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ABSTRACT

We study the design of efficient online learning algorithms tolerant to adversarially
corrupted rewards. In particular, we study settings where an online algorithm
makes a prediction at each time step, and receives a stochastic reward from the
environment that can be arbitrarily corrupted with probability ε ∈ [0, 1

2 ). Here
ε is the noise rate the characterizes the strength of the adversary. As is standard
in online learning, we study the design of algorithms with small regret over a
period of time steps. However, while the algorithm observes corrupted rewards,
we require its regret to be small with respect to the true uncorrupted reward
distribution. We build upon recent advances in robust estimation for unsupervised
learning problems to design robust online algorithms with near optimal regret in
three different scenarios: stochastic multi-armed bandits, linear contextual bandits,
and Markov Decision Processes (MDPs) with stochastic rewards and transitions.
Finally, we provide empirical evidence regarding the robustness of our proposed
algorithms on synthetic and real datasets.

1 INTRODUCTION

The study of online learning algorithms has a rich and extensive history (Slivkins, 2019). An online
learning algorithm makes a sequence of predictions, one per time step and receives reward. The
predictions could involve picking an expert from a given set of experts, or picking an action from a set
of available actions as in reinforcement learning settings. The goal of the algorithm is to maximize
the long term reward resulting from the sequence of predictions made. The performance of such
an algorithm is measured in terms of the regret, i.e., the difference in the total reward accumulated
by the algorithm and the total reward accumulated by the best expert/action/policy in hindsight.
Various online learning models have been studied in the literature depending on whether the rewards
are generated i.i.d. from some distribution (Gittins, 1979; Thompson, 1933) or are arbitrary (Auer
et al., 2001), and whether the reward for all actions is observed at each time step (full information
setting) (Littlestone & Warmuth, 1994) vs. observing only the reward of the chosen action (bandit
setting) (Auer et al., 2002; 2001).

In this work, we initiate the study of online learning algorithms with adversarial reward corruptions.
Specifically, we focus on the case where the generated rewards are infrequently masked by an
adversary and replaced with potentially unbounded corruptions. In doing so, we develop safeguards
that minimize the impact of such corruptions on control algorithms operating in an online setting. For
example, consider a reinforcement learning agent that interacts with the real world environment to
learn a near optimal policy mapping states to actions. For a given state-action pair (s, a) while the true
reward distribution may be stochastic, the observed reward associated with (s, a) will have inherent
errors due to real world constraints. We would still like to have online learning algorithms that are
robust to these errors and have small regret when compared to the true reward distribution. These
considerations are important in many applications such as routing, dynamic pricing, autonomous
driving and algorithmic trading. For example, a classic problem in routing involves choosing the best
route in the presence of noise in the ETA estimation for any given route. Similarly, dynamic pricing
algorithms need to be robust to adversarial spikes in demand that may lead to unwanted price surges.

To formally study the above scenarios, we consider an online algorithm that proceeds sequentially,
where in each step it makes a prediction and receives a reward. With probability ε the observed
reward is adversarially corrupted. More specifically, we take inspiration from Huber’s contamination
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model that has been successfully applied to study various robust estimation problems in unsupervised
learning (Huber, 2011; Tukey, 1975; Chen et al., 2018; Lai et al., 2016; Diakonikolas et al., 2019a).
Assuming that P is the true distribution of the rewards, in our model the reward at each step is
generated from (1 − ε)P + εQ where Q is an arbitrary distribution. Here ε < 1

2 is the noise rate.
Under this model we design online algorithms with near optimal regret, scaling with ε, for three
important cases: 1) multi-armed stochastic bandits, 2) linear contextual bandits, and 3) learning in
finite state MDPs with stochastic rewards.

Overview of results. We first consider the setting of stochastic multi-armed bandits. In this scenario
there are k arms numbered 1, 2, . . . k. In the standard multi-armed bandit model, at each time step,
the algorithm can pull arm i and get a real valued reward ri generated from a normal distribution with
mean µi and variance σ2.1 We let i∗ represents the best arm, that is, µi∗ ≥ µi, ∀i. In the ε-corrupted
model we assume that the reward for pulling arm i at time t is r̃ti ∼ (1− ε)N (µi, σ

2) + εQt, where
Qt is an arbitrary distribution chosen by an adversary. We assume that the adversary has complete
knowledge of the sequence of predictions and rewards up to time t − 1 as well as the true mean
rewards and any internal state of the algorithm. Over T time steps, the pseudo-regret of an algorithm
A that pulls arms (i1, i2, . . . , iT ) is defined as

RegA = µi∗ · T − E[

T∑
t=1

rit ]. (1)

Notice that while the adversary masks the true rewards with the corrupted ones, we still measure
the overall performance with respect to the true reward distribution. While this setting has been
studied in recent works (Lykouris et al., 2018; Gupta et al., 2019; Kapoor et al., 2019) they either
assume corruptions of bounded magnitude, or provide sub-optimal performance guarantees (see the
discussion in Section A). In particular, we provide the following near-optimal regret guarantee based
on a robust implementation of the UCB algorithm (Auer et al., 2002).
Theorem 1 (Informal Theorem). For the ε adversarially corrupted stochastic multi armed bandit
problem, there is an efficient robust online algorithm that achieves a pseudo regret bounded by
Õ(σ
√
kT ) +O(σεT ).

The first term in the above bound is the optimal worst case regret bound achievable for the standard
stochastic multi armed bandit setting (Auer et al., 2002). The second term denotes the additional
regret incurred due to the corruptions. Furthermore, the work of Kapoor et al. (2019) showed that
additional σεT penalty is unavoidable in the worst case, thereby making the above guarantee optimal
up to a constant factor. Furthermore, as in the case of stochastic bandits with no corruptions, we can
also obtain instance wise guarantees where the first term above depends on logarithmically in T and
on an instance dependent quantity that captures how fare off are the arms as compared to the best one.
See Appendix B for details.

