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Remembering is Not Applying: Interpretable Knowledge Tracing
for Problem-solving Processes
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ABSTRACT
Knowledge Tracing (KT) is a critical service in distance education,
predicting students’ future performance based on their responses
to learning resources. The reasonable assessment of the knowledge
state, along with accurate response prediction, is crucial for KT.
However, existing KT methods prioritize fitting results and over-
look attention to the problem-solving process. They equate the
knowledge students memorize before problem-solving with the
knowledge that can be acquired or applied during problem-solving,
leading to dramatic fluctuations in knowledge states between mas-
tery and non-mastery, with low interpretability. This paper explores
knowledge transformation in problem-solving and proposes an in-
terpretable model, Problem-solving Knowledge Tracing (PSKT).
Specifically, we first present a knowledge-centered problem repre-
sentation that enhances its expression by adjusting problem variabil-
ity. Then, we meticulously designed a Sequential Neural Network
(SNN) with three stages: (1) Before problem-solving, we model stu-
dents’ personalized problem space and simulate their acquisition of
problem-related knowledge through a gating mechanism. (2) Dur-
ing problem-solving, we evaluate knowledge application and calcu-
late response with a four-parameter IRT. (3) After problem-solving,
we quantify student knowledge internalization and forgetting using
an incremental indicator. The SNN, inspired by problem-solving
and constructivist learning theories, is an interpretable model that
attributes learner performance to subjective problems (difficulty,
discrimination), objective knowledge (knowledge acquisition and
application), and behavior (guessing and slipping). Finally, extensive
experimental results demonstrate that PSKT has certain advantages
in predicting accuracy, assessing knowledge states reasonably, and
explaining the learning process.

CCS CONCEPTS
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KEYWORDS
distance education, user modeling, knowledge tracing, problem
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1 INTRODUCTION
Digital multimedia technology enables the creation and delivery
of high-quality educational content in various digital formats, pro-
moting distance education’s popularization. Consequently, online
teachingmodes represented byMOOCs,micro-courses, and blended
learning have emerged [12, 13]. The phenomenon of knowledge re-
versal occurs when instructional procedures effective for beginners
are ineffective for experts [17]. Therefore, educators must be able
to continuously assess and monitor learners’ knowledge mastery
during the learning process to dynamically determine appropriate
teaching resources, especially in online learning scenarios.

Knowledge tracing (KT) is an influential research area in distance
education, which can automatically track students’ knowledge lev-
els at various stages and has been widely used in adaptive learning
systems [2, 19]. The goal of KT involves two stages. Firstly, as-
sessing the development of students’ knowledge states according
to records, and secondly, predicting their performance on specific
problems using the assessed knowledge states. Therefore, KT offers
two key applications for intelligent educational services: dynamic
adjustment of teaching strategies based on assessment states and
personalized resource recommendation based on prediction results.

Early KT models, such as Bayesian Knowledge Tracing (BKT)
[6, 44] based on Hidden Markov Models, and Performance Factor
Analysis [30] based on logistic functions, used educational param-
eters to estimate students’ mastery probabilities. These models
were characterized by high interpretability but low precision in
prediction. As smart education progresses, deep learning-based ap-
proaches (DLKT) have become mainstream, significantly improving
the performance of KT tasks [11, 26, 31, 45]. However, due to the
black-box nature of deep learning, these models have lower trans-
parency and interpretability. Similar to how good teachers need
to understand students, a good KT model should provide higher-
value educational services, such as attribution analysis, which helps
understand the ’why’ - not just the ’what’.

Fortunately, many DLKT methods are addressing this issue by
striving to enhance the interpretability of their models. Methods
like Deep-IRT [42] and Deep-IRTw [38] combine KT with Item Re-
sponse Theory (IRT). SAKT [28], AKT [11] utilize the weights of the
attention mechanism to explain the relationship between historical
interactions. IKT [23] sets knowledge mastery, learning transfer
ability, and problem difficulty as three educationally meaningful
parameters. RCKT[7], CMKT [47] enhance model interpretability
through causal inference.

