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ABSTRACT

In this paper, we study an under-explored but important factor of diffusion gen-
erative models, i.e., the combinatorial complexity. Data samples are generally
high-dimensional, and for various structured generation tasks, additional attributes
are combined to associate with data samples. We show that the space spanned by
the combination of dimensions and attributes is insufficiently sampled by exist-
ing training scheme of diffusion generative models, causing degraded test time
performance. We present a simple fix to this problem by constructing stochastic
processes that fully exploit the combinatorial structures, hence the name Com-
boStoc . Using this simple strategy, we show that network training is significantly
accelerated across diverse data modalities, including images and 3D structured
shapes. Moreover, ComboStoc enables a new way of test time generation which
uses asynchronous time steps for different dimensions and attributes, thus allowing
for varying degrees of control over them.

Figure 1: ComboStoc improves diffusion generative models across data modalities of images and
structured 3D shapes. Left: structured 3D shapes where semantic parts are colored randomly. Right:
images with consistently lower Frechet Inception Distance (FID) than baseline results. Middle: core
to ComboStoc is a simple conversion of the interpolation schedule t of the diffusion models into
a tensor of the same shape as the data point x1 and noise point z, and applying different values
within [0, 1] for different dimensions or attributes to fully sample the combinatorial complexity of
the dimensions and attributes.

1 INTRODUCTION

Diffusion generative models rely heavily on modeling the desired behavior over the whole space
of possibilities, so that the generative models cover all data distributions systematically. However,
the current training schemes generally focus on a single transport path from the source pure noise
distribution to the target data distribution (Albergo & Vanden-Eijnden, 2023; Albergo et al., 2023; Liu
et al., 2023; Lipman et al., 2023). The training therefore gives insufficient sampling of large regions
of the entire space of possibilities, which nevertheless can be encountered because of stochastic
sampling during evaluation and produce inaccurate behavior, leading to poor generation results.

To solve this mismatch between training scheme and test time evaluation, we propose to fully sample
the space of combinatorial complexity. To see why the space of possibilities has a combinatorial
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structure, we note that the data samples are most likely residing on high dimensional spaces with clear
combinatorial structures. For example, the most powerful generative models so far use transformers as
the network model (Peebles & Xie, 2023; Ma et al., 2024), and treat an image sample as a collection
of patch tokens to be generated in parallel; moreover, each of the patch token is encoded as a vector
of high dimensions. The combination of patches and their feature vectors present highly complex
spaces, over which the diffusion generative models must learn to evolve toward data samples where
patches and feature vectors are correlated nontrivially. In addition, for generative tasks in more
structured domains, for example, 3D shapes with semantic parts, the combinatorial complexity is
even more pronounced: each part has numerous attributes encoding different properties like its
existence, bounding box and part shape, in addition to the part/patch decomposition and multiple
feature channels analogous to images.

Model Params(M) Training Steps FID

DiT-XL 675 400K 19.5
SiT-XL 675 400K 17.2

ComboStoc 673 400K 15.69

DiT-XL 675 800K 14.3
SiT-XL 675 800K 12.6

ComboStoc 673 800K 11.41

DiT-XL (cfg=1.5) 675 7M 2.27
SiT-XL (cfg=1.5) 675 7M 2.06

ComboStoc (cfg=1.5) 673 800K 2.85

Table 1: Improvements over SiT across iterations.

We sample the spaces of such combinatorial
complexity by a simple modification of typical
transport plans. In particular, instead of using a
synchronized time schedule for each data sam-
ple, we apply asynchronous time steps for each
of the patches/parts, attributes and feature vector
dimensions, which allows for full sampling of
a subspace spanning the various combinations
of each pair of source and target data points.

We show that by simply enhancing the training
scheme to incorporate the combinatorial sam-
pling, the generative models for images and 3D
structured shapes can be significantly improved (Fig. 1). In particular, for images from ImageNet,
we obtain systematic FID-50k improvements along different training iterations than the baseline SiT
model (Tab. 1). For 3D structured shapes which have even stronger combinatorial complexity, we
show that our training scheme is indispensable for obtaining a working generative model.

In addition to the improved performances, the training scheme exploiting combinatorial stochasticity
enables new modes of using the trained generative models. Specifically, we can now generate
different patches/parts/attributes in asynchronous time schedules. This means that for example we
can condition the final sample on flexible partial observations of a reference sample beyond binary
masks. Instead, for images we can apply graded control across patches and channels. For structured
shapes we can also specify the shapes of some parts only, and let the model generate the rest parts
and attributes. These new modes of generation have the potential to unify specialized image and
shape editing solutions.

2 BACKGROUND ON DIFFUSION GENERATIVE MODELS

The problem of generative modeling aims at capturing the complete distribution of a set of data
samples. Its state-of-the-art solutions include denoising diffusion probabilistic models (Ho et al.,
2020), score-based models (Song et al., 2021) and flow matching (Lipman et al., 2023; Liu et al.,
2023), all of which transform a simple source distribution (e.g. the unit normal distribution) into the
target distribution following the dynamics specified by variations of stochastic differential equations.
Remarkably, the different formulations can be unified through the framework of stochastic interpolants
(Albergo & Vanden-Eijnden, 2023; Albergo et al., 2023). In particular, the stochastic interpolants
framework defines the process of turning data samples into source distributions and vice versa as
a simple interpolation between the two distributions, augmented with random perturbations during
the processes. Without loss of generality, we reproduce the formulation of a simple linear one-sided
interpolant process below (illustrated in Fig. 2(a)):

xt = (1− t)z+ tx1, t ∈ [0, 1] (1)

where z ∼ N(0,1) samples the source distribution, x1 ∼ D samples the target data distribution,
t ∈ [0, 1] is the interpolation schedule. A network model fθ(xt) can be trained to recover the
interpolation velocity ∂xt

