
Lean Workbook: A large-scale Lean problem set
formalized from natural language math problems

Huaiyuan Ying12∗, Zijian Wu13∗, Yihan Geng14∗, Jiayu Wang1, Dahua Lin1, Kai Chen1

1Shanghai AI Laboratory, 2Tsinghua University, 3Shanghai Jiao Tong University, 4Peking University
internlm@pjlab.org.cn

Abstract

Large language models have demonstrated impressive capabilities across various1

natural language processing tasks, especially in solving mathematical problems.2

However, large language models are not good at math theorem proving using3

formal languages like Lean. A significant challenge in this area is the scarcity of4

training data available in these formal languages. To address this issue, we propose5

a novel pipeline that iteratively generates and filters synthetic data to translate6

natural language mathematical problems into Lean 4 statements, and vice versa.7

Our results indicate that the synthetic data pipeline can provide useful training8

data and improve the performance of LLMs in translating and understanding9

complex mathematical problems and proofs. Our final dataset contains about 57K10

formal-informal question pairs along with searched proof from the math contest11

forum and 21 new IMO questions. We open-source our code at https://github.12

com/InternLM/InternLM-Math and our data at https://huggingface.co/13

datasets/InternLM/Lean-Workbook.14

1 Introduction15

Proving theorems is one of the most fundamental goals in mathematics, which requires complex16

math reasoning and a rich store of math knowledge. Recently, large language models (LLMs)17

[15, 25, 20, 3, 6, 24, 33] have made great progress in solving grade-school [5] and even high-school18

level math problems [8] through chain-of-thought reasoning [28]. LLMs can also interact with19

proof assistants including Lean [18], Coq [26], or Isabelle [21] to prove theorems. However, the20

performance of theorem proving is not satisfying with LLMs [34].21

One reason for this weakness is data sparsity. The mainstream approach for LLMs in learning22

theorem proving is through expert iteration[1, 30, 14, 22, 31]. LLMs search the proof in the given23

math problem and statement set like MiniF2F [34] and Mathlib [17] and learn from their success24

trajectories. However, the amount of data in MiniF2F is limited because formalizing problems25

requires significant labor from human experts. Though Mathlib is a very large dataset that contains26

the formalization of different math subjects in Lean, it mainly proves fundamental math theorems27

instead of contest-level problems. Therefore, an initial step toward a better automatic theorem-proving28

model is to create enough high-quality formalized statements.29

In this work, we present Lean Workbook: an iterative autoformalization pipeline, together with30

a large-scale Lean problem set. We train our autoformalization model based on active learning.31

∗Work done during internships at Shanghai AI Laboratory.

Submitted to the 38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets
and Benchmarks. Do not distribute.

https://github.com/InternLM/InternLM-Math
https://github.com/InternLM/InternLM-Math
https://github.com/InternLM/InternLM-Math
https://huggingface.co/datasets/InternLM/Lean-Workbook
https://huggingface.co/datasets/InternLM/Lean-Workbook
https://huggingface.co/datasets/InternLM/Lean-Workbook

Figure 1: The data contribution of our Lean Workbook pipeline. Three rounds of filtering will mostly
ensure the accuracy of output data. By applying the pipeline to the AOPS and the Compfiles data
sources respectively, we derive 21 formalized IMO questions and about 57k synthetic training data
for autoformalizaion.

At each turn, we use our model to translate natural language problems into formal statements and32

back-translate to natural language problems collected from the math contest forum2. We use Lean33

compiler and Natural Language Inference (NLI) to check if it is a valid formalization. We sample34

invalid formalization and require human experts to modify them into a valid formalization and add35

them to the training set. Through the supplement of human-labeled data pairs, the translation model36

gradually learned to translate between Lean 4 formal language and natural language questions of37

different types of problems. We autoformalized 57K math problems in the final round. Manual38

examination reports an accuracy of 93.5% of a random sample of the Lean Workbook. The same39

filtering process produces 21 new formal statements of the IMO questions which do not appear in40

Compfiles 3.41

In conclusion, our contribution can be summarized as follows:42

• We propose an active learning pipeline for autoformalizing natural language questions.43

• We open-source our translation model and pipeline, which can be used for autoformalizing44

diverse topics of math statements.45

• We open-source a dataset containing 57k formalized math problems (5k of them have formal46

solutions) which can be used for autoformalization and auto theorem proving.47

• We formalize 21 new IMO questions that have not appeared in Compfiles.48

2 Preliminaries49

Formal proof involves establishing claims that are expressed in precise mathematical terms in50

programming languages. Lean 4, which is the latest version of Lean Theorem Prover, aims to provide51

an open-source platform for correct and maintainable code for formal verification. The Lean language52

can claim a theorem and prove it by tactics or pretend to complete the proof using "sorry". Lean 453

will return a "No goals" signal if the proof is completed.54

The Mathlib is a user-maintained library for Lean 4. With the help of Mathlib, we can utilize other’s55

previously formalized theorem or function to state our theorem and proof process. Therefore, in the56

following paragraphs, we default talk about applying Mathlib as MiniF2F does in its environments.57

2https://artofproblemsolving.com/community
3https://github.com/dwrensha/compfiles

2

https://artofproblemsolving.com/community
https://github.com/dwrensha/compfiles

Our work focuses on the translation of questions instead of proof. Therefore, we will always use58