However, the aforementioned methods primarily focus on pre-
diction and overlook the consideration of the learning process,
resulting in an unreasonable assessment of knowledge mastery
patterns. LPKT [33] recognized the limitations of previous models,
which assumed that learners’ knowledge states would decline once
they answered incorrectly. LPKT applied knowledge gain to mea-
sure the value of error interactions. From a cognitive perspective,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Profiling the student’s problem-solving process. The upper right part illustrates the process by which learners solve a
problem, while the lower right part depicts the knowledge transformation in problem-solving. Students first comprehend the
problem based on memorized knowledge and then acquire knowledge relevant to the problem. Subsequently, students apply
this knowledge to find a solution and write down the answer. Finally, through feedback, they achieve knowledge internalization.
Additionally, memorized knowledge will be forgotten over time.

learners’ knowledge mastery curve is relatively stable and does not
fluctuate drastically in a short period. Previous work [34, 43] has
noted this irrationality and mitigated the fluctuations by design-
ing a punishment mechanism, albeit at the cost of sacrificing the
model’s performance.

To address the irrationality of knowledge state assessment, en-
hance model interpretability, and improve performance, we decon-
struct students’ learning processes from the perspective of human
problem-solving. Engaging in exercises is a typical problem-solving
process. As illustrated in Figure 1, students enhance their under-
standing of problems through deep thinking, continuously explore
solutions, and ultimately achieve consolidation of knowledge. The
entire problem-solving process involves the acquisition, applica-
tion, internalization, and forgetting of memorized knowledge in the
brain. However, existing KT methods overlook learners’ problem-
solving processes, equating memorized knowledge with acquired
or applied knowledge, leading to drastic fluctuations in knowledge
states. According to problem-solving theory [3, 8, 9, 27], knowledge
acquisition involves learners organizing implicit and explicit knowl-
edge relevant to problems, while knowledge application involves
applying this knowledge to seek a solution. Remembering does not
equal applying. Familiarity with discrete knowledge concepts (KCs)
does not imply that students can effectively organize them or con-
vert abstract knowledge into specific applications when answering
problems. The common saying that knowing the path and walking
the path are two different things reflects this phenomenon. Therefore,
our work delves into various stages of problem-solving, reproduc-
ing the learning process by analyzing how students understand
problems, acquire, apply, internalize, and forget knowledge.

In this paper, considering the effects of knowledge transforma-
tion mentioned above, we propose an interpretable knowledge trac-
ing approach for problem-solving processes (PSKT). In PSKT, we
first enhance the representation of knowledge-centered problems

by learning the rich attributes of the problem. Then, we present a
Sequential Neural Network (SNN) to simulate knowledge transfor-
mation in problem-solving process. Before problem-solving, PSKT
models students’ personalized problem space and knowledge acqui-
sition degree. During the problem-solving process, PSKT captures
learners’ goal-oriented knowledge application and attributes learn-
ers’ response through educational parameters, namely problem fac-
tors (difficulty, discrimination), learner knowledge factors (knowl-
edge acquisition and application), and learner behavior factors
(guessing, slipping). After problem-solving, PSKT designs an update
indicator to measure the degree of learners’ knowledge internal-
ization and models the forgetting effect over time. Finally, we con-
ducted extensive experiments on five real-world datasets, demon-
strating the effectiveness of PSKT. Additionally, PSKT showed out-
standing performance in modeling reasonable knowledge states,
explaining prediction, and learning reliable problem difficulty. The
main contributions of our paper are summarized as follows:

• We quantify the learner’s knowledge transformation by de-
constructing the process of solving a particular problem,
ensuring that knowledge state changing is reasonableness.

• We propose a novel Sequential Neural Network (SNN). The
design of the SNN follows the problem-solving theory and
the active construction principle of constructivist learning
theory, providing good interpretability.

• Extensive experiments demonstrate the effectiveness of PSKT.
In addition, PSKT can learn credible problem difficulty.

2 RELATEDWORK
2.1 Item Response Theory
Item Response Theory (IRT) is a classic measurement theory rooted
in education and psychology. It calculates the probability of a cor-
rect response based on the latent traits of the student and the
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characteristics of the problem. Although the traditional IRT model
is highly interpretable, it treats students’ latent traits as a set of
static parameters, making it suitable only for a single assessment
scenario. Recognizing the limitations of IRT, many researchers have
incorporated it into KT for process assessment. [18] integrates the
IRT and BKT models to model students’ learning abilities. Deep-
IRT[42] fits student ability through DKVMN [45] and uses IRT to
compute the probability of a student’s correct response. AKT [11]
uses IRT to enhance the personalized embedding of questions and
responses, while PKT [34] applies IRT to fit students’ knowledge
mastery states.