∂t = x1 − z, the target data sample x1, or the noise z (Albergo et al., 2023).
To generate data samples, one then starts from a random sample z, follows the velocity field and
integrates them numerically into the final samples.
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Figure 2: ComboStoc enables better coverage of the whole path space. Assuming two-dimensional
data samples. (a) the standard linear one-sided interpolant model reduces its density as it approaches
individual data samples; the low density regions are not well trained and once sampled would produce
low-quality predictions. (b) using ComboStoc, for each pair of source and target sample points, a
whole linear subspace spanned with their connection as the diagonal will be sufficiently sampled, so
that there are fewer low-density regions not well trained. (c) when the network is trained to predict
velocity x1 − z on an off-diagonal sample point xt, a compensation drift (vcmpn in green) can be
applied to pull the trajectory back to diagonal.

Remarkably, on modeling large scale image datasets like ImageNet, a scalable transformer architecture
implementing the above process (Ma et al., 2024) shows state-of-the-art performance and outperforms
alternative formulations, including DDPM (Ho et al., 2020) implemented via the same network
(Peebles & Xie, 2023).

3 COMBINATORIAL STOCHASTIC PROCESS

Most interesting data samples are high dimensional. For example, state-of-the-art generative models
encode images as latent patches with both spatial and feature dimensions (Ma et al., 2024; Peebles &
Xie, 2023). 3D shapes structured as part ensembles include even more attributes in addition to spatial
and feature dimensions, for example, the varying numbers of parts and their bounding boxes and
positions (Mo et al., 2019b); to generate such data requires the handling of more flexible dimensions.

No matter how many dimensions and attributes a data sample has, standard diffusion generative
models treat them homogeneously and in synchronization. For example, for the stochastic interpolants,
the generative model is trained on samples distributed on densities with shrinking coverage along
the transport paths connecting the source distribution and each target data sample, as illustrated in
Fig. 2(a). In Appendix A.1, we provide a formal proof and visualization of the shrinking coverage.
This design leaves the low density regions insufficiently trained, and once they are sampled in test
stage via solving stochastic differential equations, the network tends to produce poor results.

To address the above problem, we emphasize the combinatorial complexity of individual dimensions
and attributes of data samples. In particular, we purposefully sample points with asynchronous diffu-
sion schedules of dimensions and attributes, as shown in Fig. 2(b). To implement the asynchronous
schedules is rather simple. We turn the interpolation schedule t of Eq. (1) into a tensor t of the
same shape as x, and use different values independently and uniformly sampled within [0, 1] for the
dimensions and attributes, to obtain the sample points:

xt = (1− t)⊙ z+ t⊙ x1 (2)

where ⊙ is elementwise product. By construction, the sampling density is uniform within the
subregions spanned by each pair of source and target data points. Correspondingly, the network
fθ(xt) is trained to predict velocity, or the target data sample, etc.

The benefits of using these augmented samples from combinatorial stochasticity lie in three folds:

• We make sure the network coverage is broader than the synchronized schedule, so that
during test stage the network performs more robustly and with higher quality.

• We encourage the network to learn the correlations of different dimensions and attributes, as
the network is trained to synchronize them to reach the final data points.

• The trained network enables more flexible control over the generation process, where
different dimensions and attributes can be given varying degrees of finalization to be
synthesized in the final result.

Next, we discuss the detailed adaptations and achieved effects through generative tasks from two
different domains, i.e. images and structured 3D shapes.

3
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(a) Image domain configurations

Feature
Spatial w/o patch w/ patch

single code unsync_none unsync_patch
feature vector unsync_vec unsync_all

(b) Structured 3D shape configurations

Feature
Spatial w/o part w/ part

single code unsync_none unsync_part
attribute unsync_att unsync_att_part

feature vector unsync_vec unsync_all

Table 2: Enumerating configurations of different combinatorial complexities, for image domain
generation (a) and structured 3D shape generation (b).

Images. For image generation, we take on the baseline of SiT (Ma et al., 2024) which applies
highly scalable transformer networks and achieves state-of-the-art performance on ImageNet scale
generation. In particular, a given image is encoded via the VAE encoder from Rombach et al. (2022)
as a latent image x1 of shape C×H×W , and the network is trained to predict velocity given the
diffused latent image xt (Eq. (1)) and optionally conditioned on the image class c and interpolation
schedule t, i.e., fθ(xt; c, t) = x1 − z.

Correspondingly, we make several simple adaptations to implement the ComboStoc scheme. First,
we construct t with the same shape of C×H×W , and update the timestep embedding module of
SiT to accommodate this change (see Appendix A.3). Note that the conditioning on class labels and
timesteps are mixed and implemented as modulation operations in Ma et al. (2024), and therefore are
not symmetric to the data samples in importance1. Second, importantly, we note that for velocity
prediction, the samples with asynchronous t should not predict the original velocity x1 − z only;
otherwise there will be drift off the target data points during test stage integration (illustrated as
Fig. 2(c) dotted line; see Appendix A.2 for a formal analysis). To mitigate this issue, we propose
two possible approaches to compensate the velocity, as detailed in Appendix A.2. Due to limited
computational resources, in our experiments, we have applied only the first approach of minimizing
off-diagonal drift by gradient descent, and leave the test of the second approach for future work.

