|
| SparseDeepGPBaseModel (const af::array &Y, const af::array &X, HiddenLayerDescription hiddenLayerdescription, LogLikType lType=LogLikType::Gaussian) |
| Constructor. More...
|
|
| SparseDeepGPBaseModel (const af::array &Y, const af::array &X, std::vector< HiddenLayerDescription > hiddenLayerdescriptions, LogLikType lType=LogLikType::Gaussian) |
| Constructor. More...
|
|
| SparseDeepGPBaseModel () |
| Default Constructor. More...
|
|
virtual | ~SparseDeepGPBaseModel () |
| Destructor. More...
|
|
virtual bool | Init () override |
| Initializes the model. More...
|
|
af::array | GetTrainingInputs () |
| Gets training inputs. More...
|
|
virtual void | FixInducing (bool isfixed) |
| Set fixation for inducing inputs. More...
|
|
| DeepGPBaseModel (const af::array &Y, HiddenLayerDescription hiddenLayerdescription, LogLikType lType=LogLikType::Gaussian) |
| Constructor. More...
|
|
| DeepGPBaseModel (const af::array &Y, std::vector< HiddenLayerDescription > descriptions, LogLikType lType=LogLikType::Gaussian) |
| Constructor. More...
|
|
| DeepGPBaseModel () |
| Default Constructor. More...
|
|
virtual | ~DeepGPBaseModel () |
| Destructor. More...
|
|
virtual void | PredictF (const af::array &testInputs, af::array &mf, af::array &vf) override |
| Predict noise free functions values \(\mathbf{F}_*\). More...
|
|
virtual void | SampleY (const af::array inputs, int numSamples, af::array &outFunctions) override |
| Generate function samples from posterior. More...
|
|
virtual int | GetNumParameters () override |
| Gets number of parameters. More...
|
|
virtual int | GetNumLayers () |
| Gets number of GP layers. More...
|
|
virtual void | SetParameters (const af::array ¶m) override |
| Sets the parameters for each optimization iteration. More...
|
|
virtual af::array | GetParameters () override |
| Gets the parameters for each optimization iteration. More...
|
|
virtual void | UpdateParameters () override |
| Updates the parameters. More...
|
|
virtual std::vector< GPBaseLayer< Scalar > * > | GetGPLayers () |
| Gets vector of GP layers. More...
|
|
virtual void | FixKernelParameters (bool isfixed) |
| Sets fixation for hyperparameters. More...
|
|
| GPBaseModel (const af::array &Y, LogLikType lType=LogLikType::Gaussian, ModelType mtype=ModelType::GPR) |
| Constructor. More...
|
|
| GPBaseModel () |
| Default Constructor. More...
|
|
virtual | ~GPBaseModel () |
| Destructor. More...
|
|
virtual void | Optimise (OptimizerType method=L_BFGS, Scalar tol=0.0, bool reinit_hypers=true, int maxiter=1000, int mb_size=0, LineSearchType lsType=MoreThuente, bool disp=true, int *cycle=nullptr) |
| Optimizes the model parameters for best fit. More...
|
|
virtual bool | Init () |
| Initializes the model. More...
|
|
virtual void | PredictF (const af::array &testInputs, af::array &mf, af::array &vf) |
| Predict noise free functions values \(\mathbf{F}_*\). More...
|
|
virtual void | PredictY (const af::array &testInputs, af::array &my, af::array &vy) |
| Prediction of test outputs \(\mathbf{Y}_*\). More...
|
|
virtual void | SampleY (const af::array inputs, int numSamples, af::array &outFunctions) |
| Generate function samples from posterior. More...
|
|
virtual void | AddData (const af::array Ytrain) |
| Adds training data to the model. More...
|
|
af::array | GetTrainingData () |
| Gets the training data set Y. More...
|
|
void | SetTrainingData (af::array &data) |
| Sets training data Y. More...
|
|
virtual int | GetNumParameters () |
| Gets number of parameters. More...
|
|
virtual void | SetParameters (const af::array ¶m) |
| Sets the parameters for each optimization iteration. More...
|
|
virtual af::array | GetParameters () |
| Gets the parameters for each optimization iteration. More...
|
|
virtual void | UpdateParameters () |
| Updates the parameters. More...
|
|
virtual void | FixLikelihoodParameters (bool isfixed) |
| Sets the likelihood parameters to be fixed or not for optimization. More...
|
|
void | SetSegments (af::array segments) |
| Sets fixation for hyperparameters. More...
|
|
af::array | GetSegments () |
| Gets the start index array for the sequences. More...
|
|
virtual Scalar | Function (const af::array &x, af::array &outGradient) |
| Cost function the given x inputs. More...
|
|
virtual int | GetNumParameters ()=0 |
| Gets number of parameters to be optimized. More...
|
|
virtual void | SetParameters (const af::array ¶m)=0 |
| Sets the parameters for each optimization iteration. More...
|
|
virtual af::array | GetParameters ()=0 |
| Gets the parameters for each optimization iteration. More...
|
|
virtual void | UpdateParameters ()=0 |
| Updates the parameters. More...
|
|
int | GetDataLenght () |
| Gets data lenght. More...
|
|
int | GetDataDimensionality () |
| Gets data dimensionality. More...
|
|
ModelType | GetModelType () |
| Gets model type. More...
|
|
virtual void | SetBatchSize (int size) |
| Sets batch size. More...
|
|
int | GetBatchSize () |
| Gets batch size. More...
|
|
void | SetIndexes (af::array &indexes) |
| Sets the batch indexes. More...
|
|
template<typename
Scalar>
class NeuralEngine::MachineLearning::GPModels::SparseDeepGPBaseModel< Scalar >
Base class with abstract and basic function definitions. All deep GP models will be derived from this class.
HmetalT, 26.10.2017.
Definition at line 31 of file FgSparseDeepGPBaseModel.h.