PSKT is inspired by IRT and attributes answering performance
to objective problem factors (difficulty, discrimination) and subjec-
tive learner factors (knowledge application, guessing and slipping).
These rich educational parameters make our model interpretable
while maintaining accuracy.

2.2 Knowledge Tracing
Knowledge tracing tracks students’ dynamic knowledge states by
modeling their historical learning sequences. It is suitable for mul-
tiple assessment scenarios and performs process measurements on
students. Early KT methods were based on hidden Markov models,
which evaluated student performance by modeling four parame-
ters: initial mastery, knowledge mastery transformation, guessing
and slipping [6, 29, 44]. Neural networks have greatly improved
the performance of KT and have become the current mainstream
method. DKT [31] introduced deep learning into KT for the first
time and applied RNN/LSTM tomodel students’ knowledge changes.
Subsequent work [21, 25, 43] improved upon this basis. [1, 42, 45]
use memory networks to store potential KCs and update students’
knowledge mastery. [11, 16, 28] use attention mechanism to model
the relationship between interaction histories, and [26, 36, 40] apply
graph neural networks to model the graph structure between KCs.

Recent research has emphasized the importance of modeling the
learning process. LPKT [33] and FKT [15] finely model learning
and forgetting by incorporating response time and interval time.
LBKT [39] highlighted the impact of answering speed, prompts,
and other behaviors. However, these models suffer from poor inter-
pretability and controllability. In contrast, our primary focus is on
providing reasonable predictive explanations from an educational
perspective. We disaggregate students’ problem-solving processes
to make multifaceted attributions of answering responses, rather
than focusing on additional features of the learning process.

3 PROBLEM DEFINITION
Suppose that in an online learning platform, there is a set of students
𝑆 =

{
𝑠1, 𝑠2, ..., 𝑠 |𝑆 |

}
, a set of problems 𝑃 =

{
𝑝1, 𝑝2, ..., 𝑝 |𝑃 |

}
, and a

set of knowledge concepts 𝐾 =
{
𝑘1, 𝑘2, ..., 𝑘 |𝐾 |

}
. We denote the ex-

ercise records of a student as 𝑋𝑁 = {𝑋1, 𝑋2, ..., 𝑋𝑁 } , where 𝑁 rep-
resents the total number of exercises. 𝑋𝑛 = (𝑡𝑠𝑛, 𝑝𝑛, 𝑘𝑛, 𝑟𝑛) , 𝑛 ∈ 𝑁
is the most basic practice unit, denoting that the student’s response
to problem 𝑝𝑛 at timestamp 𝑡𝑠𝑛 is 𝑟𝑛 . Where 𝑟𝑛 ∈ { 0, 1} , 0 denotes
an incorrect answer and 1 denotes a correct answer.

Problem Definition. Given a student’s historical learning se-
quence 𝑋𝑛 , the task of KT is to evaluate the student’s knowledge

states based on 𝑋𝑛 and predict the probability of correctly answer-
ing the next problem, that is, 𝑝 (𝑟𝑛+1 = 1|𝑝𝑛+1, 𝑋𝑛).

4 THE PSKT MODEL
Students increase their knowledge by practicing problems, so the
core of PSKT is quantifying learners’ knowledge growth by de-
constructing their problem-solving process. As shown in Figure 2,
to model the learners’ problem-solving process and analyze their
knowledge transformation, we designed a sequence neural network
(SNN). The PSKT model comprises four main modules: problem
representation, knowledge acquisition, application, and updating.
First, we present a knowledge-centered problem representation
that enhances its expression by adjusting problem variability. Then,
we model learners’ personalized problem perception and knowl-
edge acquisition degree in the knowledge acquisition module. Next,
PSKT measures the knowledge application level based on knowl-
edge acquisition and calculates problem response by IRT. Finally,
the knowledge update module quantifies the degree of knowledge
internalization and forgetting. The design of the SNN is inspired
by problem-solving theory [9] and constructivist learning theory
[10], ensuring good interpretability.