Structured 3D shapes. We use the generative modeling of structured 3D shapes as a new task to
further demonstrate the importance of exploiting combinatorial complexity. Indeed, structure 3D
shapes have even stronger combinatorial complexity than images, as shown in its varying numbers
of parts, their positions and bounding boxes, as well as the detailed shape variations for each part.
Precisely, we denote a structured 3D object as a collection of object parts, i.e., x = {pi}, i ∈ [L],
where we set L = 256 to cover the maximum number of parts in a dataset. An object part is further
encoded as p = (s,b, e), where s ∈ [0, 1] indicates the existence of this part, b = (x, y, z, l, w, h)
denotes the bounding box center (x, y, z) and length l, width w and height h, and e ∈ R512 is a latent
shape code encoding the part shape in normalized coordinates. Note that under this representation, a
permutation of the part indices does not change the 3D shape, which is quite different from images
represented as a feature grid of fixed order and size.

To generate structured 3D shapes with semantic parts, we train a stochastic interpolant model. In
particular, given a structured 3D shape x1 = {pi} and its diffused sample xt (Eq. (2)), we make the
network predict the target data sample directly for simplicity, i.e., fθ(xt; c, t) = x1, where c is the
optional class label of the 3D shape. Note that here t assigns different time steps for all the different
attributes and dimensions of each object part. We validate the generative model for structured 3D
shapes by training on the PartNet dataset (Mo et al., 2019b), as discussed in Sec. 4.

4 RESULTS AND DISCUSSION

In this part, we show that ComboStoc improves the training convergence of diffusion generative
models for both images and structured 3D shapes. We also demonstrate the novel applications enabled
by the asynchronous time steps of ComboStoc .

1The modulation by conditions including class labels and timesteps differ between training and test stages, as
during training asynchronous timesteps are used while during testing synchronized timesteps will be used if no
graded control is applied (Sec. 4.2). However, the training stage timesteps cover those of test stage as special
cases, and thus enhance network generalization.
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(a) (b)

Figure 3: Comparison on image generation with respect to training steps. (a) plots the baseline
SiT and our model, as well as DiT for reference; all models are of the scale XL/2 (Ma et al., 2024).
(b) plots the different settings using varying degrees of combinatorial stochasticity.
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Figure 4: Results of image generation at different training steps. Settings with stronger combina-
torial sampling produce well-structured images earlier; e.g. see the koala bear faces and cat eyes.

4.1 IMPROVED TRAINING OF DIFFUSION GENERATIVE MODELS

We explore the combinatorial complexities for both images and structured 3D shapes, and build cor-
responding configurations which exploit these complexities to compare with baseline configurations
that do not apply asynchronous time schedules. We show that the different configurations improve
over baseline configurations universally. In addition, we show that the higher degree of combinatorial
complexity, the more important our scheme is for training a working model.

Images Following SiT (Ma et al., 2024), we train on ImageNet (Deng et al., 2009) for class-
conditioned image generation. To fully explore the effects of combinatorial stochasticity, we enu-
merate four settings with different levels of combinatorial flexibility in diffusing the data samples
(see also Tab. 2(a)). In particular, we use unsync_none, unsync_patch, unsync_vec, and
unsync_all to denote no splitting of time steps, using different time steps for latent image pixels,
for latent image channels, and for both image pixels and channels. We run the different settings on
top of the SiT-XL/2 baseline model. Considering the difficulty posed by ImageNet data size, in each
batch we apply the split time steps only to half of the samples and leave the other half unchanged
with synchronized time steps, which balances between samples along and off diagonal paths (Fig. 2)2.
Plots of FID-50K (Heusel et al., 2017) with respect to training steps are shown in Fig. 3, where
classifier-free guidance is not used.

First, as shown in Fig. 3(a), our scheme (using unsync_all) shows consistent improvement of the
baseline SiT model, and significant improvement over the reference DiT model. Second, as shown in
Fig. 3(b), the different settings of time step unsynchronization behave differently. Overall, the finest
split by unsync_all obtains the best performances consistently, followed by unsync_vec and
unsync_patch which split along feature and spatial dimensions and have almost indistinguishable
performances. The worst performance is obtained by unsync_none, i.e. the setting using no

2This batch mixing scheme may be suboptimal. In preliminary tests (A.8) we found that blending the split
timesteps with synchronized ones gives even better results. Searching the optimal scheme is left for future work.
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unsync_none unsync_part unsync_att unsync_att_part unsync_vec unsync_all

Figure 5: Results of structured shape generation by different settings. Semantic parts are colored
randomly. Settings exploiting stronger combinatorial stochasticity show better results. In comparison,
unsync_none that does not apply ComboStoc nearly fails to generate meaningful shapes.

combinatorial stochasticity. Fig. 4 visualizes the results of different settings along training steps,
where we see better structured images emerge earlier for settings using stronger combinatorial
complexity. The comparison among these four settings shows that fully utilizing the combinatorial
complexity indeed helps network training.

Note that due to the differences introduced in the timestep embedding module, unsync_none has
slightly worse performance than the baseline SiT, probably because the timestep encoding vector has
a smaller size (see Appendix A.3). While it may be possible to align unsync_none with baseline
SiT by introducing more capable embedding layers, unsync_all already outperforms the baseline
with significant margins (Fig. 3(a)). In addition to the result quality, in Appendix A.7 we provide
detailed analysis of the computational complexity of our model in comparison with baseline SiT and
DiT models, and find that our model is as efficient as the baselines.

Structured 3D shapes We show that for the task of structured 3D shape generation, which has
even stronger combinatorial complexity due to the flexible parts and their multiple attributes, our
scheme becomes more important to the extent of being indispensable.

