Blendshape Inference based on AEP_SGPR. More...
#include <FgBlendshapeSGPR.h>
Public Member Functions | |
BSGPR (const af::array &Y, const af::array &X, std::vector< std::string > bsList, std::vector< std::string > controllerList, int numInducing=20, Scalar alpha=1.0, LogLikType lType=LogLikType::Gaussian) | |
Constructor. More... | |
BSGPR () | |
Default constructor. More... | |
std::vector< std::string > | GetBSList () |
Gets the list of blendshape names. More... | |
std::vector< std::string > | GetControlList () |
Gets the names of controler input list. More... | |
![]() | |
SGPR (const af::array &Y, const af::array &X, int numInducing=20, Scalar alpha=1.0, LogLikType lType=LogLikType::Gaussian) | |
Constructor. More... | |
virtual Scalar | Function (const af::array &x, af::array &outGradient) override |
Cost function the given parameter inputs. More... | |
SGPR () | |
Default constructor. More... | |
![]() | |
SparseGPBaseModel (const af::array &Y, const af::array &X, int numInducing=200, LogLikType lType=LogLikType::Gaussian) | |
Constructor. More... | |
SparseGPBaseModel () | |
Default constructor. More... | |
virtual | ~SparseGPBaseModel () |
Destructor. More... | |
virtual void | PredictF (const af::array &testInputs, af::array &mf, af::array &vf) override |
Predict noise free functions values \(\mathbf{F}_*\). More... | |
virtual void | SampleY (const af::array inputs, int numSamples, af::array &outFunctions) override |
Generate function samples from posterior. More... | |
af::array | GetTrainingInputs () |
Gets training inputs X. More... | |
void | SetTrainingInputs (af::array &inputs) |
Gets training inputs X. More... | |
af::array | GetPseudoInputs () |
Gets pseudo inputs. More... | |
virtual bool | Init () override |
Initializes the model. More... | |
virtual int | GetNumParameters () override |
Gets number of parameters. More... | |
virtual void | SetParameters (const af::array ¶m) override |
Sets the parameters for each optimization iteration. More... | |
virtual af::array | GetParameters () override |
Gets the parameters for each optimization iteration. More... | |
virtual void | UpdateParameters () override |
Updates the parameters. More... | |
virtual void | FixKernelParameters (bool isfixed) |
Sets fixation for hyperparameters. More... | |
virtual void | FixInducing (bool isfixed) |
Set fixation for inducing inputs. More... | |
SparseGPBaseLayer< Scalar > * | GetGPLayer () |
Gets the gp layer. More... | |
![]() | |
GPBaseModel (const af::array &Y, LogLikType lType=LogLikType::Gaussian, ModelType mtype=ModelType::GPR) | |
Constructor. More... | |
GPBaseModel () | |
Default Constructor. More... | |
virtual | ~GPBaseModel () |
Destructor. More... | |
virtual void | Optimise (OptimizerType method=L_BFGS, Scalar tol=0.0, bool reinit_hypers=true, int maxiter=1000, int mb_size=0, LineSearchType lsType=MoreThuente, bool disp=true, int *cycle=nullptr) |
Optimizes the model parameters for best fit. More... | |
virtual bool | Init () |
Initializes the model. More... | |
virtual void | PredictF (const af::array &testInputs, af::array &mf, af::array &vf) |
Predict noise free functions values \(\mathbf{F}_*\). More... | |
virtual void | PredictY (const af::array &testInputs, af::array &my, af::array &vy) |
Prediction of test outputs \(\mathbf{Y}_*\). More... | |
virtual void | SampleY (const af::array inputs, int numSamples, af::array &outFunctions) |
Generate function samples from posterior. More... | |
virtual void | AddData (const af::array Ytrain) |
Adds training data to the model. More... | |
af::array | GetTrainingData () |
Gets the training data set Y. More... | |
void | SetTrainingData (af::array &data) |
Sets training data Y. More... | |
virtual int | GetNumParameters () |
Gets number of parameters. More... | |
virtual void | SetParameters (const af::array ¶m) |
Sets the parameters for each optimization iteration. More... | |
virtual af::array | GetParameters () |
Gets the parameters for each optimization iteration. More... | |
virtual void | UpdateParameters () |
Updates the parameters. More... | |