4.1 Problem Representation
Understanding the nature, scope, and relevant factors of a problem
is prerequisite for solving it. Early KT methods used KCs to replace
problems, or directly concatenated problems and KCs. However,
these methods simply fused information without considering the
primary and secondary relationships of the problems. Since the
goal of exercises is to learn knowledge, the KCs examined by the
problems are of utmost importance. Moreover, problems that test
the sameKCs can have different effects on learning and performance
due to differences in difficulty and discrimination. In the PSKT, we
consider both the primary-secondary relationships and problem
attributes to enhance problem representation:

𝑝𝑎𝑛 = 𝜎

(
W𝑇
𝑝𝑎P𝑛 + b𝑝𝑎

)
, 𝑝𝑎𝑛 ∈ {𝑑𝑛, 𝛼𝑛} , (1)

P̃𝑛 = K𝑛 + (𝜙 × 𝑑𝑛 + 𝜑 × 𝛼𝑛) × P𝑛, (2)

whereW𝑝𝑎 ∈ R𝑑ℎ×1, 𝑑ℎ is embedding dimension. 𝑑𝑛 is difficulty,
𝛼𝑛 is discrimination, and both are scalars. The representation is
inspired by𝑚𝑒𝑎𝑛±𝜇 ·𝑠𝑡𝑑 .K𝑛 is the KC embedding, P𝑛 is the original
problem embedding. (𝜙 × 𝑑𝑛 + 𝜑 × 𝛼𝑛) is coefficient of variation,
𝜙, 𝜑 are trainable weights.

4.2 Knowledge Acquisition
According to problem-solving theory, knowledge acquisition re-
quires learners to first clarify the problem, ensure an understanding
of critical aspects of the problem (problem perception), and then
acquire knowledge about the problem (knowledge acquisition).

(1) Problem Perception. The learner’s solution to a problem
begins with the construction of an internal representation of the
external problem statement, i.e., the "problem space" (including
the initial state, the goal state, and the adapted operators) [14]. To
simulate the learner’s personalized perception of the problem, we
integrate the learner’s prior knowledge H𝑛−1 and problem rep-
resentation P̃𝑛 to represent the initial state and goal state in the
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Figure 2: The architecture of the PSKT model.

problem space. We use the difference between the goal state EP𝑛
and the initial state SP𝑛 to represent the applicable operations OP𝑛 :

PP𝑛 = W𝑇
𝑃𝑃

(
P̃𝑛 ⊕ H𝑛−1

)
+ b𝑃𝑃 , PP𝑛 ∈ { SP𝑛, EP𝑛} , (3)

OP𝑛 = EP𝑛 − SP𝑛, (4)
where ⊕ is concatenate,W𝑃𝑃 ∈ R(𝑑ℎ+|𝐾 | )× |𝐾 | and |𝐾 | is the total
number of KCs.

(2) Knowledge Acquisition. Knowledge acquisition involves
the systematic generation and integration of information. This in-
cludes acquiring knowledge from the external environment as well
as constructing new knowledge through internal thought processes.
In the KT scenario, external knowledge comes from the initial state
of the problem SP𝑛 (known conditions), and internal knowledge is
derived from the learner’s previous knowledge state H𝑛−1. We use
the tanh to generate candidate values. The specific formula is:

KA𝑛 = tanh
(
W𝑇
𝐾𝐴 (SP𝑛 ⊕ H𝑛−1) + b𝐾𝐴

)
, (5)

since learners have limited memory capacity, they will selectively
focus on the most relevant and core aspects of the problem during
the knowledge acquisition process in order to conduct more effec-
tive planning [8]. Therefore, we further design a gate to select and
retain the essential parts through the problem information.

Γ𝐾𝐴𝑛 = 𝜎

(
W𝑇

Γ𝐾𝐴 (SP𝑛 ⊕ EP𝑛 ⊕ OP𝑛) + bΓ𝐾𝐴
)
, (6)

K̃A𝑛 = Γ𝐾𝐴𝑛 × KA𝑛, (7)

where 𝜎 is sigmoid,W𝐾𝐴 ∈ R2 |𝐾 |× |𝐾 | ,WΓ𝐾𝐴 ∈ R3 |𝐾 |× |𝐾 | .

4.3 Knowledge Application
Acquiring knowledge is only the beginning of problem-solving.
What is more important is how to apply knowledge to actual prob-
lems or situations. During practice, learners transform acquired
theoretical knowledge into practical abilities, propose solutions
(knowledge application), and then implement actions to achieve
the expected goals (problem answering).