Next we consider the case of contextual stochastic bandits. We study adversarially corrupted linear
contextual bandits. In the standard setting of linear contextual bandits (Li et al., 2010) there are k
arms with k associated (unknown) mean vectors µ∗1, . . . , µ

∗
k ∈ Rd. At time t, the online algorithm

sees k context vectors xt1, . . . x
t
k ∈ Rd, one per arm. If the algorithm pulls arm i then the reward is

generated from the distribution N (µ∗i · xti, σ2). In the corrupted setting, we allow at certain time
steps, the rewards to be corrupted by an adversary. In particular, we assume that the context vectors
are drawn i.i.d. from N (0, I). Given the true context xti, as in the stochastic bandits setting we let
the observed reward be generated from rti ∼ (1− ε)N (µ∗i · xti, σ2) + εQt where Qt is an arbitrary
distribution. Given a sequence of arm pulls (i1, . . . , iT ) we define the pseudo-regret of an algorithm
as

RegA =

T∑
t=1

E[max
i
µ∗i · xti]− E[

T∑
t=1

rit ]. (2)

In the above definition, the expectation is again taken over the distribution of contexts, the stochastic
rewards and the internal randomness of the algorithm. For this case we provide the following near
optimal regret guarantee

1For simplicity we assume that the variance for each arm distribution is the same. Our results can also be
easily extended to handle different variance and also handle the more standard setting where the true rewards are
bounded in [0, 1].
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Theorem 2 (Informal Theorem). For the ε adversarially corrupted linear contextual multi armed
bandit problem, there is an efficient robust online algorithm that achieves a pseudo regret bounded by
Õ(σd

√
dk log(T )

√
T ) +O(σε

√
d log(1/ε)T ).

As in the case of stochastic bandits, the first term is simply the regret bound for the standard linear
contextual bandits problem achieved by the LinUCB algorithm (Chu et al., 2011). The second term is
the additional penalty due to the corruptions and is off from the lower bound of ε

√
dT by a log(1/ε)

factor. Theorem 2 is proved in Appendix C

Finally, we consider the most general setting of learning in Markov Decision Processes (MDPs)
under corruptions. We consider a Markov Decision Process (MDP) with state space S, action space
A and transition probabilities specified by P . If an action a ∈ A is taken from state s ∈ S, then the
next state distribution is specified as p(s′|s, a). Moreover a stochastic reward rs,a is received where
rs,a ∼ N(µs,a, σ

2). The parameters µs,a and the transition probabilities are unknown to the learning
agent. We assume that the agent start in a fixed state s1 ∈ S and given a policy π : S→ A, follows
the trajectory (s1, π(s1)), (s2, π(s2)), . . . , (sT , π(sT )). The total reward accumulated over T time
steps equals

Rπ =

T∑
t=1

rst,π(st). (3)

Let π∗ be the optimal policy defined as π∗ = arg maxπ E[Rπ]. Here the expectation is taken over
the randomness in the state transitions, the stochastic rewards and the randomness in the policy π
itself. Given any other policy π we define the pseudo-regret of π to be

Regπ = E[Rπ∗ ]− E[Rπ]. (4)

In the above setting, the UCRL2 algorithm (Auer et al., 2009) achieves a regret of Õ(D|S|
√
|A|T )

where D is the diameter of the MDP. This is almost tight as there is a matching lower bound of
Ω(
√
D|S||A|T ).

We extend the above basic model with adversarial reward corruptions. In particular, we assume that
at each time step t, given a state action pair (st, at), the reward r̃st,at observed by the agent is drawn
from (1− ε)N(µst,at , σ

2) + εQt. Here ε is the noise rate and Qt is an arbitrary distribution chosen
by an adversary. Furthermore, we will assume that the adversary can choose Qt using complete
knowledge of the full history of the learning algorithm up to time t. Furthermore, by taking action
a from state s at time t, the observed transition is generated from the corrupted transition matrix
described as (1− ε)p(s′|s, a) + εq′t(s

′|s, a), where again q′t is an arbitrary distribution chosen by an
adversary. Our goal in this setting would be to aim for a regret guarantee of Õ(D|S|

√
|A|T )+O(ε·T ).

As in the previous two applications, we are interested in designing policies with low regret with
respect to the observations from true MDP. For this case we provide the following near optimal
guarantee.
Theorem 3 (Informal Theorem). For the ε-adversarially corrupted MDP model as described above,
there is an there is an efficient robust online algorithm A that achieves a pseudo regret bounded by

RegA = O(σD|S|
√
|A|T log(|S||A|T ) +O(σεT ).

The first term corresponds to the regret achieved by the UCRL2 algorithm (Auer et al., 2009) for
the standard MDP setting. The second term is the additional penalty due to corruptions and is again
unavoidable in the worst case.

Techniques. Our work combines classical no-regret learning algorithms with recent advances
in designing robust algorithms for problems in unsupervised learning. For the case of stochastic
multi-armed bandits we modify the standard UCB algorithm (Auer et al., 2002). The UCB algorithm
works by maintaining optimistic estimates for the true mean reward of each arm. These optimistic
estimates are obtained by using confidence intervals build around the average observed rewards.
However, in the presence of adversarial corruptions, these estimates could be arbitrarily bad as we
demonstrate in Lemma 1. Instead, we build confidence intervals around the median that is known
to be robust to corruptions in Huber’s model (Lai et al., 2016; Diakonikolas et al., 2018a). For the
case of linear contextual bandits we modify the popular LinUCB algorithm. The LinUCB algorithm
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works by maintaining uncertainty estimates around the true mean vectors and picking arms according
to these estimates. These estimates are built by solving a least squares problem at each time step.
Under adversarial corruptions one would like to build these estimates in a robust manner. However,
a straightforward extension of the stochastic bandits case leads to a suboptimal additive penalty
of O(εdT ). Instead, we build upon the recent work of Diakonikolas et al. (2019b) for robust high
dimensional linear regression to build better uncertainty estimates resulting in the near optimal penalty
of ε
√
d log( 1

ε )T .