"sorry" for the proof. A typical Lean 4 statement looks as follows. The ’theorem’ declares a type of59

this proposition, followed by the theorem name. Then it specifies all the variables and their types,60

along with several conditions separated by brackets. Finally, the conclusion starts after the colon, and61

":= by sorry" finishes the proof. Here is an example:62

theorem ex_1 (n p : N) (hp: Nat.Prime p) (h1 : p | n) : { (x, y) : N × N | x + y =63

n ∧ Nat.gcd x y = p }.Finite := by sorry64

3 Related works65

3.1 Autoformalization66

Autoformalization [30] refers to translating natural language math statements or proofs into formal67

languages. Previous works have autoformalized different levels of mathematics including grade-68

school level [9, 19], high-school contest level [30, 16], and undergraduate level mathematics [2, 11]69

utilizing in-context learning or fine-tuned LLMs. Our works focus on formalizing high-school70

contest-level math problems with a much larger scale. A similar and concurrent work is DeepSeek-71

prover [31] which translates a large-scale Lean problem set from high-school problems. Compared72

to DeepSeek-prover, we apply active learning to reduce incorrect formalization and we manually73

evaluate our proposed dataset and find a high formalization accuracy.74

3.2 Automatic Theorem Proving75

Using large language models to automatically prove math theorems do not have a unified approach.76

The mainstream approach is to conduct a best-first search or tree search on proof states [7, 23, 14, 13,77

32, 29, 3, 33]. This approach can prevent to generate invalid tactics since they will be rejected by78

the compiler immediately, but the model cannot predict tactics based on an overall perspective. In79

contrast, another approach is to leverage LLMs to generate the whole proof based on itself[31] or80

human’s proof[12, 27].81

4 Data construction pipeline82

In this section, we will detailedly describe the whole pipeline for iteratively translating and filtering83

correct samples as in Figure 4, and then demonstrate the final dataset construction procedure.84

4.1 First-round pipeline85

We first collect Lean 4 formal statements with their corresponding natural language questions from86

MiniF2F[34]4 and ProofNet[2]5. Since we do not test autoformalization on MiniF2F and ProofNet,87

we use all samples from these two datasets.88

The proof will be declared using ":= sorry". All the sample pairs would be organized from two89

directions into the training data to achieve a two-way translation between the formal language and90

natural language. We also include multi-task Lean 4 instruction data including proving theorems,91

predicting the next tactics, and explaining the Lean proof using natural languages like [7, 11] during92

training.93

The training data can be split into proof questions and questions with an exact gold answer. However,94

Lean 4 only supports proof questions, so we rephrase all the solution questions by adding a proof95

goal. Concretely, we append "Show that it is {answer}." to the original natural questions, while the96

proof goal in formal statements is changed to prove the solved answer should be the gold one.97

4We use the version of https://github.com/rah4927/lean-dojo-mew. Under Apache Licence.
5We use the version of https://github.com/rahul3613/ProofNet-lean4 Under MIT Licence.

3

https://github.com/rah4927/lean-dojo-mew
https://github.com/rahul3613/ProofNet-lean4

MiniF2F & ProofNet

Is problem A and B same?

same

First-round Translator

Problem: Is it
possible to choose
1983 numbers … ?

Human-labeled data

Improved Translator

…

Human-labeled data

Final Translator

Human-labeled data

Lean Workbook

Figure 2: The main flowchart of our pipeline. Starting from the initial training data, we finetune
our translation model which is then applied to a natural language problem set. The translated data
is filtered by Lean 4 compiling, backtranslate and NLI test, and human diagnostic. We manually
conclude patterns and accordingly add training data into the model fine-tuning in the next iteration.
The filtered samples are exported if the labelers consider them to reach enough accuracy.

The first-round data collection is fed to our translate model, which is initialized from InternLM-Math-98

Plus-20B [10] which has been pre-trained on Lean-related datasets. The model is fine-tuned for99

three epochs with a learning rate of 4e− 5, with two different but fixed prompts for each translation100

direction. This translated data serves as a starting point for further iteration. Fine-tuning uses 32101

A100 GPUs and can be finished within several hours.102

After training a translation model, we want to improve our model on formalizing problems with103

diverse math topics. We collect math problems from the math contest forum 6 as our active learning104

dataset. It contains problems from middle to high school math, with varying difficulties up to105

Olympiad levels. We utilize Qwen-1.5-14B-Chat [4] to extract the question, solution, and gold106

answer from each post of the forum with the following prompt.107

You are a data labeler. Here is a discussion between math students. It may contain several problems108

and several solutions. Please extract them in a JSON format. Each problem is an element and has109

keys including problem (str, you should not miss any assumption like non-negativity of numbers, be110

formal), answer (return numbers as a string for calculation problems and return an empty string for111

proof problems), and tags (list of str). Tags should identify the category of this math problem. Possible112

tags contain: equation, inequality, number_theory, algebra, probability, combination, trigonometry,113

and etc.114

It is observed that some kinds of problems are not suitable for formalizing. Meanwhile, the extraction115

process turns out to be unstable and gives badly-stated problems. Firstly, we only keep those with116

one of the following tags: inequality, number theory, trigonometry, modular arithmetic, induction,117

functional equation, complex numbers, and polynomial. Secondly, we query the Qwen model whether118

the problem is ill-defined with the following prompt.119

Please check whether the following math problem is well-defined? Please follow the rules: 1.120