(1) Knowledge Application. Knowledge application involves
transforming abstract knowledge into concrete action plans and
adapting and refining these in practice. The solution is contained in
the adapted operators of problem space, andwe use tanh to generate
possible solutions. Learners need to flexibly apply knowledge to
make a series of dynamic decisions and continuously monitor the
consequences of these decisions to achieve the goal as much as
possible. Therefore, we designed a gate Γ𝐾𝑃 led by problem goals
and knowledge acquisition to determine the learner’s final solution.

Γ𝐾𝑃𝑛 = 𝜎

(
W𝑇

Γ𝐾𝑃

(
EP𝑛 ⊕ K̃A𝑛

)
+ bΓ𝐾𝑃

)
, (8)

K̃P𝑛 = Γ𝐾𝑃𝑛 × tanh (OP𝑛) . (9)
(2) Problem Answering. Applying knowledge is to achieve

goals. IRT shows that whether students can answer problems cor-
rectly depends not only on their knowledge application but also on
the problem itself. Inspired by the Four-parameter IRT and BKT, we
simulate students’ responses by fully considering problem factors
(difficulty, discrimination), learner knowledge factors (knowledge
application), and learner behavioral factors (guessing and slipping).
The core functions are as follows:

K̂P𝑛 = 𝜎

(
W𝑇

2 · ReLU
(
W𝑇

1

(
K̃P𝑛 ⊕ P̃𝑛

)
+ b1

)
+ b2

)
(10)

𝑟𝑛 = 𝐺𝑛

1 −
1

1 + 𝑒−𝐷𝛼𝑛
(
K̂P𝑛−𝑑𝑛

) +(1 − 𝑆𝑛)


1

1 + 𝑒−𝐷𝛼𝑛
(
K̂P𝑛−𝑑𝑛

)  ,
(11)

whereW1 ∈ R( |𝐾 |+𝑑ℎ )×𝑑ℎ ,W2 ∈ R𝑑ℎ×|𝐾 | . The first term in Equa-
tion (11) represents the probability that the learner has not mastered
the knowledge but guessed correctly, and the second term indicates
that the learner can answer correctly without slipping. 𝐷 is a con-
stant with a value of 4 × 1.7 [4]. 𝐺𝑛 is guessing, and 𝑆𝑛 is slipping:

𝐺𝑆𝑛 = 𝜆 × 𝜎
(
W𝑇
𝐺𝑆

(
K̂P𝑛 ⊕ P̃𝑛

)
+ b𝐺𝑆

)
,𝐺𝑆𝑛 ∈ {𝐺𝑛, 𝑆𝑛} , (12)

where 𝜆 is hyperparameter, indicating the threshold of guessing
and slipping,W𝐺𝑆 ∈ R( |𝐾 |+𝑑ℎ )×1.
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4.4 Knowledge Updating
After practice, the learner’s knowledge state changes. Constructivist
learning theory [10] suggests that increasing knowledge mastery
reflects knowledge internalization, while forgetting leads to a re-
duction in knowledge. Thus, learner state updating includes both
knowledge internalization and forgetting.

(1) Knowledge internalizing. Knowledge internalizing is how
learners transform external knowledge, experience or information
into thinking structures and cognitive patterns. In the problem-
solving process, the learner’s new knowledge originates from the
problems, so we fuse all the information of the problems to obtain
the candidate value of knowledge increment. Constructivist learn-
ing theory shows that learning is an active construction process, so
we tend to think that the entire practice process positively impacts
learners, and use (tanh (�) + 1) /2 as a non-negative constraint op-
erator to ensure that the increment is non-negative.

KI𝑛 =

(
tanh

(
W𝑇
𝐾𝐼 (SP𝑛 ⊕ EP𝑛 ⊕ OP𝑛) + b𝐾𝐼

)
+ 1

)
/2. (13)

Through internalization, learners do not simply accept information
but integrate it into their cognitive framework. Thus, even if differ-
ent learners answer the same problem, the level of knowledge they
internalize will be different due to differences in the knowledge
they acquire, the knowledge they apply, and the results of their
answers. To this end, we propose a growth indicator to determine
the learner’s personalized knowledge increment.