For the case of learning in MDPs, we first consider MDPs with deterministic transition and adver-
sarially corrupted. Here we show that an extension of a UCB style exploration scheme achieves an
optimal penalty of O(εT ) by maintaining robust optimistic estimates of rewards at each state-action
pair. We then extend this to the more general case where we modify the UCRL2 algorithm (Auer
et al., 2009) by maintaining robust estimates of the estimated rewards and transition probabilities.

2 STOCHASTIC BANDITS

In this section we consider the setting of stochastic multi armed bandits. Here one has k arms. In
each time step, a learning algorithm can pull arm i and observe a reward ri distributed as N(µi, σ

2).
Let i∗ be the arm with the highest expected reward. Then over T time steps, the pseudo-regret of an
algorithm A that pulls arms (i1, i2, . . . , iT ) is defined as

RegA = µi∗ · T − E[

T∑
t=1

rit ]. (5)

There are many algorithms the near-optimal regret of Õ(σ
√
kT ) in this setting. The most popular

among them is the UCB algorithm (Auer et al., 2002; Slivkins, 2019). When the rewards are in [0, 1],
the UCB algorithm works by maintaining optimistic estimates of the average reward seen for each
arm. Specifically, the estimate γi,t for arm i at time t is defined as

γi,t = µ̂i,t + 4σ

√
log kT

ni,t
. (6)

Here µ̂i,t is the average reward observed for arm i till time step t, and ni,t is the number of times
arm i has been pulled up to and including time step t. The UCB algorithm starts by pulling each arm
once, and then at each time pulling the arm with the best current optimistic estimate as defined in (6).

UCB can be arbitrarily bad under adversarial corruptions. We now consider the adversarial
model as defined in Section 1 where the ε-corrupted rewards r̃i are observed each time. In this case it
is easy to see that the regret of the UCB algorithm can be arbitrarily bad. This is formalized in the
lemma below.

Lemma 1. For any c > 0 and ε ∈ ( 1
10 , 1), there exists a stochastic multi armed bandit setting and

an adversary such that the pseudo-regret of the UCB algorithm is at least c · T .

We next show a simple modification of the UCB algorithm that will achieve a near optimal regret of
Õ(σ
√
kT ) +O(σε · T ). The algorithm maintains the following optimistic estimates

γi,t = µ̃i,t + 4σ

√
log(kTµmax)

ni,t
. (7)

Here, µmax is an upper bound on the mean rewards, and µ̃i,t is defined to be the median reward
obtained for arm i so far. The robust algorithm is sketched in Figure 1. For the robust UCB algorithm
we have the following guarantee.

Theorem 4. Under the adversarially corrupted stochastic bandits model the algorithm in Figure 1
achieves a pseudo-regret of Õ(σ

√
kT ) +O(σεT ).

Proof. Is it known that the median is a more robust estimate than the mean. In particular, the result
of Lai et al. (2016) implies that with probability at least 1− 1

µmaxT 4 , for each arm i, and each time
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Input: The k arms, reward variance σ2.
1. Play each arm once and update the estimates as in (7).
2. For each subsequent time step t, pick the arm it with the highest estimate as defined in (7).

Play arm it and update the estimates.

Figure 1: A robust UCB algorithm.

step t ≤ T , it will hold that

|µ̃i,t − µi| ≤ O(σ · ε) + 2σ

√
log(kTµmax)

ni,t
. (8)

Conditioned on the above good event we have that for each time step t and each arm i

µi −O(σ · ε) ≤ γi,t ≤ µi +O(σ · ε) + 6σ

√
log(kTµmax)

ni,t
. (9)

Next, consider an arm i that is pulled ni,ti times in total, where ti is the last time step when it is
pulled. Then at time t it must hold that

µi +O(σ · ε) + 6σ

√
log(kTµmax)

ni,ti
≥ γi,ti ≥ γi∗,ti (10)

= µi∗ −O(σ · ε) (11)

⇒ O(σ · ε) +O

(
σ

√
log(kTµmax)

ni,ti

)
≥ µi∗ − µi. (12)

Hence, conditioned on the good event, the total regret accumulated by playing arm i is

ni,ti (µi∗ − µi) ≤ O(σ · ε)ni,ti +O

(
σ
√

log(kTµmax)ni,ti

)
.

Using the fact that
∑
i ni,ti ≤ T with Jensen’s inequality and that the good event happens with proba-

bility at least 1− 1
µmaxT 4 , we get that the total pseudo-regret is bounded byO(σ

√
kT log(kTµmax))+

O(σ · ε)T .

3 LEARNING IN MDPS

In this section we study the most general application of our model in learning MDPs under adversarial
corruptions. Recall from Section 1 that we consider a Markov Decision Process (MDP) with state
space S, action space A and transition probabilities specified by P . If an action a ∈ A is taken from
state s ∈ S, then the next state distribution is specified as p(s′|s, a). Moreover a stochastic reward rs,a
is received where rs,a ∼ N(µs,a, σ

2). We will consider a scenario where at each time step, both the
reward distribution and the transition matrix is corrupted with an ε probability. We study two settings,
one concerning MDPs with deterministic transitions (hence only corrupted rewards) followed by the
case of more general MDPs. Due to space constraints we discuss the case of deterministic MDPs in
Appendix D.

