
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Subjective-Aligned Dataset and Metric for Text-to-VideoQuality
Assessment

Supplementary Material
Anonymous Authors

7 SUPPLEMENTARY
In Sec. 7.1, we provide more details on the establishment of T2VQA-
DB, including the design of the subjective study and detailed dataset
analysis. In Sec. 7.2, we present more results of T2VQA predictions
on T2VQA-DB. The results provide a more comprehensive demon-
stration of the performance of T2VQA, validating its effectiveness.

7.1 Establishment of T2VQA-DB
In T2VQA-DB, we collect 10,000 videos generated by 9 different
Text-to-Video (T2V) models, including Text2Video-Zero [7], Ani-
mateDiff [3], Tune-a-video [13], VidRD [2] VideoFusion [10], Mod-
elScope [11], LVDM [4], Show-1 [14], and LaVie [12]. We also
conduct a subjective study to obtain Mean Opinion Scores (MOS)
of each video’s overall perceptual quality. Here we introduce the
details of the establishment of T2VQA-DB.

7.1.1 Details in Subjective Study. In the subjective study, we invite
27 subjects to score the overall quality of the videos. They are in-
structed to mainly consider the video quality from two perspectives,
in terms of text-video alignment and video fidelity, and then give
an overall score to each video. The study is divided into training
and testing sessions. The training session helps the subjects to have
a general understanding of the scoring standard. We provide 5
example videos with quality from bad to excellent. In the testing
session, the subjects score the video using a slider with a range
of 0 to 100 and a granularity of 1. We divide the scores into the
five ITU-standard [6] grades, i.e.bad, poor, fair, good, and excellent,

increasing one grade every 20 points. We first show the prompt to
let the subjects get familiar with the description, and then the video
is played. The subjects give the score after the video is fully played.

After scoring, we conduct quality control to guarantee the relia-
bility of each subject’s scores. We split the dataset into 10 groups,
with each group 1,000 videos. In each group, we randomly select
50 videos. We calculate Spearman’s Rank-Order Correlation Coeffi-
cient (SROCC) between each subject’s scores and the mean scores
of the videos. If the SROCC is lower than 0.6, the subject is required
to re-score this group. If the second scoring is still unqualified, the
score of this group will be rejected. After the quality control, we
consider the remaining scores to be authentic and valid.

7.1.2 Common quality issues. Here we discuss some common fac-
tors that lead to video quality degradation. Distortions like noises,
blurriness, and high contrast certainly cause quality degradation,
as they do in general Video Quality Assessment (VQA) tasks. We do
not explain these general distortions in detail here. In the meantime,
there are other issues that target text-generated videos. Low con-
sistency between frames is one of them. It refers to the subject or
the whole video scene changing greatly between frames, causing a
negative effect on the viewer’s quality of experience. Fig. 8a shows
an example of a video suffering from low consistency. Though each
frame of the video matches the prompt’s description and has high
fidelity, the waterfall and other objects in the scene change in every
frame, making the video look chaotic.

Besides, some models may generate videos with irrational parts,
which refers to scenes that do not conform to the principles of

(a) Prompt: Waterfalls in the forest that are clean and famously beautiful in
Thailand.

(b) Prompt: Lonely sick dog with sad eyes locked in captivity, unhappy animal
at pet shelter.

(c) Prompt: Fish koi carp red, yellow, white, and black float in closed water in
the room during the day. Left two girls in the reflection of the water look in the
water and take pictures.

(d) Prompt: A male doctor with a mobile phone opens and touches the hologram
active ingredient of medicine.

Figure 8: (a): Video example suffers from low consistency. (b): Video example has an irrational problem. (c): Video example has
too complicated prompt. (d): Video example has too abstract prompt. The text prompts are listed in the subtitles.
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(a) Prompt: Abstract background with animation moving vertex of polygonal
surface. Animation of seamless loop. Type: Abstract.

(b) Prompt: Autumn yellow leaves of trees swaying in the wind. Type: Nature.

(c) Prompt: Close-up view of fresh vegetables on the kitchen table. Type: Object. (d) Prompt: Young woman looking at smartphone as the breeze blows her hair.
Type: Human.

(e) Prompt: Time lapse of golden sunrise over the modern city skyline. Type:
Artificial.

(f) Prompt: Beautiful golden Labrador dog wagging his tail and smiling. Type:
Animal.

Figure 9: Video examples from T2VQA-DB. The text prompts and types are listed in the subtitles.

(a) Prompt: A young, pretty girl with blond hair, lying on the couch and inputting
some data from her card into a tablet. MOS: 49.7.

(b) Prompt: Beautiful young girl with glasses, working late at night in office in
front of a monitor. MOS: 28.3.

Figure 10: Video examples generated by human-type prompts. The text prompts and MOSs are listed in the subtitles.

real physics. Fig 8b shows an example of a dog locked up in a cage.
Though the model generates the dog’s head and its facial expression
well, the dog’s head goes through the iron bars, making the video
look strange.