Γ𝐾𝐼𝑛 = 𝜎

(
W𝑇

Γ𝐾𝐼

(
K̃A𝑛 ⊕ K̃P𝑛 ⊕ R𝑛

)
+ bΓ𝐾𝐼

)
, (14)

H̃𝑛 = H𝑛−1 + Γ𝐾𝐼𝑛 × KI𝑛, (15)
where R𝑛 is response embedding,WΓ𝐾𝐼 ∈ R(2 |𝐾 |+𝑑ℎ )× |𝐾 | .

(2) Knowledge Forgetting. Limited by the human memory
system, although learners may delay the occurrence of forgetting
through review and reinforcement learning, forgetting is still a
continuous process [22]. Therefore, current knowledge may be for-
gotten over time intervals. In order to model the complex forgetting
effect, we design a forgetting gate as follows:

Γ𝐾𝐹𝑛 = 𝜎

(
W𝑇

Γ𝐾𝐹

(
IT𝑛 ⊕ �P𝑛+1 ⊕ H̃𝑛

)
+ bΓ𝐾𝐹

)
, (16)

H𝑛 = Γ𝐾𝐹𝑛 × H̃𝑛, (17)
where time interval is 𝑖𝑡𝑛 = 𝑡𝑠𝑛+1−𝑡𝑠𝑛 , in minutes. IT𝑛 is embedding
of 𝑖𝑡𝑛 , and we set all intervals greater than 1 month to 1 month.

4.5 Objective Function
To train all parameters Θ in PSKT, we use cross-entropy log loss
between the predicted response 𝑟𝑛 and the actual response 𝑟𝑛 as
the objective function, minimized with the Adam optimizer:

L𝑟 (Θ) =
𝑁∑︁
𝑛=1

− [𝑟𝑛 log 𝑟𝑛 + (1 − 𝑟𝑛) log(1 − 𝑟𝑛)], (18)

5 EXPERIMENTS
In this section, we conduct extensive experiments to answer the
following questions:

• RQ1.What is the predictive performance of PSKT?
• RQ2. Can PSKT reasonably explain the learning process?

Table 1: Details of the all datasets.

datasets Students Problems KCs Responses
ASSIST12 29,018 53,091 265 2,711,813
ASSIST17 1,709 3,162 102 942,816
EdNet-KT1 100,000 12,267 189 12,092,643
Junyi 247,606 722 41 25,926,003
Eedi 118,971 27,613 1,989 15,867,850

• RQ3. How effective is the problem representation of PSKT?
• RQ4.What is the impact of each element in PSKT?

5.1 Experimental Setting
5.1.1 Dataset. We selected five commonly used and large public
datasets in KT to evaluate the effectiveness of PSKT: ASSIST121,
ASSIST172, EdNet-KT13, Junyi4, Eedi5. The statistical information
of datasets is shown in Table 1. We filtered learning records for all
datasets with missing relevant KCs and removed problems with
fewer than 10 occurrences and learners with fewer than 3 response
records. Due to the large size of the Ednet-KT1, which contains
95,293,926 records, we randomly selected 100,000 learners [34, 41].
For datasets where a problem assesses multiple KCs, we use the
average of all KC embeddings to represent the final KC embedding.

5.1.2 Training Details. We set all input sequences to a fixed length
of 100. For sequences of length greater than 100, we cut them
into several unique subsequences. We performed the 5-fold cross-
validation. For each fold, 80% of the learned sequences are split into
training and validation sets (the ratio is 8:2), and the remaining 20%
serves as the test set. The parameters 𝑑ℎ , learning rate, 𝜆 are set to
256, 0.001, 0.5. On the smaller ASSIST12 and ASSIST17 datasets, the
batch size is 64, while on other larger datasets is 512. We used an
early stopping mechanism with 3 epochs of patience. For fairness,
the baselines’ hyper-parameters are carefully tuned to achieve op-
timal performance. All experiments were performed on a Linux
server with an NVIDIA GeForce RTX3090.