Handling General MDPs To design efficient algorithms for general MDPs. as before we will
maintain robust estimates of the rewards and the transition probabilities and use these to guide the
search for a near optimal policy. Our proposed algorithm is reminiscent of the UCRL2 algorithm (Auer
et al., 2009) and is sketched in the algorithm in Figure 2. For the general case we have the following
guarantee. The proof can be found in Appendix E.
Theorem 5. The algorithm from Figure 2 achieves a pseudo regret bounded by

RegA = O(σD|S|
√
|A|T log(|S||A|Tµmax) +O(σεT ).

Here µmax is the maximum mean reward of any state action pair in the MDP.
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Input: The state space S, action space A, reward variance σ2.
1. Play each (s, a) ∈ S×A once and update the estimates as in (20).
2. For episodes h = 1, 2, . . . do:

• Set start time of episode h to be the current time t.
• For each (s, a) set vh(s, a) = 0.
• For each (s, a) compute the previous count Nh(s, a) =

∑
τ<t 1(sτ = a, aτ = a).

• For each s, s′, a compute p̂h(s′|s, a) using estimates up to time t.
• For each s, a compute r̂h(s, a) robustly using estimates up to time t.
• Let Mh be the set of all MDPs that whose reward distribution r̃, and transition proba-

bilities p̃ satisfy

|r̃(s, a)− r̂h(s, a)| ≤ 20σ

√
log(|S||A|Tµmax)

Nh(s, a)
(13)

‖p̃(.|s, a)− p̂h(.|s, a)‖1 ≤ 20σ

√
|S| log(A|Tµmax)

Nh(s, a)
. (14)

• Find the best policy πh that lies in Mh.
• While vh(st, πh(at)) < Nh(st, πh(at))

– choose action at according to πh and update the corresponding vh values. Set
t = t+ 1.

Figure 2: A robust algorithm for general MDPs.

4 EXPERIMENTS

We empirically validate the robustness of our algorithms to adversarial corruptions. In Section 4.1,
we use a real world routing task to benchmark the performance of the robust UCB in Figure 1 when
compared to the standard UCB algorithm. Similarly, for the MDP setting, in Section 4.2 we consider
routing on randomly generated graphs to compare the performance of the robust UCRL2 in Figure
2 with that of UCRL2. By varying the levels of corruption in the reward structure, we find in both
these settings that the learned policies and the regret incurred are far more resilient under our robust
algorithms.

In our experiments, we consider two modes of adversarial corruptions:

• weak adversary that corrupts rewards with U [0, δ] for all actions, and
• strong adversary that corrupts rewards with U [−δ, 0] for the optimal actions and with U [0, δ]

for others.

Here U [0, δ] denotes the uniform distribution in [0, δ]. Note that a weak adversary shrinks the mean
rewards for all actions towards δ/2; this makes the learning harder but otherwise preserves the ranking
of actions. A strong adversary on the other hand enhances bad actions and minimizes good ones,
hence obfuscating the ranking of actions. For each of these modes, we vary the adversary’s strength
via probability and magnitude of the corruptions ε and δ, respectively.

4.1 ROAD TRAFFIC ROUTING

We illustrate the robustness of algorithms introduced in Section 2. We consider a routing application,
where an agent needs to select one of many alternative routes between two locations. We use the
road network and link travel times from the New York City Taxi dataset (Donovan & Work, 2017),
which contains hourly average travel times on road segments across New York City. We focus on
Manhattan for which dense data is available. We first sample N origin-destination pairs and then K
alternative routes for each pair. Note that here routes correspond to arms. The competing routes here
are computed using a standard algorithm that utilizes a bidirectional Dijkstra search and filters paths
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(a) Regret vs step for weak
adversary (ε = 0.3, δ =
104).

(b) Regret vs step for
strong adversary (ε = 0.1,
δ = 104).

(c) Regret vs ε for weak ad-
versary (δ = 104, step=
105).

(d) Regret vs ε for strong
adversary (δ = 104, step=
105).

Figure 3: Comparison of vanilla and robust versions of the UCB algorithm.

for diversity and near-optimality. The distribution of costs for each action is given by observing the
costs of the corresponding path in the historical data on every weekday at 9am.

In our experiments, for N = 200 origin-destination pairs we considered K ∈ [4, 6] alternative routes.
For each source-destination pair, we form a stochastic bandit problem with the corresponding routes
as available arms. We report the average performance across all bandit problems involving multiple
source-destination pairs. We study for each adversary mode the effect of corruption probability
ε = 0, 0.1, . . . , 0.4 and magnitude δ ∈ [10, 10000] on the regret of UCB and its robust counterpart.
Figure 3a shows a representative curve of the per step regret as a function of the step count for a weak
adversary. Observe the significant improvement offered by robust UCB at each time step. Under a
strong adversary, the performance deteriorates for both algorithms, but the robust variant is more
resilient. For example, Figure 3b shows one such setting where UCB fails to learn while the robust
version learns and the regret asymptotes. Finally, as expected, this pattern continues to hold for both
adversary modes for a range of ε and δ; see Figures 3c and 3d.

4.2 LEARNING SHORTEST PATHS ON GRAPHS

We next illustrate the robustness of algorithms introduced in Section 3 here. We consider the problem
of learning shortest paths on a road network. We cast this problem as an MDP whose reward and
transition structure must be learned while minimizing regret.

Figure 4: The Erdos-Renyi graph
for MDP experiments. The edge
thickness indicates its cost.

