entropy ceramics to design a novel lead-free250

dielectric material, 0.36BaTiO3–0.32BiFeO3–0.09Bi0.5Na0.5TiO3–0.19CaZrO3–0.04Sr0.7La0.2TiO3.251

Experimental validation confirmed the AI’s design, revealing a single-phase perovskite structure252

with a dense, fine-grained microstructure. This ceramic exhibits a remarkable combination of a253

high recoverable energy density of 10 J/cm3 and a superior efficiency of 80%, marking a significant254

advancement for lead-free energy storage materials.255

The success of this work highlights the ability of AI to overcome the limitations of conventional256

Edisonian research, identifying a non-intuitive composition that synergistically optimizes multiple257

competing properties. The AI agent effectively learned the complex interplay between composition,258

crystal structure, microstructure, and performance, delivering a material that solves the long-standing259

trade-off between energy density and efficiency. This research serves as a powerful testament to the260

paradigm shift AI represents for materials science, transforming it from a process of intuition-based261

iteration to one of data-driven, accelerated discovery. Future work will focus on enhancing the AI’s262

interpretability and expanding its predictive capabilities to include synthesis protocols, further closing263

the loop on fully autonomous materials research and paving the way for the rapid development of264

next-generation materials for a sustainable future.265

6 Reproducibility Statement266

6.1 Reproducibility of Core Findings267

All materials synthesis, characterization, and performance testing reported in this manuscript adhere268

to standard experimental procedures. We have provided comprehensive details of the experimental269

parameters, equipment models, and chemical reagent specifications in the Methods section. We are270

confident that the core materials and their corresponding performance data presented herein are fully271

reproducible by following the detailed steps described.272

6.2 Note on AI-Generated Content273

The "AI Material Scientist" framework utilized in this study is powered by a large language model.274

We hereby state that due to the inherent stochasticity of such models, repeated runs with the same275

input prompts will not guarantee identical scientific hypotheses or experimental protocols in every276

instance. This variability is a known characteristic of current generative AI technologies.277

6.3 Reproducibility of the Framework and Methodology278

Notwithstanding the non-deterministic nature of single-pass generation, the overall framework of279

AI-driven hypothesis generation and validation proposed herein is robust and reproducible. We280

believe that any researcher with relevant domain expertise can independently leverage our described281

framework, model (if open-sourced) or a similar model, to develop research pathways for discovering282

novel high-performance materials. The significance of this paper lies not only in the specific material283

reported but also in demonstrating the profound potential of this AI framework to accelerate materials284

discovery.285

We firmly believe that the deep integration of artificial intelligence with materials science for generat-286

ing hypotheses and designing experiments is a promising and reproducible direction for the future of287

materials research and development. We encourage our peers in the scientific community to adopt288

and extend the framework presented in this work to collectively advance the intelligent discovery of289

high-performance materials.290
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Agents4Science AI Involvement Checklist333

1. Hypothesis development: Hypothesis development includes the process by which you334

came to explore this research topic and research question. This can involve the background335

research performed by either researchers or by AI. This can also involve whether the idea336

was proposed by researchers or by AI.337

Answer: [C]338

Explanation: Human researchers identified the research direction of high-performance339

energy storage ceramics, and the AI Materials Scientist proposed the design of high-entropy340

ceramics.341

2. Experimental design and implementation: This category includes design of experiments342

that are used to test the hypotheses, coding and implementation of computational methods,343

and the execution of these experiments.344

Answer: [D]345

Explanation: The AI Materials Scientist designed the experiment and drove the autonomous346

experimental platform to conduct it, with human assistance under the AI’s direction for347

certain steps that the platform cannot yet complete, such as polishing the ceramic pellets.348

3. Analysis of data and interpretation of results: This category encompasses any process to349

organize and process data for the experiments in the paper. It also includes interpretations of350

the results of the study.351

Answer: [D]352

Explanation: The analysis of experimental data (such as XRD, SEM, P-E loops) and the353

scientific interpretations presented in the paper were all completed by the AI Materials354