Consider each condition given in the problem, it is not well-defined one variable is used without121

definition anywhere in the question.122

2.The problem is not well-defined if it contains more than one goal or no clear goals to solve.123

3. Note that inequalities may omit the statement that x, y, z, a, b, c are real numbers, but they are124

6https://artofproblemsolving.com/community

4

https://artofproblemsolving.com/community

well-defined, do not judge them to be ill-defined.125

4. Please reply **well-defined** or **ill-defined** in the final sentence with bold format, be sure not126

to fail well-defined questions.127

We filter out the ill-defined questions. The manual revision shows almost no ill-defined questions are128

left, though a small part of well-defined ones are wrongly omitted. After such cleaning, we use our129

initial translation model to translate all filtered problems into formal statements.130

The well-defined subset contains 6652 different tags in total, with 223 tags containing over 100131

samples. These tags cover a large range of questions from contest-level knowledge points to high-132

school courses. More than three-fourths of the samples are labeled with algebra-relevant tags, while133

geometry-related tags are rarely witnessed. It is also noticed that some tags are wrong, especially134

the "number theory" tag is often allocated to inequality problems. Following these findings, we will135

remain keeping working with tags over 100 samples in later analysis and will pay special attention to136

wrong tags during manual diagnostic.137

4.2 Data Diagnostic and Iteration pipeline138

Compiling Correctness test To ensure the accuracy of the formal statements produced by our139

translation pipeline, each translated formal theorem undergoes a correctness check within a Lean 4140

environment. Initially, the theorem statements are verified independently, using a placeholder "by141

sorry" for the proofs, to filter out incorrect statements in advance. The complete theorem, including142

proofs, is then examined. The major bottleneck of this step is the compiling cost of Lean 4 projects.143

To facilitate the process, we build up a Lean 4 read-eval-print loop (REPL), utilizing Lean 4’s runtime144

meta-programming facility, which allows for the verification of Lean 4 statements in an interpreted145

mode. The correctness test program can be executed in a multi-process style and can be finished in146

one hour with a 32-core CPU. Our test environment is based on Lean v4.8.0-rc1 with Mathlib4 of the147

same version (which can be cloned by specifying the tag v4.8.0-rc1).148

Data Filtering Firstly, the synthetic translation from all problems is processed by the compiling149

correctness test. However, it is usually witnessed that a correctly compiled translation actually does150

not follow the original question. The second step of filtering is based on the back translation ability151

of our model. After the formal statement is translated back into natural questions, we can turn to152

using a general domain LLM to leverage its Natural Language Inference ability. In our pipeline, we153

still query the Qwen-1.5-14B-Chat to judge if the original question is the same as the back-translated154

version. If we do not get a positive response, the sample is marked as needing human revision and155

correction. The prompt writes as:156

Please check following two math problems is same or different? Please consider each statement in157

two problems, they are different if any statement is different. Please point out any differences you158

found. Please reply **same** or **different** in the final sentence with bold format.159

Diagnostic and Human labeling Diagnostic for the data mainly focuses on two kinds of samples:160

the ones that do not pass the compiling correctness test and the ones that pass the test but do not prove161

to be a correct translation with a positive NLI feedback. The other samples that pass the NLI test are162

considered to be correct for now. In the first three rounds of our iterations, these two kinds of samples163

both have relatively obvious patterns. Thus we conclude and modify them accordingly with three164

human experts who are familiar with both Lean and contest-level math problems 7. Each evaluator165

was assigned an equal number of problems, ensuring a balanced distribution of the workload. On166

average, each problem required approximately two to five minutes for evaluation.167

The manually modified samples are added to the training data, and a new translation model is fine-168

tuned for the next round of generating and filtering synthetic samples for human diagnostics. These169

two processes are the same as in the previous paragraph. Each iteration will add an average of about170

30 human-labeled samples into the training data, addressing the current model’s weakness.171

7They all won a prize in the National Mathematical Olympiad Contest.

5

After several rounds, it becomes difficult to conclude patterns. We change our diagnostic mode and172

randomly sample math problems by tags. By manually checking the samples, we will add the correct173

or modified ones into the training data, and record the correct rate in the samples which pass the NLI174

test. Each iteration will gain more samples passing the NLI test and an increase in the correct rate.175

We stop our iteration after six rounds when the correct rate in sampled data almost reaches 95%, and176

we add 341 problems into the training set during iterations.177

5 Results178

This section will introduce our evaluation metric, dataset statistics, and case studies together with our179

analysis of the cases.180

5.1 Evaluation setting181

Unlike auto theorem proving which depends totally on Lean 4 programming to check the accuracy,182

our evaluation for both the pipeline and the final translation datasets includes the three metrics: (1)183

Compile pass number (CPN): The number of all generated formal statements that can be correctly184

complied using Lean 4 under the environment of Mathlib. (2) NLI pass number (NPN): The number185

of generated formal statements that simultaneously can be compiled and the back translation is186

considered the same as the original questions by the model performing the NLI task. (3) Correct187

translation rate: The proportion of generated formal statements which is considered by human experts188

as a precise translation in those passing the NLI test. In real-world settings, it is too consuming to189

manually review all the synthetic data, so the reported value is the rate on a sampled subset based on190

question types.191

5.2 Dataset Statistics and Evaluation Results192

The original active learning dataset has 1088678 questions, among which 458692 questions are193

considered well-defined. The ill-defined questions come from an incomplete extraction from the194

website, or a post containing attempts and parts of solutions for a specific problem. After filtering the195

tags, 327870 questions are selected to be formalized in our experiments.196

After six rounds of iteration, our model outputs 205079 questions that pass the compiling correctness197

test, among which 57231 translations pass the NLI test. We randomly select five to ten samples for198

each common tag (tag with over 100 samples), and manually check whether they are truly correct.199