Other issues are related to the choice of prompts. If the prompt
describes a highly complicated scene, it will be not easy for the
models to generate a video strictly matching the description. As
shown in Fig. 8c, The prompt describes a scene where two girls
taking pictures in the reflection of the water, but the model fails to
generate the girls. Another condition is that the prompt describes
an unrealistic, or highly fictional scene, which makes the model
difficult to understand. The prompt in Fig. 8d requires the model to

generate a hologram from the phone, which is a fictional technology.
As a result, the model fails to generate the video as required.

7.1.3 Analysis on types. After gaining the MOSs of the videos, we
conduct a thorough analysis of the dataset. According to the subject
in the prompts’ description, we categorize the prompts into nature,
artificial, human, animal, object, abstract, and others. Fig. 9 shows
video examples from 6 main types. As discussed in the main paper,
human-type prompts have the worst performance. For some T2V
models, it is difficult for the models to generate the detailed human
body structure, such as fingers and facial features. In Fig. 10a, there
are multiple fingers generated, while in Fig. 10b, the facial details
of the girl are blurry. Both lead to a relatively low score.
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Figure 11: Left: Average scores of different prompt lengths on different prompt types. Right: Models Performance on different
prompt lengths.

7.1.4 Analysis on prompt length. We also analyze the lengths of
the prompts. The lengths range from 1 to 36 words. We divide the
prompts into three groups according to length, with the first group
being less than 12 words, the second group being more than 12 and
less than 24, and the third more than 24. The partition results in
6130 prompts in the first group, 3060 in the second, and 810 in the
third. We analyze the effect of prompt length on different types
and models. The results are shown in Fig. 11. Generally, prompts
with shorter lengths have a better performance. For different types,
the abstract type is the most sensitive to length. The object and
others have slightly worse performance on long-length prompts.
For different models, the impact of prompt length is not obvious,
but there is still a trend of performance decreasing with length.

7.2 More Results of T2VQA
Here we present more results of T2VQA predictions on T2VQA-DB
in Fig 12, 13, and 14. We randomly choose 3 prompts and present
the 10 videos generated by different T2V models using the same
prompt. The MOSs and predictions from T2VQA are listed in the
subtitles. The results indicate that T2VQA is able to give relatively
accurate predictions, validating its effectiveness.

7.3 Limitations and Future Work
We investigate the limitations in the proposed T2VQA-DB and
T2VQA. models like Sora [1] have achieved stunning results with
1080P, 60s high-fidelity videos. Other current T2V models are not
capable of generating such high-fidelity videos. We will expand
our dataset with Sora generated videos in future work. For T2VQA,

since the other existing T2V datasets [5, 8, 9] do not release their
subjective scores, we will conduct the cross-dataset validation to
validate the generalization of T2VQA over other T2V datasets in
future work.
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Figure 12: Prompt: Aerial view of an old castle, two towers, and forest around.
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Figure 13: Prompt: Summer in the mountains. mammal species European roe deer (capreolus). a female grazing grass on the
mountain meadow.

(a) T2V-Zero [7]. MOS: 46.4. T2VQA: 42.9. (b) AnimateDiff [3]. MOS: 39.6. T2VQA: 35.2.

(c) Tune-a-video(1) [13]. MOS: 39.6. T2VQA: 33.9. (d) VidRD [2]. MOS:58.4. T2VQA: 56.1.

(e) VideoFusion [10]. MOS:34.5. T2VQA: 32.7. (f) ModelScope [11]. MOS:54.1. T2VQA: 40.3.

(g) LVDM [4]. MOS: 57.6. T2VQA: 52.2. (h) Show-1 [14]. MOS: 51.5. T2VQA: 50.9.

(i) Tune-a-video(2) [13]. MOS: 37.9. T2VQA: 35.5. (j) LaVie [12]. MOS: 78.2. T2VQA: 64.6.
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Figure 14: Prompt: Light bulb animation on brown background.

(a) T2V-Zero [7]. MOS: 90.1. T2VQA: 72.1. (b) AnimateDiff [3]. MOS: 71.6. T2VQA: 65.9.

(c) Tune-a-video(1) [13]. MOS: 44.6. T2VQA: 44.5. (d) VidRD [2]. MOS: 62.3. T2VQA: 63.6.

(e) VideoFusion [10]. MOS: 48.4. T2VQA: 46.7. (f) ModelScope [11]. MOS: 67.8. T2VQA: 65.2.

(g) LVDM [4]. MOS: 41.9. T2VQA: 35.5. (h) Show-1 [14]. MOS: 79.0. T2VQA: 64.9.

(i) Tune-a-video(2) [13]. MOS: 58.6. T2VQA: 56.0. (j) LaVie [12]. MOS: 82.7. T2VQA: 76.8.
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