Scientist.355

4. Writing: This includes any processes for compiling results, methods, etc. into the final356

paper form. This can involve not only writing of the main text but also figure-making,357

improving layout of the manuscript, and formulation of narrative.358

Answer: [D]359

Explanation: The main writing of the paper, including the creation of all figures, was360

completed by the AI. The role of humans was not that of a primary author, but rather to361

guide the AI’s writing direction through a few prompts. All textual content was generated362

by the AI.363

5. Observed AI Limitations: What limitations have you found when using AI as a partner or364

lead author?365

Description: Agents perform well on well-designed, structured tasks. However, they face366

significant difficulties with tasks that are overly open-ended or have not been specifically367

engineered for them. For instance, in our work, we have meticulously designed an intelligent368

agent for materials research and development. This agent is highly effective at its designated369

task of discovering high-performance materials, but its performance in academic paper370

writing is considerably weaker.371
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Agents4Science Paper Checklist372

1. Claims373

Question: Do the main claims made in the abstract and introduction accurately reflect the374

paper’s contributions and scope?375

Answer: [Yes]376

Justification: The abstract and introduction of this paper clearly articulate the core argu-377

ments and precisely define the scope of the research. These arguments are thoroughly and378

convincingly supported in the experimental results and analysis section.379

Guidelines:380

• The answer NA means that the abstract and introduction do not include the claims381

made in the paper.382

• The abstract and/or introduction should clearly state the claims made, including the383

contributions made in the paper and important assumptions and limitations. A No or384

NA answer to this question will not be perceived well by the reviewers.385

• The claims made should match theoretical and experimental results, and reflect how386

much the results can be expected to generalize to other settings.387

• It is fine to include aspirational goals as motivation as long as it is clear that these goals388

are not attained by the paper.389

2. Limitations390

Question: Does the paper discuss the limitations of the work performed by the authors?391

Answer: [Yes]392

Justification: In the paper, there is a section discussing the limitations.393

Guidelines:394

• The answer NA means that the paper has no limitation while the answer No means that395

the paper has limitations, but those are not discussed in the paper.396

• The authors are encouraged to create a separate "Limitations" section in their paper.397

• The paper should point out any strong assumptions and how robust the results are to398

violations of these assumptions (e.g., independence assumptions, noiseless settings,399

model well-specification, asymptotic approximations only holding locally). The authors400

should reflect on how these assumptions might be violated in practice and what the401

implications would be.402

• The authors should reflect on the scope of the claims made, e.g., if the approach was403

only tested on a few datasets or with a few runs. In general, empirical results often404

depend on implicit assumptions, which should be articulated.405

• The authors should reflect on the factors that influence the performance of the approach.406

For example, a facial recognition algorithm may perform poorly when image resolution407

is low or images are taken in low lighting.408

• The authors should discuss the computational efficiency of the proposed algorithms409

and how they scale with dataset size.410

• If applicable, the authors should discuss possible limitations of their approach to411

address problems of privacy and fairness.412

• While the authors might fear that complete honesty about limitations might be used by413

reviewers as grounds for rejection, a worse outcome might be that reviewers discover414

limitations that aren’t acknowledged in the paper. Reviewers will be specifically415

instructed to not penalize honesty concerning limitations.416

3. Theory assumptions and proofs417

Question: For each theoretical result, does the paper provide the full set of assumptions and418

a complete (and correct) proof?419

Answer: [NA]420

Justification: The paper does not include theoretical results.421

Guidelines:422
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• The answer NA means that the paper does not include theoretical results.423

• All the theorems, formulas, and proofs in the paper should be numbered and cross-424

referenced.425

• All assumptions should be clearly stated or referenced in the statement of any theorems.426

• The proofs can either appear in the main paper or the supplemental material, but if427

they appear in the supplemental material, the authors are encouraged to provide a short428

proof sketch to provide intuition.429

4. Experimental result reproducibility430

Question: Does the paper fully disclose all the information needed to reproduce the main ex-431

perimental results of the paper to the extent that it affects the main claims and/or conclusions432

of the paper (regardless of whether the code and data are provided or not)?433

Answer: [Yes]434

Justification: The paper includes the test results of the prepared ceramic materials, and the435

experimental steps are described such that the preparation of the ceramic materials can be436

reproduced.437

Guidelines:438

• The answer NA means that the paper does not include experiments.439

• If the paper includes experiments, a No answer to this question will not be perceived440

well by the reviewers: Making the paper reproducible is important.441

• If the contribution is a dataset and/or model, the authors should describe the steps taken442

to make their results reproducible or verifiable.443

• We recognize that reproducibility may be tricky in some cases, in which case authors444

are welcome to describe the particular way they provide for reproducibility. In the case445

of closed-source models, it may be that access to the model is limited in some way446