The results are in Table 1. For the most common three tags, we sample 10 questions and all of200

them achieve a sampled accuracy over 90%. The other tags each stand for a special kind of problem201

showing up in mathematical contests and college examinations, among which almost all tags have at202

most one wrong translation.203

We use InternLM-Math-Plus to search proofs in the Lean Workbook by sampling multiple whole204

proofs and checking by our correctness checker. We sample 1024 proofs for each problem and we205

solve 4898 of them (i.e. the Pass@1024 is 8.6%) which is significantly harder than MiniF2F. We will206

also open-source these solutions to help improve automatic theorem proving.207

Though the overall accuracy has reached a high level, some kinds of mistakes still occasionally208

happen, which is also indicated in the table as not all the tags have 100% accuracy. On the other209

hand, a number of patterns have been corrected during iterations. These patterns contain compiling210

errors like conflict type and functions and continued inequalities, whose correction can significantly211

increase the CPN. Our model demonstrates good learning ability in these samples. If the model does212

not know how to translate a kind of problem, three manually written statements would help the model213

learn how to translate it. However, when it comes to the errors of interpreting a contest problem, the214

effectiveness of iteratively adding human-labeled samples decreases. For example, when one integer215

is divided by another integer without specifying the type, the Lean language will return the floor of216

the true quotient. So we add the type : R to them, but the model can only perform correctly about217

half the times. This may be attributed to the confusion from real number divisions but written in the218

6

Table 1: Accuracy by tags in Lean Workbook. These are tags that show up more than 100 times in
our final dataset. The first three most common tags are sampled 10 problems for each tag, while the
others are sampled 5 problems. It is worth noting that some tags are incorrect due to the mistake of
the tagging model, and we will choose another sample with this tag if we consider the current one
unsuitable.

Tags Number of samples Sampled accuracy

inequality 46847 10/10
algebra 45218 9/10
number theory 22474 9/10
trigonometry 4133 4/5
equation 3255 5/5
proof 3172 5/5
calculus 1061 4/5
sequence 926 4/5
combinatorics 893 4/5
series 418 5/5
function 351 4/5
modular arithmetic 339 4/5
induction 285 5/5
logarithm 269 5/5
limit 224 3/5
real analysis 170 5/5
Weighted Average - 0.935

same form. Other instances include minimal/maximal problems where the model only states one-side219

inequality but omits the minimality (existence). Below we list the common patterns found in the220

manual diagnostic process in table 2. We also find that some of the errors in the table can be partially221

fixed by post-processing.222

5.3 Effectiveness and discussion223

For an intuitive comparison of the effectiveness of our active learning pipeline, we derive the CPN224

and NPN for three models: The first-round model which is used for the initial filtering, the final-round225

model generating our dataset, and the final model further fine-tuned on our dataset Lean Workbook.226

The results are shown in Table 3. We also listed the accuracy of MiniF2F valid and test set when an227

InternLM2-Math-Plus model is fine-tuned on MiniF2F with and without our Lean-Workbook dataset228

in Table 4.229

This table clearly shows the effectiveness both of our pipeline and our dataset. The human-labeled230

data and filtered dataset achieve a gain of over 20000 more correct samples for both the compile231

test and the NLI test, which promisingly indicates that this form of active learning can be further232

iteratively utilized. The increase in MiniF2F accuracy also demonstrates a significant improvement in233

performance when using our extended dataset.234

The model can further enhance its pass number by adding Lean Workbook data for translation, we235

will also open-source this dataset (named Lean Workbook Plus). Although it shows a higher number236

on NLI pass rate, the human evaluation finds that this dataset makes more mistakes on the number237

theory problems, especially on the problem with prime numbers and maximal/minimal values.238

5.4 Formalizing IMO problems239

The accuracy table and case study table give us confidence in the performance of our model. As a240

high-level application, we try to translate new IMO problems using our model.241

We aggregate the problems from Compfiles which have not been formalized. Each of the problems is242

translated 100 times under a temperature of 0.7 and we remove the wrong translations by compile test243

7

Table 2: Case study for false patterns. We list the common patterns concluded during the iterative
diagnostic process. This table gives one typical error for each pattern and also demonstrates one
heuristic correction. Finally, the current performance column states how many portions the model
can translate correctly after the iteration in our manual check.