The road network is modeled as a graph G = (V,E) whose
nodes V represent locations and the edges E the links con-
necting them. The edge costs correspond to the link commute
times. Given a destination t ∈ V while standing at a location
s ∈ V , an agent wishes to use that link e = (s, s′) ∈ E which
minimizes its overall commute time from s to t. That is, e
must lie on the shortest path from s to t. We cast this as an
MDP with the state (s, t) ∈ S = V × V and the action space
A = {1, . . . , A}, where A = maxv∈V Outdegree(v). In state
(s, t), the first Outdegree(s) actions correspond to taking an
edge (s, s′), which changes the state to (s′, t); the remaining
actions are invalid and preserve the state. Upon reaching the
destination in state (t, t), we choose the next destination t′ by
cycling through the nodes in a deterministic fashion and ran-
domly sampling a start node s′, leading to state (s′, t′). This
ensures that the states in S are connected and any trajectory
is infinitely long. Finally, the reward is structured as follows:
N(µG, σ

2) for optimal actions (e.g. staying on the shortest path), N(µB , σ
2) for suboptimal but

valid actions, and N(µH , σ
2) for invalid actions, where µG > µB > µH . Observe that this aligns the

agent’s objective of maximizing the cumulative reward with finding the shortest path on the original
graph G.

In our experiments, we use a 20-node Erdos-Renyi graph (Erdős & Rényi, 1960) with edge costs
sampled from {1, 2, 3} and a maximum outdegree of 10, as shown in Figure 4. Thus our MDP has
|S| = 400 states and A = 10 actions in each state, yielding 4000 state-action pairs that need to be
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(a) Regret vs ε for weak adversary
(δ = 10, step= 107).

(b) Regret vs δ for weak adversary
(ε = 0.1, step= 107).

(c) Regret vs ε for strong adver-
sary (δ = 10, step= 107).

(d) Regret vs δ for strong adver-
sary (ε = 0.1, step= 107).

(e) Regret vs step for weak adver-
sary (ε = 0.4, δ = 10).

(f) Delta from Optimal Policy vs
step for weak adversary (ε =
0.4, δ = 10).

Figure 5: Comparison of vanilla and robust versions of the UCRL2 algorithm.

assessed. For the random rewards, we set µG = 0, µB = −1, µH = −2 and σ = 1. Under each
adversary mode - weak and strong - the rewards are corrupted with probability ε = 0, 0.1, . . . , 0.4
and magnitudes δ ∈ [10, 10000]. For each setting, we employ two learning algorithms: the UCRL2
algorithm (Auer et al., 2009) and our robust adaptation in Figure 2. For a rigorous comparison, both
implementations share all code except that for computing the empirical reward estimates. For this, in
the robust version, the streaming median is estimated using a pool of 10,000 samples updated via
reservoir sampling (Vitter, 1985).

Our results indicate that the our algorithm is significantly more resilient to reward corruptions across
a wide range of corruption probabilities ε and magnitudes δ. Under a weak adversary, as Figure 5a
shows, increasing the frequency of corruption significantly deteriorates UCRL2 performance relative
to our robust counterpart. Even so, both algorithms learn near-optimal policies as indicated by the
regret values (per step regret near or greater than 1 = −µB indicates that learning failed). Increasing
the magnitude of corruption, however, completely breaks down the learning for vanilla UCRL2, while
the robust version is unaffected; see Figure 5b. Under a strong adversary, the performance of both
the algorithms deteriorates but the aforementioned trends continue to hold. UCRL2 fails to learn at
ε = 0.1, while our robust version has near-optimal performance (Figure 5c). As before though, our
robust version continues to learn well under high corruption magnitudes (Figure 5d). In general, we
see that that the regret of robust UCRL2 is better at nearly all time steps (Figure 5e). Further, the
number of states in which the prescribed action differs from the optimal one is fewer and drops faster
(Figure 5f).

5 CONCLUSIONS

In this work we initiated the study of robust algorithms for online learning settings. Several open
directions come out of our work. It would be interesting to design robust algorithms for linear
contextual bandits under more general distribution of context vectors. This would require new
algorithms for performing robust regression under more general co-variate distributions.

An important distinction between our proposed robust algorithms and the classical no-regret coun-
terparts is the amount of space usage. We need to store all the rewards (and contexts) observed up
to time t to compute good uncertainty estimates. It is an interesting open question to reduce this
gap. Finally, it would be interesting to study other scenarios in online learning under adversarial
corruptions.
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A RELATED WORK

Adversarial corruptions in the stochastic multi armed bandits setting have been studied recently in the
works of Lykouris et al. (2018); Gupta et al. (2019). However, these works restrict the corruptions to
be of a small magnitude, whereas we allow for unbounded magnitude corruptions. For corruptions of
bounded magnitude, these works achieve a gap dependent regret bound of

O(εT ) +O(log T )
∑
i 6=i∗

1

∆i
,

where ∆i = µi∗ − µi. We can obtain the same guarantee for the case of unbounded corruptions. The
recent work of Kapoor et al. (2019) studies adversarial corruptions in the stochastic multi armed
bandits with arbitrary magnitude corruptions but provides sub-optimal regret bounds. In particular,
the regret bound in Kapoor et al. (2019) has an additional factor of µ∗T .

Beyond the case of multi armed bandits, adversarial corruptions in structured domains such as MDPs
have seen limited study. A recent of Lykouris et al. (2019) studies in MDPs. However, the authors
assume that adversarial corruptions are bounded in magnitude. Furthermore, they study the episodic
setting and assume that an ε-fraction of the episodes can be corrupted by an adversary. In contrast,
if we convert our model into the episodic settings, then in each episode an ε fraction of the rewards
could be corrupted.