(e.g., to registered users), but it should be possible for other researchers to have some447

path to reproducing or verifying the results.448

5. Open access to data and code449

Question: Does the paper provide open access to the data and code, with sufficient instruc-450

tions to faithfully reproduce the main experimental results, as described in supplemental451

material?452

Answer: [No]453

Justification: Due to the highly domain-specific nature of our framework, it cannot be454

directly utilized or validated by researchers outside the ceramic materials field. Furthermore,455

as related research is still ongoing, we have chosen not to open-source the code at this time.456

The code will be made publicly available once our follow-up studies are completed. The457

experimental data supporting the conclusions of this paper can be independently reproduced458

by following the ceramic material synthesis steps as described in the Methods section.459

Guidelines:460

• The answer NA means that paper does not include experiments requiring code.461

• Please see the Agents4Science code and data submission guidelines on the conference462

website for more details.463

• While we encourage the release of code and data, we understand that this might not be464

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not465

including code, unless this is central to the contribution (e.g., for a new open-source466

benchmark).467

• The instructions should contain the exact command and environment needed to run to468

reproduce the results.469

• At submission time, to preserve anonymity, the authors should release anonymized470

versions (if applicable).471

6. Experimental setting/details472

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-473

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the474

results?475
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Answer: [Yes]476

Justification: The experimental data can be independently reproduced by following the477

ceramic material synthesis steps as described in the Methods section.478

Guidelines:479

• The answer NA means that the paper does not include experiments.480

• The experimental setting should be presented in the core of the paper to a level of detail481

that is necessary to appreciate the results and make sense of them.482

• The full details can be provided either with the code, in appendix, or as supplemental483

material.484

7. Experiment statistical significance485

Question: Does the paper report error bars suitably and correctly defined or other appropriate486

information about the statistical significance of the experiments?487

Answer: [No]488

Justification: As the wet-lab experiment was performed in a single iteration, error bars are489

not reported.490

Guidelines:491

• The answer NA means that the paper does not include experiments.492

• The authors should answer "Yes" if the results are accompanied by error bars, confi-493

dence intervals, or statistical significance tests, at least for the experiments that support494

the main claims of the paper.495

• The factors of variability that the error bars are capturing should be clearly stated496

(for example, train/test split, initialization, or overall run with given experimental497

conditions).498

8. Experiments compute resources499

Question: For each experiment, does the paper provide sufficient information on the com-500

puter resources (type of compute workers, memory, time of execution) needed to reproduce501

the experiments?502

Answer: [NA]503

Justification: Our work involves wet-lab experiments, not computer experiments.504

Guidelines:505

• The answer NA means that the paper does not include experiments.506

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,507

or cloud provider, including relevant memory and storage.508

• The paper should provide the amount of compute required for each of the individual509

experimental runs as well as estimate the total compute.510

9. Code of ethics511

Question: Does the research conducted in the paper conform, in every respect, with the512

Agents4Science Code of Ethics (see conference website)?513

Answer: [Yes]514

Justification:The research conducted in the paper conforms with the Agents4Science Code515

of Ethics.516

Guidelines:517

• The answer NA means that the authors have not reviewed the Agents4Science Code of518

Ethics.519

• If the authors answer No, they should explain the special circumstances that require a520

deviation from the Code of Ethics.521

10. Broader impacts522

Question: Does the paper discuss both potential positive societal impacts and negative523

societal impacts of the work performed?524
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Answer: [NA]525

Justification: This paper focuses specifically on agents for materials science, as such,526

considerations of broader societal impact fall beyond its defined scope.527

Guidelines:528

• The answer NA means that there is no societal impact of the work performed.529

• If the authors answer NA or No, they should explain why their work has no societal530

impact or why the paper does not address societal impact.531

• Examples of negative societal impacts include potential malicious or unintended uses532

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations,533

privacy considerations, and security considerations.534

• If there are negative societal impacts, the authors could also discuss possible mitigation535

strategies.536
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