For structured 3D shape generation, we identify combinatorial complexity in the following axes:
attributes/feature vectors, and spatial parts. Therefore, we obtain 3×2 = 6 settings, i.e., unsync_-
none and unsync_part which apply the same or different time schedules to parts respectively,
unsync_att and unsync_att_part which use attribute level schedules, and unsync_vec
and unsync_all which use the most finely divided feature vector level schedules. See Tab. 2(b) for
a summary of the 6 configurations. Because of the relatively small size of the PartNet dataset (18K
shapes in total, mostly in chair and table classes), we deem it easier to learn and simply apply the
corresponding asynchronous time steps to all samples in each batch, in contrast to the mixing scheme
of ImageNet training. We report results at 1.5K epochs, since earlier results cannot be decoded
into valid manifold shapes for evaluation in settings like unsync_none. In Appendix A.4-A.6 we
provide additional network details for structured 3D shape generation.

As shown in Fig. 5, the more combinatorial complexity we exploit, the better performance of the
trained network. In comparison, the baseline setting without combinatorial stochasticity, unsync_-

6
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unsync_none unsync_part unsync_att unsync_att_part unsync_vec unsync_all

FPD↓ 7.99 4.71 7.47 3.51 4.62 4.04
COV↓ 1.32 1.03 1.83 0.85 0.97 0.86
MMD↓ 1.23 1.95 1.38 1.04 0.63 0.68

Table 3: Quantitative evaluation of structured shape generation by different settings. Chair
category is used. Best scores are marked in bold and underlined; second best scores in bold.

Figure 6: Class-conditioned generation of structured 3D shapes. From top to bottom the classes
are: chair, laptop, table and display.

none, almost entirely fails to produce meaningful shapes. Moreover, since this task models the
highly flexible composition of various numbers of parts, applying the spatial part unsynchronization
(Tab. 2(b)) helps obviously, as shown through the three pairs of columns in Fig. 5 (e.g., part vs
none, att_part vs att, and all vs vec.).

We report quantitative results in Tab. 3 using the chair category. Following Wang et al. (2023)
we use three metrics, including Frechet Point Distance (FPD) that measures the FID on sampled
point clouds, coverage (COV) that measures how well each GT sample is covered by the closest
generated sample, and minimum matching distance (MMD) that measures how well each generated
sample resembles the closest GT sample. The numerical results again show that the part level
combinatorial stochasticity enhances generative performance significantly, and unsync_all shows
the best overall result.

In Fig. 6 and Appendix A.8 we show more random samples generated by the unsync_all setting.
In Appendix A.8, we also compare with other works that generate structured shapes by taking a
hierarchical refinement process and find that our results are within their performance ranges.

4.2 APPLICATIONS ENABLED BY COMBINATORIAL STOCHASTIC PROCESS

The asynchronous timesteps for different dimensions and attributes of ComboStoc enables a novel
test time application, namely the chance to specify different degrees of preservation of a data sample
to its dimensions and attributes. Specifically, given t0 specifying the weights in [0, 1] to preserve the
data of x, we sample the generative process starting from

x0 = (1− t0)⊙ z+ t0 ⊙ x, (3)

and increase the time steps for individual dimensions and attributes via 1−t0
N for N steps. Examples

of such asynchronous generative processes are shown in Figs. 7, 8 for images, and Figs. 9, 10 for
structured 3D shapes.

7
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Figure 7: Image generation using different weights of preservation. Each reference image (right)
is split into two vertical halves (left), and the left half is given the preservation weights while the right
region starts from scratch.

t0 iter=0 25 50 75 100 125 150 175 200 225 250 x1

Figure 8: Image generation with spatially different preservation weights. As shown in the left
column, the four quadrants use t0 = 0, 0.25, 0.5, 0.75, respectively. The sampling iterations converge
to results that preserve the corresponding quadrants from the reference images (right) differently.

Images In Fig. 7 we show that giving different t0 to a half of a reference image while leaving
the other half to generate from scratch, we can achieve different degrees of preservation of the
reference images. In particular, as the preservation weight increases from 0 to 1, the preservation of
reference content is strengthened. We note that at 0.5 the weight is good enough to preserve most
of the reference content. In Fig. 8, we use different preservation weights encoded by t0 for the four
quadrants of each image, and show intermediate results along the iterative SDE integration process.
From the three examples we can see that stronger weights cause better preservation of reference
regions, and the different regions are filled with coherent content despite the spatially varying time
schedules. This mode of controlled generation is novel, compared with the binary inpainting mode
proposed for standard diffusion models (Lugmayr et al., 2022), where regions of an image are divided
into two discrete types, i.e. those to preserve and those to generate from scratch.

In Appendix A.8 we show more cases of graded control over image generation. In particular, we find
that channel-varying t0 reveals interesting observations about the different contents of latent image
encoding (Rombach et al., 2022).

Structured 3D shapes By controlling different parts and attributes of structured 3D shapes, we can
achieve diverse effects, including shape completion and part assembly. In Fig. 9, we fix the bases
of chairs by giving them t0 = 0.9, and complete them with meaningful but diverse structures that
satisfy the class condition. The given bases have the chance of being slightly updated to adapt to
the completed shapes. In Fig. 10, we randomly position a set of parts, and let the network arrange
them into proper shapes, by giving the part shape codes e and bounding box sizes large preservation
weights (t0 = 0.9) and making the rest attributes free to be generated. Here we have considered a
simplified setting where the part rotations are given, and leave the more challenging case of rotating
shape parts as future work.

5 RELATED WORKS

For image generation, while there are numerous optimizations of training schemes, including training
loss weights and time schedules (Hang et al., 2023), speedup by distillation (Meng et al., 2023),
and sampling path consistency (Song et al., 2023), few have noticed the factor of combinatorial

8
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Figure 9: Structured shape completion. Given base parts (left), the network can complete the
missing parts conditioned on a shape category name (chair in this example). While the completed
parts show great diversity, the given parts are preserved faithfully.