Pattern Wrong example Modified Performance

Type confusion a,b,c : R,
sqrt (a ^ 2 + 8 * b * c)

sqrt→ Real.sqrt Mostly Correct

Continued
inequalities

a >= b >= c > 0 a >= b ∧ b >= c ∧ c > 0 Mostly Correct

Missing opera-
tors

2a+3b >= 0 2*a+3*b >= 0 Mostly Correct

Integer division (a*b*c)^(1/3) (a*b*c) ^((1:R)/3) Half Correct

Triangle condi-
tion

a, b, c are side lengths of a triangle:
not translated

(hx: a > 0∧b > 0∧c > 0)
(hab : a + b > c)
(hbc : b + c > a)
(hca : a + c > b)

Mostly Correct

All solutions (x,y)=(1,5),(2,3) (x=1∧y=5) ∨ (x=2∧y=3) Mostly Correct

Solution num-
ber/sum

(x,y)=(1,5),(2,3) A : Finset {x,y|...}
A.card=2

Mostly Correct

Min/Max The maximal of a is 10: a <= 10 IsGreatest {a | ...} 10 Half Correct

Exist Infinite
number

Unable to translate ∀N: N,∃n > N, Mostly Correct

Digits n =abcde, a+b = ... Finset {n|
sumOflist (Nat.digits 10 n)

Half Correct

Table 3: We report the CPN (compile pass number) and NPN (NLI pass number) for each model
during iterations.

Train Dataset Model CPN NPN

MiniF2F + ProofNet + MultiTask First-round Model 136670 37122
+ Human-labeled Final-round Model 205079 57231
+ Lean Workbook Final-round Model + Lean Workbook 228928 82893

and NLI test. Finally, 23 problems with at least one correct translation passing the NLI are filtered out,244

and 21 problems are kept after manual evaluation, including 14 Algebra problems, 5 Number Theory245

problems, and 2 Combinatorics problems. We also manually checked and made slight modifications246

to the conclusion part if the correct answers to IMO problems are not extracted, and we ensure these247

translations are correct. These formal statements will be submitted to the Compfiles project. One248

case below shows that our model has been able to skillfully use "Finset" functions to optimize formal249

statements and avoid grammar mistakes. More cases are listed in Appendix B.250

/--251

IMO 1983 P5252

253

Is it possible to choose 1983 distinct positive integers, all less than or equal to254

10^5, no three of which are consecutive terms of an arithmetic progression?255

--/256

257

theorem IMO1983_P5 :258

∃ S : Finset N, S.card = 1983 ∧ (∀ x ∈ S, x ≤ 10^5) ∧259

∀ x ∈ S, ∀ y ∈ S, ∀ z ∈ S, x < y ∧ y < z → x + z ̸= 2 * y := by sorry260

8

Table 4: We report the accuracy for an InternLM2-Math-Plus model fine-tuned on MiniF2F only and
with our Lean-Workbook dataset.

Train Dataset MiniF2F-valid Acc. MiniF2F-test Acc.

Mathlib 44,3 37.3
+ Lean Workbook 50.4 46.7

6 Conclusion261

In this paper, we introduce an automatic pipeline that can translate contest-level math problems into262

Lean formal statements with high accuracy. Active learning proves its effectiveness in the data-sparse263

scenario. We open-source Lean Workbook to help the machine learning community to improve the264

ability of autoformalization and automatic theorem proving.265

Limitations266

We find our proposed dataset has some similar problems which is hard to apply deduplication.267

Furthermore, our model is focused on contest-level problems during active learning which may not268

be appropriate to formalize other level math problems.269

References270

[1] Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning271

and tree search. Advances in neural information processing systems, 30, 2017.272

[2] Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W Ayers, Dragomir Radev,273

and Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level274

mathematics. arXiv preprint arXiv:2302.12433, 2023.275

[3] Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer,276

Albert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language277

model for mathematics, 2023.278

[4] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin279

Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu,280

Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren,281

Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu,282

Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,283

Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang,284

Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv285

preprint arXiv:2309.16609, 2023.286

[5] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,287

Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to288

solve math word problems. arXiv preprint arXiv:2110.14168, 2021.289

[6] Google. Gemini: A family of highly capable multimodal models, 2023.290

[7] Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W Ayers, and Stanislas Polu. Proof artifact291

co-training for theorem proving with language models. arXiv preprint arXiv:2102.06203, 2021.292

[8] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn293

Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.294

arXiv preprint arXiv:2103.03874, 2021.295

9

[9] Yinya Huang, Xiaohan Lin, Zhengying Liu, Qingxing Cao, Huajian Xin, Haiming Wang,296

Zhenguo Li, Linqi Song, and Xiaodan Liang. MUSTARD: Mastering uniform synthesis of297

theorem and proof data. In The Twelfth International Conference on Learning Representations,298

2024.299

[10] InternLM. Internlm: A multilingual language model with progressively enhanced capabilities.300

https://github.com/InternLM/InternLM, 2023.301

[11] Albert Q Jiang, Wenda Li, and Mateja Jamnik. Multilingual mathematical autoformalization.302

arXiv preprint arXiv:2311.03755, 2023.303

[12] Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée304

Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem305

provers with informal proofs. arXiv preprint arXiv:2210.12283, 2022.306

[13] Albert Qiaochu Jiang, Wenda Li, Szymon Tworkowski, Konrad Czechowski, Tomasz307

Odrzygóźdź, Piotr Miłoś, Yuhuai Wu, and Mateja Jamnik. Thor: Wielding hammers to integrate308

language models and automated theorem provers. Advances in Neural Information Processing309

Systems, 35:8360–8373, 2022.310

[14] Guillaume Lample, Timothee Lacroix, Marie-Anne Lachaux, Aurelien Rodriguez, Amaury311

Hayat, Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural312

theorem proving. Advances in neural information processing systems, 35:26337–26349, 2022.313