Finally, our work builds upon a long line of work in the unsupervised learning literature foe designing
robust algorithms in the Huber’s ε contamination model. The classical work of Tukey Tukey (1975)
proposed a robust estimator, now known as Tukey’s median, for robust mean estimation of Gaussian
data. The more recent work of Chen et al. (2018) showed that Tukey’s estimator is minimax optimal
and also proposed a minimax optimal estimator for robust covariance estimation. Recently, there
have been many exciting developments in designing robust estimators of mean and covariance
that are also computationally efficient. We discuss a few here. The works of Diakonikolas et al.
(2019a); Lai et al. (2016) were the first to propose polynomial time algorithms for robust mean and
covariance estimation of Gaussian data in Huber’s model, with dimension independent error bounds.
This was later extended to more general distributions and the list-decodable setting Charikar et al.
(2017); Steinhardt et al. (2017), optimal bounds for Gaussian data Diakonikolas et al. (2018a) and
the study of computational/statistical tradeoffs Diakonikolas et al. (2017); Hopkins & Li (2019)
and robust method-of-moments Kothari & Steurer (2018). There have also been works providing
better sample complexity bounds in the Huber model if the mean vector is sparse Balakrishnan
et al. (2017); Klivans et al. (2018). These works also study estimation in the spiked covariance
model under corruptions. More recent developments include a linear time estimator for robust mean
estimation Cheng et al. (2019a) and fast algorithms for robust covariance estimation Cheng et al.
(2019b). There are also recent works studying computationally efficient robust optimization of more
general objectives Diakonikolas et al. (2018b); Prasad et al. (2018). We would like to point out that
in these works (and several other recent works), the model of corruption is different than ours. In
particular, rather than assuming that the data contains a few outliers (Huber’s model), in our model
an adversary can potentially corrupt every data point up to magnitude δ (measured in `q norm for
q ≥ 2).

B STOCHASTIC BANDITS

Proof of Lemma 1. Consider a setting with two arms and mean µ1, µ2 such that µ1−µ2 = 2c. Since
UCB relies on empirical means µ̂i,t as in (6), these can be made quite susceptible to adversarial
perturbations. We will set σ high enough such that the UCB algorithm has to pull each arm at least
1/ε times before it can distinguish between the two arms (even without reward corruptions). In
this case, with constant probability, at least one of the pulls where arm 2 is picked is adversarially
corrupted. For that particular pull, the adversary will pick the reward to be arbitrarily high. As a
result the UCB algorithm will always pick arm 2 from that point on since it will have the highest
optimistic estimate. This will result in a regret of at least c · T .

Instance dependent bounds. As in the case of stochastic bandits with no corruptions, we can also
obtain instance dependent bounds as follows. We divide the set of arms into two sets, G and B,
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where G denotes the set of “good” arms. More formally, if i ∈ G then we have that µi∗ − µi ≤ cσε.
Similarly, for any i ∈ B we have µi∗ − µi > cσε, where c is an appropriate constant to be chosen
later in the proof. Now consider the time spend by the algorithm pulling good arms. The total regret
accumulated during these time steps is at most σεT . Next we bound the regret accumulated pulling
arms in the set B. Consider an arm i ∈ B and define ∆i = µi∗ − µi. Then from (12) we have

O(σ · ε) +O

(
σ

√
log(kTµmax)

ni,ti

)
≥ µi∗ − µi (15)

Substituting ∆i for µi∗ − µi and noticing that for i ∈ B, ∆i > cσε we get

σ

√
log(kTµmax)

ni,ti
≥ c′∆i (16)

where c′ is a constant that depends on c. This implies that a bad arm i ∈ B can be pulled at most
O
(
σ2 log(kTµmax)

∆2
i

)
times. Hence the total regret accumulated pulling bad arms can be bounded as

∑
i∈B

∆i ·O
(
σ2 log(kTµmax)

∆2
i

)
≤
∑
i 6=i∗

O

(
σ2 log(kTµmax)

∆i

)
. (17)

Combining this with the regret accumulated pulling good arms we get that the total regret is bounded
by ∑

i 6=i∗
O

(
σ2 log(kTµmax)

∆i

)
+O(σεT ). (18)

C LINEAR CONTEXTUAL BANDITS

In this section we go beyond the multi-armed stochastic bandits setting to consider adversarially
corrupted linear contextual bandits (Li et al., 2010). As described in Section 1, there are k arms with
k associated (unknown) mean vectors µ∗1, . . . , µ

∗
k. At time t, the online algorithm sees k context

vectors xt1, . . . x
t
k, one per arm. If the algorithm pulls arm i then the reward is generated from the

distribution N (µ∗i · xti, σ2). We assume that the true context vectors are drawn i.i.d. from N (0, I),
we let the adversary replace the true context vectors xti with an arbitrary vector x′ti with probability
ε, independently for each arm. Given the true context xti, as in the stochastic bandits setting we let
the observed reward be generated from rti ∼ (1− ε)N (µ∗i · xti, σ2) + εQt where Qt is an arbitrary
distribution.

In the case of standard linear contextual bandits, the LinUCB (Li et al., 2010) algorithm achieves
a regret of O(σBd

√
dK log(T )

√
T . The algorithm is an extension of UCB and at each time step

maintains an optimistic estimate µti for each true mean vector µ∗i . These estimates are constructed
iteratively via solving least squares regression independently for each arm. However, when the rewards
are corrupted, least squares regression can be arbitrarily bad. Instead, we consider a modification of
LinUCB where at each time step, we solve a robust regression problem to construct a better optimistic
estimate. For this purpose we use the guarantee of Diakonikolas et al. (2019b) for performing robust
regression for Gaussian covariates. Let µmax be an upper bound on the maximum `2 norm of the true
mean vectors. Our robust LinUCB based algorithm is sketched in Figure 6. For the above algorithm
we have the following guarantee.
Theorem 6 (Informal Theorem). The algorithm in Figure 6 achieves a pseudo regret bounded by
O(σµmaxd log(T )

√
kT + σε

√
d log(1/ε)T ).

Proof. We first bound the error in the confidence intervals Cti created by the algorithm in Figure 6.
From the guarantee of the robust regression algorithm of Diakonikolas et al. (2019b) we have that
with probability at least 1− 1

kµmaxT 4 , for all i ∈ [k], and all 1 ≤ t ≤ T the following holds

‖µti − µ∗i ‖ ≤ σÕ
(√ d

nti

)
+O(σε log(

1

ε
)). (19)
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Input: The k arms, reward variance σ2.
1. For t = 1, 2, . . . , T do:

(a) Play each arm once.
(b) Observe feature vectors xti for all arms.
(c) For each arm obtain µti by solving robust regression problem using all covariates up to

time t.
(d) For arm i define

Cti = {µ∗i : ‖µ∗i − µti‖ ≤ σµmax

(√ d

nti
+O(σε log(

1

ε
))
)
}.