Figure 10: Assembly of semantic parts. Given parts in random positions (left and right), the network
assembles them into complete shapes (middle). We solve this part-assembly problem via preserving
the attributes of part shapes and scales and only generating the attribute of part positions.

complexity. An exception is Gao et al. (2023), which attributes the slow training of DDPM based
DiT model (Peebles & Xie, 2023) to the pixel-wise regression loss, which does not emphasize the
structural correlation of different patches sufficiently. To address the problem, Gao et al. (2023)
design a mask-and-diffusion scheme that masks out portions of the input diffused images during
training to encourage learning the patch correlation, implemented by a complex encoder-decoder
network with additional side-interpolation modules. In comparison, our scheme is simple and requires
minimum changes of baseline networks, but can already improve training of SiT models significantly.
Notably, SiT models already surpass DiT models in performance (Ma et al., 2024).

While 3D diffusion generative models are increasing (Zheng et al., 2023; Zhang et al., 2023), few
works have been done for structured shape generation. Mo et al. (2019a) studies the representation
learning of hierarchically structured shapes and proposes to generate variations using a VAE model.
Compared to Mo et al. (2019a), Wang et al. (2023) proposes a rewriting model to enable generalizable
cross-category generation. In comparison, we focus on generating flatly structured 3D shapes with
leaf level semantic parts. Moreover, by specifying parts and attributes independently, our model
enables diverse tasks like shape completion and assembly. Previously, such diverse applications have
been studied individually via specialized solutions (Huang et al., 2020; Sung et al., 2015), but in
this paper we have shown that they can be potentially unified by a single model generating highly
structured data.

6 CONCLUSION

We have proposed to focus on the problem of combinatorial complexity of high-dimensional and
multi-attribute data samples for diffusion generative models. In particular, we note that for one-sided
stochastic interpolants that model many variants of diffusion and flow based models, there exists the
problem of under-sampling regions of the path space where the dimensions/attributes are off-diagonal
or asynchronous. We propose to fix this issue by sampling the whole space spanned by combinatorial
complexity uniformly. Experiments across two data modalities show that indeed by utilizing the
combinatorial complexity, performances can be enhanced, and new generation paradigms can be
enabled where different attributes of a data sample are generated in asynchronous schedules to achieve

9
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varying degrees of control simultaneously. We hope that our work can inspire future works that look
through the combinatorial perspective of generative models.

Limitation and future work Our ComboStoc scheme will only have significant effects when
the data has combinatorial and structural information, such as different patches for images and
different parts for 3D shapes. When the data resides in a vector space whose dimensions are nearly
independent, it is hard to exploit the correlation of dimensions and train a model that works well under
the combinatorial schedule of different dimensions. Indeed, in such a case the individual dimensions
may ideally be generated separately by different models. However, we note that many data types in
real life contain strong structural and combinatorial information; particularly eminent are tasks within
scientific domains, including molecule docking and protein folding (Corso et al., 2022; Wu et al.,
2024; Yim et al., 2024), where diffusion models that better handle their combinatorial structures can
be desirable.
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A APPENDIX

A.1 SAMPLING DENSITIES FOR TYPICAL DIFFUSION AND ComboStoc DIFFUSION

We show that the sampling density for a typical linear interpolant diffusion process is different from
that of the ComboStoc diffusion process. In particular, we show that the typical diffusion creates
nonuniform density making regions away from target data points low in probability. On the other
hand, the ComboStoc diffusion creates uniform densities for subspaces spanned by source and target
data points. Therefore, ComboStoc diffusion improved sampling.

Without loss of generality, suppose the subspace R spanned by z and x1 has z as the minimum
corner, and x1 as the maximum corner. Thus we have R = {x|z ⪯ x ⪯ x1}.

First, we note that for ComboStoc diffusion, any point x ∈ R has a uniform density by definition
(Fig. 2(b)).

Second, we show that the typical diffusion creates nonuniform density. As shown in Fig. 2(a), we
denote an arbitrary point x ∈ R, and a moving point pt = (1 − t)z + tx1 along the diagonal
connecting z and x1.

We denote by ρ(x) the probability density for sampling x, generated by any Gaussian distribution
Gpt

= N(pt; (1 − t)21) centered at pt and with variance scaled by the interpolation coefficient
1− t. Therefore, we have

ρ(x) =

∫ 1

0

Gpt(x)dt =

∫ 1

0

1√
2π(1− t)

e
− ∥x−pt∥2

2(1−t)2 dt. (4)

Plugging in the parameterized equation of pt, we have

ρ(x) =
1√
2π

∫ 1

0

1

1− t
e
− ∥t(z−x1)+x−z∥2

2(1−t)2 dt. (5)

z

x1

Figure 11: Visualizing the sampling density ρ(x) of a typical one-sided linear interpolant (see
Fig. 2(a)) by numerical integration. One can see the obvious tendency of shrinking coverage toward
the target data point.

The above integration does not have closed-form solution, so we visualize ρ by numerical integration
in Fig. 11, where we see the clear tendency of shrinking coverage toward data points. Moreover, we
find the gradient ∇ρ is more friendly to work with. In particular, by straightforward calculation we
have

(x1 − x) · ∇ρ(x) =
1√
2π

e−
∥x−z∥2

2 > 0, (6)

which means that ∇ρ(x) has a positive projection along the direction x1 − x. Therefore, we can
conclude that the sampling density ρ(x) is not uniform and grows when approaching the target data
points.
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A.2 MINIMIZING THE OFF-DIAGONAL DRIFT

The problem of off-diagonal drift can be revealed from the perspective of test-time integration. For
ease of analysis we assume an ODE is solved to follow the prescribed velocity field to move from the
source noise point to the target data point.