[15] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,314

Vinay V. Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu,315

Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems316

with language models. In NeurIPS, 2022.317

[16] Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying Liu, Ye Yuan, Haiming Wang, Wei Ju,318

Chuanyang Zheng, Yichun Yin, Lin Li, et al. Fimo: A challenge formal dataset for automated319

theorem proving. arXiv preprint arXiv:2309.04295, 2023.320

[17] The mathlib Community. The lean mathematical library. In Proceedings of the 9th ACM321

SIGPLAN International Conference on Certified Programs and Proofs, POPL ’20. ACM,322

January 2020.323

[18] Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming324

language. In André Platzer and Geoff Sutcliffe, editors, Automated Deduction – CADE 28,325

pages 625–635, Cham, 2021. Springer International Publishing.326

[19] Logan Murphy, Kaiyu Yang, Jialiang Sun, Zhaoyu Li, Anima Anandkumar, and Xujie Si.327

Autoformalizing Euclidean geometry. In International Conference on Machine Learning328

(ICML), 2024.329

[20] OpenAI. Gpt-4 technical report, 2023.330

[21] Lawrence C. Paulson. Isabelle: The next 700 theorem provers, 2000.331

[22] Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya332

Sutskever. Formal mathematics statement curriculum learning, 2022.333

[23] Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya334

Sutskever. Formal mathematics statement curriculum learning. arXiv preprint arXiv:2202.01344,335

2022.336

[24] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,337

Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open338

language models, 2024.339

10

https://github.com/InternLM/InternLM

[25] Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis340

Saravia, Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language341

model for science. 2023.342

[26] The Coq Development Team. The Coq reference manual – release 8.18.0. https://coq.343

inria.fr/doc/V8.18.0/refman, 2023.344

[27] Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya345

Huang, Jing Xiong, Han Shi, Enze Xie, Jian Yin, Zhenguo Li, Heng Liao, and Xiaodan Liang.346

Lego-prover: Neural theorem proving with growing libraries, 2023.347

[28] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,348

Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.349

Advances in Neural Information Processing Systems, 35:24824–24837, 2022.350

[29] Sean Welleck and Rahul Saha. Llmstep: Llm proofstep suggestions in lean. arXiv preprint351

arXiv:2310.18457, 2023.352

[30] Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jamnik, and353

Christian Szegedy. Autoformalization with large language models, 2022.354

[31] Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan,355

Wenda Li, and Xiaodan Liang. Deepseek-prover: Advancing theorem proving in llms through356

large-scale synthetic data. arXiv preprint arXiv:2405.14333, 2024.357

[32] Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,358

Ryan Prenger, and Anima Anandkumar. LeanDojo: Theorem proving with retrieval-augmented359

language models. In Neural Information Processing Systems (NeurIPS), 2023.360

[33] Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan361

Ma, Jiawei Hong, Kuikun Liu, Ziyi Wang, Yudong Wang, Zijian Wu, Shuaibin Li, Fengzhe362

Zhou, Hongwei Liu, Songyang Zhang, Wenwei Zhang, Hang Yan, Xipeng Qiu, Jiayu Wang,363

Kai Chen, and Dahua Lin. Internlm-math: Open math large language models toward verifiable364

reasoning, 2024.365

[34] Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for366

formal olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021.367

11

https://coq.inria.fr/doc/V8.18.0/refman
https://coq.inria.fr/doc/V8.18.0/refman
https://coq.inria.fr/doc/V8.18.0/refman

Checklist368

1. For all authors...369

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s370

contributions and scope? [Yes] See abstract and introduction371

(b) Did you describe the limitations of your work? [Yes] See Section 6372

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Proving373

math theorems do not have apparent negative social impacts.374

(d) Have you read the ethics review guidelines and ensured that your paper conforms to375

them? [Yes]376

2. If you are including theoretical results...377

(a) Did you state the full set of assumptions of all theoretical results? [N/A]378

(b) Did you include complete proofs of all theoretical results? [N/A]379

3. If you ran experiments (e.g. for benchmarks)...380

(a) Did you include the code, data, and instructions needed to reproduce the main experi-381

mental results (either in the supplemental material or as a URL)? [Yes]382

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they383

were chosen)? [Yes] We specify how we train translation models in Section 4.1.384

(c) Did you report error bars (e.g., with respect to the random seed after running experi-385

ments multiple times)? [N/A] We only fine-tune once for each iteration.386

(d) Did you include the total amount of compute and the type of resources used (e.g., type387

of GPUs, internal cluster, or cloud provider)? [Yes] Details are described in Section 4.1.388

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...389

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite MiniF2F and390

Proofnet.391

(b) Did you mention the license of the assets? [Yes] We report in Section 4.1.392

(c) Did you include any new assets in the supplemental material or as a URL? [N/A]393

(d) Did you discuss whether and how consent was obtained from people whose data you’re394

using/curating? [N/A]395

(e) Did you discuss whether the data you are using/curating contains personally identifiable396

information or offensive content? [N/A] Math problems do not contain PII.397

5. If you used crowdsourcing or conducted research with human subjects...398

(a) Did you include the full text of instructions given to participants and screenshots, if399

applicable? [N/A]400

(b) Did you describe any potential participant risks, with links to Institutional Review401

Board (IRB) approvals, if applicable? [N/A]402

(c) Did you include the estimated hourly wage paid to participants and the total amount403

spent on participant compensation? [N/A]404

12

A Case study405

We would give some translated examples of Lean Workbook with respected to most common tags.406