(e) For each arm i, let pti = argmaxµ∈Cti µ · x
t
i.

(f) Play arm it = argmaxi p
t
i. Update ntit ← ntit + 1.

Figure 6: A robust LinUCB algorithm.

Hence, with high probability the intervals Cti will contain the true mean vectors for all the arms.
Furthermore, since the covariates are drawn from the Gaussian distribution with probability at least
1− e−d, we have that ‖xti‖ ≤ 4

√
d log T for all i ∈ [k] and t ∈ [T ]. Next, we condition on the above

good event. We first consider an arm i and the total regret accumulated by it over T time steps. Let t
be a time step when arm i was chosen and let i∗t be the best arm in hindsight for time step t. Then the
regret accumulated by arm i at time t equals

Regti = µ∗i∗t · x
t
i∗t
− µ∗i · xti.

The following can be upper bounded as

Regti = µ∗i∗t · x
t
i∗t
− µ∗i · xti

= (µ∗i∗t − µ
t
i∗t

) · xti∗t − (µ∗i − µti) · xti + µti∗t · x
t
i∗t
− µti · xti.

Since the algorithm chose arm i over i∗t we have that µti∗t · x
t
i∗t
− µti · xti ≤ 0. Substituting above and

using (19) we get

Regti ≤ (µ∗i∗t − µ
t
i∗t

) · xti∗t − (µ∗i − µti) · xti + µti∗t · x
t
i∗t
− µti · xti

≤ σdÕ
( 1√

nti
+

1√
nti∗t

)
+O(σε

√
d log(

1

ε
)).

Summing up over all arms i and time steps t and using the fact that
∑
i n

t
i = t we get that the total

regret is bounded by

RegA ≤
T∑
t=1

∑
i

σdÕ
( 1√

nti

)
+O(σε

√
d log(

1

ε
))T

≤ σdÕ(
√
kT ) +O(σε

√
d log(

1

ε
))T.

D DETERMINISTIC MDPS

MDP with Deterministic Transitions In the case of a deterministic MDP, given a state action pair
(s, a), there is a unique fixed and known state s′ that the MDP transitions to. Furthermore, we will
make the standard assumption that the state space is a connected graph with diameter D. In this case.
starting from a fixed state s1, the optimal policy π∗ is to find the shortest path to a cycle C∗ and stay
in the cycle forever. Let ρ∗ be the average expected reward for the cycle. Our algorithm will be an
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Input: The state space S, action space A, reward variance σ2.
1. Play each (s, a) ∈ S×A once and update the estimates as in (20).
2. For episodes h = 1, 2, . . . do:

• Find the best cycle Ch according to the current estimates in (20).
• Find the shortest path to Ch, travel from current state to any state in Ch and explore Ch

for τh times steps. Here τh = min(s,a)∈Ch ns,a,h, and ns,a,h is the number of times
(s, a) has been explore before the start of episode h.

Figure 7: A robust algorithm for MDPs with deterministic transitions.

extension of the UCB procedure. The algorithm will maintain optimistic estimates for each state
action pair (s, a) as

γs,a,t = µ̃s,a,t + 4σ

√
log(|S||A|Tµmax)

ns,a,t
. (20)

Here µ̃s,a,t is again the median estimate of the observed reward and µmax is an upper bound on
the maximum mean reward value for any state action pair. As in UCB, our algorithm first explores
each state action pair once to get initial optimistic estimates. From then on the algorithm works in
episodes. In each episode, the algorithm uses the optimistic estimates to find the best cycle Ct, i.e.,
the cycle with best mean reward, goes to the cycle Ct and stays in the cycle for τt steps. Here τt
is the minimum number of times any state action pair in the cycle Ct has been explored till time t.
This will ensure that the algorithm is not switching between cycles too much and accumulating linear
regret. The full algorithm is sketched in Figure 7. We have the following guarantee

Theorem 7. The algorithm from Figure 7 achieves a pseudo regret bounded by

RegA = O(σ
√
|S||A|T log(|S||A|Tµmax) +D|S||A|µmax) +O(σεT ).

Here µmax is the maximum mean reward of any state action pair in the MDP.

Proof of Theorem 7. Notice that every time a new episode starts the number of time steps for which
some state action pair is explored is doubled. Hence the total number of episodes is bounded by
O(|S||A| log T ). Next similar to the UCB analysis, using the robustness of median we have that with
probability at least 1− 1

µmax|S||A|T 4 for each state action pair and each time step t we have

µs,a −O(σ · ε) ≤ γs,a,t ≤ µs,a +O(σ · ε) + 6σ

√
log(|S||A|Tµmax)

ns,a,t
. (21)

For the rest of the proof we will condition on the above good event. Next we divide the episodes into
good ones and bad ones. For an ε′ to be chosen later, we define a good episode to be the one where
the expected accumulated regret is within an ε′ additive factor of the expected regret of the optimal
cycle. The total expected regret accumulated during good episodes is at most ε′T . Next we bound the
expected regret accumulated during bad episodes.

LetMε′ be the indices of all the bad episodes and for i ∈ Mε′ let τi be the total time spent in the
cycle chosen episode i. Define Nε′ =

∑
i∈Mε′

τi. If ∆ε′ is the total expected regret accumulated
during the bad episodes then we have that

∆ε′ ≥ ε′Nε′ .