5.1.3 Baselines. We compared PSKT with 11 baselines to evaluate
its effectiveness.

• DKT uses the hidden state of RNN to represent the learner’s
knowledge state. [31]

• DKVMN defines a static KC matrix and a dynamic state
matrix, using read and write operations to update state. [45]

• SAKT utilizes the self-attention mechanism to capture the
relationships between historical records. [28]

• Deep-IRT utilizes DKVMN to estimate the learner’s ability
and uses IRT to compute the correct probability. [42]

• DKT-F incorporates temporal information intoDKT tomodel
learner forgetting behavior. [25]

• AKT enhances problems’ personalized embedding by IRT
and captures the learner’s state by attention mechanism. [11]

1https://sites.google.com/site/assistmentsdata/2012-13-school-data-withaffect
2https://sites.google.com/view/assistmentsdatamining/dataset
3https://github.com/riiid/ednet
4https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1198
5https://eedi.com/projects/neurips-education-challenge

https://sites.google.com/site/assistmentsdata/2012-13-school-data-withaffect
https://sites.google.com/view/assistmentsdatamining/dataset
https://github.com/riiid/ednet
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1198
https://eedi.com/projects/neurips-education-challenge
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Table 2: Comparative results of student response prediction. The best results are in bold, and the next best are underlined. *
indicates p-value < 0.05 in the t-test compared to the second-best result.

Datasets Metrics DKT DKVMN SAKT Deep-IRT DKT-F AKT SAINT LPKT ATDKT FKT PKT PSKT

ASSIST
-12

AUC 0.7191 0.7261 0.7741 0.7660 0.7504 0.7938 0.7856 0.7974 0.7631 0.7931 0.7938 0.8252∗

ACC 0.7313 0.7301 0.7553 0.7522 0.7451 0.7664 0.7640 0.7692 0.7519 0.7667 0.7647 0.7838∗

RMSE 0.4272 0.4258 0.4090 0.4116 0.4169 0.4006 0.4037 0.3987 0.4120 0.4006 0.4011 0.3858∗

R2 0.1354 0.1410 0.2077 0.1992 0.1786 0.2415 0.2305 0.2468 0.1976 0.2400 0.2398 0.2966∗

ASSIST
-17

AUC 0.7295 0.7511 0.7355 0.7500 0.7518 0.7781 0.7649 0.8058 0.7488 0.7888 0.7947 0.8182∗

ACC 0.6940 0.7043 0.7053 0.7139 0.7054 0.7210 0.7113 0.7414 0.7026 0.7326 0.7327 0.7503∗

RMSE 0.4454 0.4379 0.4419 0.4364 0.4376 0.4308 0.4323 0.4136 0.4389 0.4224 0.4194 0.4075∗

R2 0.1556 0.1839 0.1690 0.1896 0.1852 0.2101 0.2048 0.2719 0.1803 0.2408 0.2515 0.2933∗

EdNet
-KT1

AUC 0.7128 0.7401 0.7590 0.7600 0.7316 0.7623 0.7509 0.7645 0.7413 0.7639 0.7588 0.7749∗

ACC 0.6961 0.7138 0.7213 0.7229 0.7054 0.7247 0.7166 0.7262 0.7099 0.7247 0.7216 0.7318∗

RMSE 0.4438 0.4346 0.4285 0.4280 0.4379 0.4271 0.4316 0.4251 0.4348 0.4267 0.4286 0.4220∗

R2 0.129 0.1646 0.1882 0.1900 0.1521 0.1933 0.1763 0.2009 0.1639 0.1946 0.1876 0.2125∗

Junyi

AUC 0.7510 0.7964 0.7976 0.7971 0.7646 0.7995 0.7958 0.8004 0.7839 0.8035 0.7970 0.8057∗

ACC 0.8457 0.8523 0.8531 0.8525 0.8477 0.8537 0.8527 0.8530 0.8503 0.8550 0.8539 0.8558∗

RMSE 0.3445 0.3336 0.3329 0.3333 0.3414 0.3322 0.3337 0.3323 0.3370 0.3309 0.3326 0.3296∗

R2 0.1584 0.2108 0.2140 0.2121 0.1735 0.2173 0.2103 0.2168 0.1949 0.2233 0.2155 0.2298∗

Eedi

AUC 0.7714 0.7691 0.7760 0.8068 0.7813 0.8082 0.8045 0.8053 0.7928 0.8065 0.8087 0.8201∗

ACC 0.7240 0.7224 0.7244 0.7470 0.7313 0.7480 0.7450 0.7461 0.7375 0.7476 0.7487 0.7571∗

RMSE 0.4273 0.4278 0.4253 0.4113 0.4228 0.4106 0.4126 0.4120 0.4179 0.4114 0.4104 0.4045∗

R2 0.2042 0.2023 0.2116 0.2628 0.2210 0.2651 0.2581 0.2602 0.2389 0.2625 0.2661 0.2867∗

• SAINT directly applies transformer technology and sepa-
rates problems and responses in interactions. [5]