Inequality

Natural Language problem: For a, b, c, d > 0, abcd = 1 prove that 1
1+(1+a)2 + 1

1+(1+b)2 +
1

1+(1+c)2 + 1
1+(1+d)2 ≤ 4

5 .

theorem lem1 (a b c d : R) (hab : 0 < a) (hbc : 0 < b) (hcd : 0 < c) (hda :
0 < d) (habc : a * b * c * d = 1) :

(1 / (1 + (1 + a) ^ 2) + 1 / (1 + (1 + b) ^ 2) + 1 / (1 + (1 + c) ^ 2) + 1 /
(1 + (1 + d) ^ 2)) ≤ (4:R) / 5 := by sorry

407

Algebra

Natural Language problem: Prove that for m ≥ 5, the sum of the factorials of the first
m natural numbers is not equal to the product of the factorials of the first m odd natural
numbers.

theorem sum_factorial_not_prod_factorial (m : N) (hm : 5 ≤ m) : (Σ k in
Finset.range m, k!) ̸= (

∏
k in Finset.Icc 1 m, (2 * k - 1)!) := by sorry

408

Number Theory & Combination

Natural Language problem: For every p prime number show that p2 |
(
2p
p

)
− 2.

theorem p2_dvd_2pCp_2 (p : N) (hp : Nat.Prime p) : p^2 | (Nat.choose (2 * p)
p) - 2 := by sorry

409

Equation

Natural Language problem: Solve in R : sin(a) + 2sin(a + b + c) = 0,
sin(b) + 3sin(a+ b+ c) = 0, sin(c) + 4sin(a+ b+ c) = 0.

theorem sin_problem (a b c : R) : sin a + 2 * sin (a + b + c) = 0 ∧ sin b +
3 * sin (a + b + c) = 0 ∧ sin c + 4 * sin (a + b + c) = 0 ↔ ∃ (k n m :
Z), a = π * k ∧ b = π * n ∧ c = π * m := by sorry

410

Trigonometry

Natural Language problem: If a, b, c be sidelengths of a triangle, then a
b+c +

b
c+a + c

a+b ≤
1
2 + 3(a3+b3+c3)

(a+b+c)(a2+b2+c2) .

theorem imo_1964_p1_1 (a b c : R) (hx: a > 0 ∧ b > 0 ∧ c > 0) (hab : a + b
> c) (hbc : b + c > a) (hca : a + c > b) : (a / (b + c) + b / (c + a) +
c / (a + b) : R) ≤ (1:R) / 2 + (3 * (a ^ 3 + b ^ 3 + c ^ 3)) / ((a + b +
c) * (a ^ 2 + b ^ 2 + c ^ 2)) := by sorry

411

13

Proof & Complex Number

Natural Language problem: Let a , b ∈ R and A = {z ∈ C |Re z = a} ,
B = {z ∈ C | Imz = b} . Prove that if M ⊂ C has the properties: 1) A ⊂ M
and B ⊂ M ; 2) whatever z1, z2 ∈ M ⇒ z1 + z2 ∈ M, then M = C.

theorem subset_of_1d_subsets {M : Set C} (a b : R) (hA : {z : C | z.re =
a} ⊆ M) (hB : {z : C | z.im = b} ⊆ M) (hM : ∀ z1 z2 : C, z1 ∈ M ∧
z2 ∈ M → z1 + z2 ∈ M) : M = C := by sorry

412

Calculus & Limit

Natural Language problem: Prove that limn→∞
1
n

(∑n
i=1

i√
i2+1

)
= 1

theorem Injective_total : ∀ ε : R, ε > 0 → ∃ N : N, ∀ n : N, n ≥ N → |(1
/ n) * (Σ i in Finset.Icc 1 n, i / (Real.sqrt (i ^ 2 + 1))) - 1| < ε :=
by sorry

413

function

Natural Language problem: Find all functions f : R → R satisfying: for all x, y ∈ R :
f(xf(x) + f(y)) = (f(x))2 + y

theorem FE (f : R → R):(∀ x y, f (x * f x + f y) = (f x)^2 + y) ↔ ∀ x, f
x = x ∨ ∀ x, f x = -x := by sorry

414

sequence & induction

Natural Language problem: Suppose that an is a sequence such that an+1 = a2n + nan − 2
with a1 = 3 , Show that 1

a1−2 + 1
a2−2 + · · ·+ 1

an−2 < 2

theorem aops_1212 (n : N) (a : N → N) (ha : a 1 = 3) (hab : ∀ n, a (n + 1)
= (a n)^2 + n * a n - 2) : Σ k in Finset.Icc 1 n, (1 / (a k - 2)) < 2 :=
by sorry

415

Modular Arithmetic

Natural Language problem: Show that the cube of any integer is congruent to 0, 1, or -1
modulo 9.

theorem t_cubic_mod9 : ∀ t : Z, t^3 ≡ 0 [ZMOD 9] ∨ t^3 ≡ 1 [ZMOD 9] ∨ t^3
≡ -1 [ZMOD 9] := by sorry

416

14

Real Analysis

Natural Language problem: Let D be a compact subset of R and support that f : D → R is
continuous. Prove f(D) is compact.

theorem continuous_compact_support (D : Set R) (f : R → R) (hD :
IsCompact D) (hf : ContinuousOn f D) : IsCompact (Set.image f D) := by
sorry