If the integration never stumbles on sample points off diagonal line connecting z and x1, the
integration starting from a point xt0 = z+ t0(x1 − z) and following the velocity field x1 − z would
always end at the target point, i.e.,

xt0 +

∫ 1

t0

(x1 − z)dt = z+ t0(x1 − z) + (1− t0)(x1 − z) = x1. (7)

Now suppose the integration stumbles upon an off-diagonal sample point xt0 at a tensorized interpo-
lation schedule t0 with different values for its various entries. The integration by following only the
velocity x1 − z would miss the target data point x1 (Fig. 2(c), dotted arrow). Precisely,

xt0 +

∫ 1

t0

(x1 − z)dt (8)

= z+ t0 ⊙ (x1 − z) + (1− t0)(x1 − z)

= x1 + (t0 − t0)⊙ (x1 − z),

where t0 = min(t0) denotes the minimum interpolation schedule across the dimensions of t0. Here
we assume the test-time setting that for asynchronous timesteps we integrate until the slowest one
finishes.

To address this divergence problem, we propose two possible approaches for mitigation: 1) we can
minimize the off-diagonal drift by following the negative gradient of a drift potential, and 2) we can
design a cone-shaped velocity field, such that the integration converges to target data points.

Off-diagonal drift minimization The off-diagonal offset vector δ(xt) can be defined as

δ(xt) = −vcmpn = xt − x1 −
(xt − x1) · (x1 − z)

||x1 − z||2
(x1 − z). (9)

To minimize the drift, we can simply follow its negation vcmpn in addition to the original velocity
during integration, which is equivalent to minimizing a drift potential Φ (δ(xt)) = 1

2∥δt∥
2 by

gradient descent, and promotes the convergence to target data points (Fig. 2(c), dashed arrow).

Cone-shaped velocity field Different from the off-diagonal drift minimization, we can also design
a cone-shaped velocity field that generalizes the simple constant velocity x1−z to a cone of velocities
covering the expanded region R. In particular, we can use the following velocity

vt0 =
x1 − xt0

1− t0
, (10)

where again t0 = min(t0) denotes the minimum interpolation schedule across the dimensions of
t0. Note that for synchronized schedule, v =

x1−xt0

1−t0
= x1−z−t0(x1−z)

1−t0
= x1 − z, i.e., the original

velocity is a special case of this velocity field. To see why this is a cone shaped velocity field, note that
for a timestep tλ = λt0 + (1− λ)1 along the line of t0 and 1, their velocities are equal. Therefore,
it is easy to see such a constant velocity along the line connecting an off-diagonal point and the target
point would lead to convergence to the target data point. Precisely,

xt0 +

∫ 1

t0

x1 − xt0

1− t0
dt = xt0 + x1 − xt0 = x1, (11)

due to the cone-shaped velocity field.

Throughout our experiments, we have used the first approach of off-diagonal drift minimization to
mitigate the divergence issue, and leave the test of the second approach for future work due to limited
computational resources.
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FreqEmbed

MLP

FreqEmbed

MLP

Transpose

PatchEmbed

Figure 12: Adaptation of time step embedding for ComboStoc . Left: the original time step
embedding module of SiT, where N is batch size, CF is the sine/cosine frequency embedding length,
and CH is the hidden dimension of SiT transformer. Right: the adapted time step embedding module
for ComboStoc . t is now of shape (N,C,H,W ). The first two layers remain the same as the original
module, applying to each entry of tensor t and producing a compressed time step encoding of dim CC .
Given the result tensor of shape (N,C,H,W,CC), we further transpose it to combine the channel
dimensions and use the same patchwise embedding layer as SiT (and ViT) to embed the local patches
into vectors of dim CH . Suppose the patch size is L× L, then T = H ×W/L2.

A.3 SIT ADAPTATION FOR IMAGE GENERATION

As shown in Fig. 12, given a tensorized time step t of shape (N,C,H,W ) that is the same as the
latent encoding of input images, we not only encode each of the time steps for different dimensions as
done before, but also embed the result feature map of time steps in the same way as image embedding,
i.e. the patch-wise embedding originally from ViT (Dosovitskiy et al., 2021). This design ensures
that the different dimensions are conditioned on their corresponding time steps in addition to the
shared class label. Note that to avoid introducing large embedding layers, we have used CC = 4 to
encode a timestep scalar, which is significantly smaller than the CH of SiT. This can be the reason
why unsync_none performs slightly worse than the baseline SiT (Sec. 4), both of which have
exactly the same network elsewhere.

A.4 ENCODING FOR STRUCTURED 3D SHAPE GENERATION

We have adopted the pretrained part shape encoding network from Wang et al. (2023). In particular,
Wang et al. (2023) design a point cloud VAE to encode 3D shapes into a sparse set of latent codes,
and on top of the latent set, they train another transformer VAE to compress them into a single latent
code. Therefore, each part shape from the PartNet dataset (Mo et al., 2019b) is normalized into unit
size and encoded into a single code, which allows us to represent structured 3D shapes as a collection
of parts as detailed in Sec. 3.

The embedding modules for part existence and bounding box follow the same design as timestep
embedding. That is, we first turn each of the scalar dimensions into frequency codes using the
sine/cosine embedding, and then embed them into vectors of dim 4 (cf. Fig. 12), before finally
embedding each of the collective attributes as a whole into vectors of hidden dim 384, through
respective FC layers.
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(a) Image generation

Setting t

unsync_none (N, 1, 1, 1)
unsync_patch (N, 1, H,W )
unsync_vec (N,C, 1, 1)
unsync_all (N,C,H,W )

(b) Structured 3D shapes

Setting t

unsync_none (N, 1, 1)
unsync_part (N,L, 1)
unsync_att (N, 1, [1, 1, 1])

unsync_att_part (N,L, [1, 1, 1])
unsync_vec (N, 1, V )
unsync_all (N,L, V )

Table 4: Time step tensor shapes of different configurations. Left: images are of shape
(N,C,H,W ), where N is batch size, C is channel size, H and W are height and width, respectively.
The t tensors match up with the image tensors through broadcast semantics. Right: structured
3D shapes are of shape (N,L, [Vs, Vb, Ve]), where N is batch size, L is the number of shape parts,
[Vs, Vb, Ve] is the concatenation of three attributes, i.e., Vs = 1 indicator of existence, Vb = 6
bounding box, Ve = 512 part shape code; we denote the three attributes collectively as V . t tensors
match up with the shape tensors through broadcast semantics.