virtual void | FixLikelihoodParameters (bool isfixed) |
Sets the likelihood parameters to be fixed or not for optimization. More... | |
void | SetSegments (af::array segments) |
Sets fixation for hyperparameters. More... | |
af::array | GetSegments () |
Gets the start index array for the sequences. More... | |
![]() | |
virtual Scalar | Function (const af::array &x, af::array &outGradient) |
Cost function the given x inputs. More... | |
virtual int | GetNumParameters ()=0 |
Gets number of parameters to be optimized. More... | |
virtual void | SetParameters (const af::array ¶m)=0 |
Sets the parameters for each optimization iteration. More... | |
virtual af::array | GetParameters ()=0 |
Gets the parameters for each optimization iteration. More... | |
virtual void | UpdateParameters ()=0 |
Updates the parameters. More... | |
int | GetDataLenght () |
Gets data lenght. More... | |
int | GetDataDimensionality () |
Gets data dimensionality. More... | |
ModelType | GetModelType () |
Gets model type. More... | |
virtual void | SetBatchSize (int size) |
Sets batch size. More... | |
int | GetBatchSize () |
Gets batch size. More... | |
void | SetIndexes (af::array &indexes) |
Sets the batch indexes. More... | |
Private Member Functions | |
template<class Archive > | |
void | serialize (Archive &ar, unsigned int version) |
Private Attributes | |
std::vector< std::string > | sBSNames |
list of blendshape names More... | |
std::vector< std::string > | sContNames |
list of contoler names More... | |
Friends | |
class | boost::serialization::access |
Additional Inherited Members | |
![]() | |
IModel (int numData, int numDimension, ModelType type) | |
Constructor. More... | |
![]() | |
int | ik |
number of inducing inputs More... | |
int | iq |
latent dimension More... | |
af::array | afX |
training inputs More... | |
SparseGPBaseLayer< Scalar > * | gpLayer |
gp layer More... | |
![]() | |
bool | bInit |
check if model is initialized More... | |
af::array | afY |
training dataset, mean substracted More... | |
af::array | afBias |
the bias More... | |
af::array | afSegments |
Index of starting positions for all trials. More... | |
LikelihoodBaseLayer< Scalar > * | likLayer |
liklihood layer More... | |
![]() | |
ModelType | mType |
int | iN |
dataset length More... | |
int | iD |
dataset dimension More... | |
int | iBatchSize |
size of the batch More... | |
af::array | afIndexes |
indexes of /f$\mathbf{X}/f$ for batch learning More... | |
af::dtype | m_dType |
floating point precision flag for af::array More... | |
Blendshape Inference based on AEP_SGPR.
Prediction of Blendshape weights for given controler input positions.
, 22.03.2022.
Definition at line 35 of file FgBlendshapeSGPR.h.
NeuralEngine::MachineLearning::GPModels::AEP::BSGPR< Scalar >::BSGPR | ( | const af::array & | Y, |
const af::array & | X, | ||
std::vector< std::string > | bsList, | ||
std::vector< std::string > | controllerList, | ||
int | numInducing = 20 , |
||
Scalar | alpha = 1.0 , |
||
LogLikType | lType = LogLikType::Gaussian |
||
) |
Constructor.
, 12.06.2018.
Y | The training data. |
X | The training inputs. |
bsList | List of blendshape names. |
controllerList | List of controller names. |
numInducing | (Optional) number of inducing inputs. |
alpha | (Optional) The alpha. |
lType | (Optional) likelihood type. |
NeuralEngine::MachineLearning::GPModels::AEP::BSGPR< Scalar >::BSGPR | ( | ) |
Default constructor.
Hmetal T, 08/03/2020.
std::vector< std::string > NeuralEngine::MachineLearning::GPModels::AEP::BSGPR< Scalar >::GetBSList | ( | ) |
Gets the list of blendshape names.
Hmetal T, 22/03/2022.
std::vector< std::string > NeuralEngine::MachineLearning::GPModels::AEP::BSGPR< Scalar >::GetControlList | ( | ) |
Gets the names of controler input list.
Hmetal T, 22/03/2022.
|
inlineprivate |
Definition at line 92 of file FgBlendshapeSGPR.h.
|
friend |
Definition at line 89 of file FgBlendshapeSGPR.h.
|
private |
list of blendshape names
Definition at line 86 of file FgBlendshapeSGPR.h.
|
private |
list of contoler names
Definition at line 87 of file FgBlendshapeSGPR.h.