417

B IMO example418

Our model also provides formalization for IMO-level problems. The translated questions focus on419

three types: Algebra, Number Theory, and Combinatorics.420

Algebra IMO 1975 P2

Natural Language problem: Let a1 < a2 < a3 < · · · be positive integers. Prove that for
every i >= 1, there are infinitely many an that can be written in the form an = rai + saj ,
with r, s positive integers and j > i.

theorem imo1975_p2 (a : N → Z) (apos : ∀ i, 0 < a i) (ha : ∀ i, a i < a (i
+ 1)) (i : N) : (∀ i n0:N , ∃ n, n0 ≤ n ∧ ∃ r s : N, ∃ j : N, a n =
r * a i + s * a j ∧ i < j ∧ 0 < r ∧ 0 < s):= by sorry

421

Algebra IMO 1977 P4

Natural Language problem: Define f(x) = 1 − a cosx − b sinx − A cos 2x − B sin 2x,
where a, b, A, B are real constants. Suppose that f(x) ≥ 0 for all real x. Prove that
a2 + b2 ≤ 2 and A2 +B2 ≤ 1.

theorem imo1977_p4 (f : R → R) (a b A B : R) (h0 : ∀ x, f x = 1 - a *
Real.cos x - b * Real.sin x - A * Real.cos (2 * x) - B * Real.sin (2 *
x)) (h1 : ∀ x, f x ≥ 0) : a ^ 2 + b ^ 2 ≤ 2 ∧ A ^ 2 + B ^ 2 ≤ 1 := by
sorry

422

Number Theory IMO 1978 P1

Natural Language problem: m and n are positive integers with m < n. The last three decimal
digits of 1978m are the same as the last three decimal digits of 1978n. Find m and n such
that m + n has the least possible value.

theorem imo1978_p1 (m n : N) (hmn: m < n) (hmn2: m = 3 ∧ n=103) : (1978^m)
% 1000 = (1978^n) % 1000) ∧ (∀ m’ n’ : N, m’ < n’ ∧ (1978^m’) % 1000 =
(1978^n’) % 1000 → m + n ≤ m’ + n’) := by sorry

423

15

Number Theory IMO 1982 P4

Natural Language problem: Prove that if n is a positive integer such that the equation
x3 − 3xy2 + y3 = n has a solution in integers x, y, then it has at least three such solutions.
Show that the equation has no solutions in integers for n = 2891.

theorem imo1982_p4 (n : N) (hn : 0 < n) (hxy : ∃ x y : Z, x^3 - 3 * x * y^2 +
y^3 = n) : (n ̸= 2891) ∧ ∃ x1 x2 x3 y1 y2 y3 : Z, (x1^3 - 3 * x1 * y1^2

+ y1^3 = n ∧ x2^3 - 3 * x2 * y2^2 + y2^3 = n ∧ x3^3 - 3 * x3 * y3^2 +
y3^3 = n ∧ (x1 ̸= x2 ∨ y1 ̸= y2) ∧ (x1 ̸= x3 ∨ y1 ̸= y3) ∧ (x2 ̸= x3 ∨
y2 ̸= y3)) := by sorry

424

Combinatorics IMO 1978 P6

Natural Language problem: An international society has its members from six different
countries. The list of members has 1978 names, numbered 1, 2, . . . , 1978. Prove that there is
at least one member whose number is the sum of the numbers of two (not necessarily distinct)
members from his own country.

theorem imo1978_p6 (n : N) (hn : n = 1978) (C : Fin n → Fin 6) : ∃ i : Fin
n, ∃ j : Fin n, ∃ k : Fin n, C i = C j ∧ C j = C k ∧ i ̸= k ∧ (i:N
) + (k:N) = (j:N) + 1 := by sorry

425

C Dataset card426

1. Our dataset contains 57231 problems in the split of Lean Workbook and 82893 problems427

in the split of Lean Workbook Plus. We provide the natural language statement, answer,428

formal statement, and formal proof (if available) for each problem. These data can support429

autoformalization model training and searching for proofs.430

2. We open-source our code at https://github.com/InternLM/InternLM-Math and our431

data at https://huggingface.co/datasets/InternLM/Lean-Workbook.432

3. Croissant metadata URL: https://huggingface.co/api/datasets/internlm/433

Lean-Workbook/croissant.434

4. The license of our dataset is Apache 2.0.435

5. We will host our dataset in Huggingface and our code in GitHub. We will maintain this436

dataset with further improvement.437

6. DOI of dataset: 10.57967/hf/2399438

16

https://github.com/InternLM/InternLM-Math
https://huggingface.co/datasets/InternLM/Lean-Workbook
https://huggingface.co/api/datasets/internlm/Lean-Workbook/croissant
https://huggingface.co/api/datasets/internlm/Lean-Workbook/croissant
https://huggingface.co/api/datasets/internlm/Lean-Workbook/croissant

	Introduction
	Preliminaries
	Related works
	Autoformalization
	Automatic Theorem Proving

	Data construction pipeline
	First-round pipeline
	Data Diagnostic and Iteration pipeline

	Results
	Evaluation setting
	Dataset Statistics and Evaluation Results
	Effectiveness and discussion
	Formalizing IMO problems

	Conclusion
	Case study
	IMO example
	Dataset card