A.5 DETAILS OF TENSORIZED TIME STEPS

In Tab. 4 we give the details of split timestep specifications for all configurations, across images
and structured 3D shapes. We rely on the broadcast semantics of Numpy and Pytorch to assign
synchronized timesteps to multiple dimensions.

A.6 IMPLEMENTATION DETAILS

The image generation model is modified from SiT-XL/2, i.e., the large model with 28 layers, 1152
hidden dimension, 2 × 2 patch size, and 16 attention heads. We trained the model using the
default settings of SiT, with AdamW solver and fixed learning rate 10−4, and batch size 256, on
4 Nvidia H100 gpus. The training takes 7.5 days for 800K iterations. Evaluating the models uses
the SDE integrator with 250 steps. The use of classifier-free guidance (CFG) or not is specified at
corresponding results. For comparison with baselines in terms of FID-50K, CFG is not used unless
otherwise specified. In the result gallery figures, CFG is used with guidance strength 4.0.

The structured 3D shape generation model uses a network of SiT small model, i.e., the model has
12 layers, 384 hidden dimension, 256 tokens for parts and 6 attention heads. We trained the model
using the AdamW solver with a fixed learning rate of 10−4 and batch size 16. We trained the model
on 4 Nvidia A100 gpus, which takes 3 days for 1.5K epochs. Evaluating the models uses iterative
sampling with 500 iterations; in each iteration, the predicted part existence is binarized via threshold
0.5 before being diffused back for the next iteration. Class conditional sampling without CFG is
always applied.

Methods Parameters(M) Mem. Usage(MB) Training Speed (steps/sec) GFlpos Inference Speed(ms)

DiT 675 75580 0.17 237.34 49
SiT 675 76868 0.19 237.34 50
Ours 673 76340 0.15 352.46 48

Table 5: Comparison of computational complexity with SiT and DiT, in terms of parameter count,
training stage speed and memory usage, and inference stage speed and Gflops. All tests are done on a
single Nvidia A100-80G GPU at the XL/2 model configuration with input image of size 256×256.
The GFlops are calculated by DeepSpeed.

A.7 COMPUTATIONAL COMPLEXITY ANALYSIS

We provide a comparison with SiT and DiT in Tab. 5, in terms of parameter count, training stage
speed, memory usage, inference stage speed, and GFlops. All tests are done on a single Nvidia
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t0 C = 0 C = 1 C = 2 C = 3 x1

Figure 13: Spatially and channel varying t0. For the spatial dimensions t0[:, :, i, j], the assignment
is specified in the left column. For the feature channel dimensions t0[:, C, :, :], the C-dim is given
0.5 and the rest given 0. Therefore, we obtain results that correspond to the reference images (x1) in
complex ways. Notably, earlier channels correspond more to image structures and later channels to
image colors.

t0 map mask over image

Figure 14: Customized graded t0. Left shows the t0 map in pixels, where each pixel corresponds
to a 8× 8 patch of the original image. The darker region uses t0 = 0.75 and the lighter region uses
t0 = 0.5. Right overlays the map over the reference image. Middle shows generated images.

A100-80G GPU at the XL/2 model configuration, with an input image of size 256×256 and training
batch size 256. The GFlops are calculated by DeepSpeed (Rasley et al., 2020).

From Tab. 5 we can see that compared with DiT and SiT, our model has a smaller number of
parameters as we use a smaller timestep embedding module (see Appendix A.3). Therefore, our GPU
memory cost during training is slightly smaller than SiT. On the other hand, for the conditioning
by class label and timestep implemented as a modulation operator (see Fig. 3 of the DiT paper for
illustration (Peebles & Xie, 2023)), our conditioning is a tensor of the same shape as the image
tensor, in contrast to DiT/SiT’s conditioning by a vector only of the channel size of the image tensor;
to produce the conditioning tensor involves more computation than the conditioning vector, so our
model leads to more flops and slightly increased training cost per step. Nevertheless, the production
of the conditioning tensor is a standard MLP feature transformation and fits nicely into GPU parallel
computation, so the inference speed is not sacrificed in comparison with DiT/SiT.

A.8 MORE RESULTS

Fig. 13 shows another example of image generation where we use varying degrees of data preservation
across both spatial dimensions (the four quadrants) and feature channel dimensions. In particular,
we assign spatial preservation weights according to the left column in the figure, and additionally
assign 0.5 to the specified channel index C and 0 to other channels, as shown in the middle four
columns. Interestingly, we see that the different channels of the stable-diffusion VAE latent space
(Rombach et al., 2022) have very different content. For C = 0 the first channel, the generated results
mostly preserve the spatial structures of the reference images, and the color cues are largely lost.
From C = 1 to C = 3, the generated results increasingly preserve the color cues of the reference
images but lose more of the structures. The findings suggest that earlier channels of the VAE latent
space emphasize on structures and later ones on image-level color distributions.
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Category Method FPD↓ COV↓ MMD↓

chair
StructureNet 4.67 0.89 0.58

StructRe 2.63 0.70 0.65
Ours 4.04 0.86 0.68

table
StructureNet 6.07 1.43 0.55

StructRe 1.98 0.66 0.53
Ours 3.43 1.20 0.72

Table 6: Comparison on structured 3D shape generation. Our results are comparable to the
baselines that additionally use the hierarchies of shape parts to constrain generations. Best scores are
marked in bold and underlined; second best scores in bold.