Next we upper bound ∆ε′ . Consider a bad episode i and let Ci be the cycle chosen in this episode
with mean expected reward ρ(Ci). Then we have

∆ε′ =
∑
i∈Mε′

(
ρ∗ − ρ(Ci)

)
τi.
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Similar to the UCB analysis this can be upper bounded by

∆ε′ =
∑
i∈Mε′

(
ρ∗ − ρ(Ci)

)
τi

≤
∑
i∈Mε′

∑
(s,a)∈Ci

τi(s, a)(γs,a,ti − µs,a).

Here τi(s, a) is the total amount of time for which (s, a) is played during episode i and ti is the total
amount of time for which (s, a) has been played before episode i. Hence, we get that

∆ε′ =
∑
i∈Mε′

∑
(s,a)∈Ci

τi(s, a)
(
O(σ · ε+ 6σ

√
log(|S||A|Tµmax)

ns,a,ti
)
)

≤
∑
(s,a)

∑
i∈Mε′

6στi(s, a)

√
log(|S||A|Tµmax)

ns,a,ti
+O(σ · ε)Nε′ .

Defining nε′(s, a) to the total number of time steps for which (s, a) is played during all the bad
episodes, we get from using the standard inequality used in UCRL2 analysis (Auer et al., 2009) that∑

i∈Mε′

6στi(s, a)

√
log(|S||A|Tµmax)

ns,a,ti
≤ O(σ

√
nε′(s, a)).

Noting that
∑
s,a nε′(s, a) = Nε′ we get that

∆ε′ ≤ O
(
σ
√
Nε′ |S||A| log(|S||A|Tµmax)

)
+O(σ · ε)Nε′ .

Combining with the fact that ∆ε′ > ε′Nε′ we get that

Nε′ ≤
σ2|S||A| log(|S||A|Tµmax)

(ε′ − σε)2
.

Notice that Nε′ ≤ T . Combining with the initial cost of exploration and movement cost and the cost
incurred when the good even does not hold we get that the total pseudo-regret is bounded by

O
(σ2|S||A| log(|S||A|Tµmax)

ε′ − σε
)

+Dµmax|S||A| log T +O(σε)T + ε′T.

Setting

ε′ − σε = σ

√
|S||A| log(|S||A|Tµmax)

T
we get the desired regret bound.

E GENERAL MDPS

Proof of Theorem 5. We will bound the expected regret per episode. For a given episode h, let ∆h

be the expected regret of the algorithm in Figure 2. If ρ∗ is the average per step regret of the optimal
policy then we have

∆h =
∑
s,a

vh(s, a)(ρ∗ − µs,a).

Similar to the proof of Theorem 7 we have that with probability at least 1− 1
µmax|S||A|T 4 , the optimal

policy is always in the set described by (13). If ρ̃h is the average per step regret of the policy chosen
in step h then we have

∆h =
∑
s,a

vh(s, a)(ρ∗ − µs,a) (22)

≤
∑
s,a

vh(s, a)(ρ̃h − µs,a) (23)

≤
∑
s,a

vh(s, a)(ρ̃h − r̃s,a) +
∑
s,a

vh(s, a)(r̃s,a − µs,a) (24)

≤
∑
s,a

vh(s, a)(ρ̃h − r̃s,a) +
∑
s,a

vh(s, a)(r̃s,a − r̂s,a) +
∑
s,a

vh(s, a)(r̂s,a − µs,a). (25)
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From the robustness of the median estimate r̂s,a and (13) the last two terms can be bounded as

∑
h

∑
s,a

vh(s, a)(r̃s,a − r̂s,a) ≤
∑
h

∑
s,a

20σ

√
log(|S||A|Tµmax)

Nh(s, a)
(26)

∑
h

∑
s,a

vh(s, a)(r̂s,a − µs,a) ≤ +O(σεT ). (27)

Finally, we bound the first term. We have∑
s,a

vh(s, a)(ρ̃h − r̃s,a) = vh(P̃h − I)uh. (28)

Here vk is the vector of vh(s, a) values, P̃h is the transition matrix of the MDP chosen in episode h
and uh is the associated value function. Following Auer et al. (2009) we define wh(s) as

wh(s) = uh(s)− mins uh(s) + maxs uh(s)

2
.

Then we have ‖w‖∞ ≤ D and∑
s,a

vh(s, a)(ρ̃h − r̃s,a) ≤ vh(P̃h − I)wh (29)

≤ vh(Ph − I)wh + vh(P̃h −Ph)wh. (30)

Since ‖wh‖∞ ≤ D we have that ∑
h

vh(Ph − I)wh ≤ mD. (31)

Here m is the total number of episodes. Since after each episode the number of time steps spent
exploring some state action pair doubles we have that the number of episodes is upper bounded by
O(|S||A| log T ). Hence we have∑

h

vh(Ph − I)wh ≤ D|S||A| log T. (32)

Finally, let π̃h be the policy selected in episode h. Then we have

vh(P̃h −Ph)wh =
∑
s

∑
s′

vh(s, π̃h(s))
(
p̃h(s′|s, π̃h(s))− ph(s′|s, π̃h(s))

)
wh(s′) (33)

≤
∑
s

vh(s, π̃h(s))‖p̃h(·|s, π̃h(s))− ph(| · |s, π̃h(s))‖1‖wh‖∞ (34)

≤ 20σD
∑
s,a

vh(s, a)20σ

√
|S| log(A|Tµmax)

Nh(s, a)
. (35)

Combining the above and noticing from the analysis of Theorem 7 that∑
s,a

∑
h

vh(s, a)√
Nh(s, a)

≤ O(
√
|S||A|T )

we get that the total expected regret of the algorithm is bounded as∑
h

∆h ≤ O(Dσ
√
|S| log(|A|Tµmax)

√
|S||A|T ) +O(σεT ) +O(D|S||A| log T ) +

TD

µmax|S||A|T 4

(36)

= O(σD|S|
√
|A|T log(|S||A|Tµmax)) +O(σεT ). (37)
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