Figure 15: A different scheme of batch mixing for training image generative model. Plots include
our baseline model (ComboStoc) and the new batch mixing model (ComboStoc-TB), as well as DiT
and SiT for reference; all models are of the scale XL/2 Ma et al. (2024).

Fig. 14 shows an example of using a manually specified mask with graded preservation weights to
achieve controlled generation of images. We have assigned a stronger weight (t0 = 0.75) to the face
of the red panda, and a lighter weight (t0 = 0.5) to the region around, and let the model generate
variations freely at the other regions. As expected, the generated images show different bodies for the
same red panda face, with smooth transitions around the face regions.

Tab. 6 gives the comparison between our structured 3D shape generation model and two baselines,
i.e., StructRe (Wang et al., 2023) and StructureNet (Mo et al., 2019a), in terms of FPD, COV and
MMD. Shapes in PartNet are labeled into semantic parts that are organized into trees, i.e., coarse parts
can be decomposed into fine parts by following the tree. Exploiting this hierarchical data, the two
baselines expand coarse parts into fine parts progressively, which helps constrain the generated shapes
toward better regularity. In comparison, our network does not use this hierarchical information and
directly generates the leaf level parts. Nevertheless, the results by unsync_all show performances
within the baseline results. Visually, we find our results generally show stronger diversity than the
shapes by Wang et al. (2023) and Mo et al. (2019a). Finally, it is an interesting topic to study how
to combine the approaches of hierarchical generation and diffusion generative models, which have
differing advantages in aspects of structure regularity and diversity.

Fig. 15 shows results from preliminary tests on a different scheme of batch mixing for image
generative model training (Sec. 4). For training this model named ComboStoc-TB, we simply blend
the asynchronous time steps and the synchronized ones for a whole batch. In addition, we try to
align the time step embedding module with the baseline SiT by setting CC = CH (Fig. 12). The two
modifications combined lead to even larger improvements over baselines. Indeed, ComboStoc-TB
speeds up the convergence of SiT by ≈ 1.75×. We plan to investigate these modifications thoroughly
in the future.
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Figs. 16 to 31 show more results generated by ComboStoc models for both structured 3D shapes and
images.

A.9 BROADER IMPACT

In this paper we have presented ComboStoc which improves and extends baseline diffusion generative
models, across tasks of image generation and structured 3D shape generation. Image generation
can be misused potentially, although our model as well as the baseline model uses very coarse level
class name conditioning that prevents highly targeted applications. Structured 3D shapes are mostly
furniture like daily objects, so their generation is unlikely to be misused. In terms of methodology, we
have advocated the importance of sampling the combinatorial flexibility for both model performance
and new applications. The combinatorial complexity of high-dimensional and multiple-attribute data
samples can be further explored theoretically based on our work, for example from the perspective of
ergodicity (Walters, 2000) as emphasized by our dense sampling of all possible interpolation points.
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Figure 16: Class-conditioned structured 3D shapes generated by ComboStoc . Class label is chair.
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Figure 17: Class-conditioned structured 3D shapes generated by ComboStoc . Class label is bed.
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Figure 18: Class-conditioned structured 3D shapes generated by ComboStoc . Class label is table.
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Figure 19: 256× 256 samples of ComboStoc-XL/2 800K. Classifier-free guidance scale = 4.0. Class
label = “promontory, headland, head, foreland” (976).
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Figure 20: 256× 256 samples of ComboStoc-XL/2 800K. Classifier-free guidance scale = 4.0. Class
label = “lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens” (387).
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Figure 21: 256× 256 samples of ComboStoc-XL/2 800K. Classifier-free guidance scale = 4.0. Class
label = “geyser” (974).
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Figure 22: 256× 256 samples of ComboStoc-XL/2 800K. Classifier-free guidance scale = 4.0. Class
label = “giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca” (388).
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Figure 23: 256× 256 samples of ComboStoc-XL/2 800K. Classifier-free guidance scale = 4.0. Class
label = “alp” (970).

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 24: 256× 256 samples of ComboStoc-XL/2 800K. Classifier-free guidance scale = 4.0. Class
label = “Arctic fox, white fox, Alopex lagopus” (279).
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Figure 25: 256× 256 samples of ComboStoc-XL/2 800K. Classifier-free guidance scale = 4.0. Class
label = “volcano” (980).
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Figure 26: 256× 256 samples of ComboStoc-XL/2 800K. Classifier-free guidance scale = 4.0. Class
label = “monarch, monarch butterfly, milkweed butterfly, Danaus plexippus” (323).
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Figure 27: 256× 256 samples of ComboStoc-XL/2 800K. Classifier-free guidance scale = 4.0. Class
label = “valley, vale” (979).
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Figure 28: 256× 256 samples of ComboStoc-XL/2 800K. Classifier-free guidance scale = 4.0. Class
label = “macaw” (88).
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Figure 29: 256× 256 samples of ComboStoc-XL/2 800K. Classifier-free guidance scale = 4.0. Class
label = “snail” (113).
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Figure 30: 256× 256 samples of ComboStoc-XL/2 800K. Classifier-free guidance scale = 4.0. Class
label = “Eskimo dog, husky” (248).
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Figure 31: 256× 256 samples of ComboStoc-XL/2 800K. Classifier-free guidance scale = 4.0. Class
label = “Siamese cat, Siamese” (284).
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