• LPKT uses response times and intervals to model learning
process, calculating learning gains and forgetting. [33]

• ATDKT improves performance by adding KC prediction and
learner prior knowledge prediction tasks. [21]

• PKT uses IRT to compute students’ knowledge states and
models answering behaviors (guessing and slipping). [34]

• FKT feeds response and interval time into the transformer
to enrich the learner’s observable performance. [15]

5.2 Student Performance Prediction (Q1)
We measure model performance in terms of area under the curve
(AUC), accuracy (ACC), root mean square error (RMSE), and Pear-
son correlation squared (R2). Consistent with previous work [15,
33, 35], we set the accuracy threshold to 0.5. We used the average
result of 5-fold cross-validation on the test set as the experimental
result. Since the Eedi does not have response time features, the FKT
and LPKT results on Eedi are after eliminating response time.

The experimental results are shown in Table 2, and PSKT out-
performs all baseline methods on all datasets and metrics. The
excellent performance of PSKT shows that comprehensively mod-
eling the learner’s problem-solving process significantly impacts
understanding the learning process and predicting learning perfor-
mance. Secondly, compared with the most advanced deep learning
models, the superiority of the PSKT framework also shows that
the factor that restricts the performance of the current KT method
is not the expressive ability of the algorithm but the design of a
scientific framework that conforms to students’ cognitive rules.

Third, the psychometric model IRT uses educational parameters to
enhance the interpretability of the model. Among the models com-
bined with IRT (AKT, Deep-IRT, PKT, PSKT), PSKT performs best,
further proving the PSKT algorithm mechanism. The superiority
of it takes into account both high accuracy and interpretability.

5.3 Explain the learning process (Q2)
To prove that PSKT can capture students’ reasonable knowledge
states, we conducted experiments on learning process analysis.
In Figure 3, we randomly select a student from each dataset and
visualize their learning process when they practiced the same KC
consecutively. We illustrate the superiority of PSKT in two aspects.

(1) Knowledge state rationality. The rationality of the knowl-
edge state includes the stability of the knowledge state curve and
the rationality of the knowledge state value. First, the knowledge
state curve fitted by PSKT is more stable. We quantify fluctuations
based on the differences in knowledge states for all KCs between
each student’s adjacent two responses. As shown in the box plots
in Figure 4 (a), PSKT is the most stable across the three models.
Learners’ knowledge mastery is directional and will not fluctuate
drastically in a short period [24]. As shown in Figure 3, the knowl-
edge concept curves of Deep-IRT and DKT often decline and rise
sharply. In contrast, PKT has more minor fluctuations because it de-
signs a penalty mechanism for knowledge state changes. However,
this mechanism can only alleviate the irrationality but does not
really solve the problem and sacrifices the model’s performance.
On the contrary, PSKT is based on human problem-solving theory
and uses a scientific and reasonable framework to make the curve
more directional.
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Figure 3: Compare the interpretability of DKT, Deep-IRT, PKT and PSKT for the learning process.

Secondly, PSKT tracked more reasonable knowledge state values.
DKT, Deep-IRT, and PKT obtained high knowledge values (>0.5)
when learners responded correctly and decreased when incorrect.
In ASSIST12, when the student answered the 4th (indices start from
0) problem incorrectly, the PKT knowledge value dropped from
0.56 to 0.30 and significantly increased when he/she answered the
last three problems correctly (0.31→0.71). PSKT believes learners’
knowledge states have always been relatively stable (all around
0.55) and attributes correct answers to the improvement of students’
application levels. First, the 4th problem was the most difficult of
the whole practice (56% error rate), so the student answered in-
correctly because of a mismatch between knowledge state and
difficulty rather than a decline in knowledge. The reason that learn-
ers can answer the last three exercises correctly is not because their
knowledge has increased significantly but because the learners’
knowledge application level has improved during the practice.

(2) Learning process interpretability. Compared with other
methods, PSKT provides more educational parameters to explain
the learning process. DKT attributes student performance entirely
to knowledge mastery, Deep-IRT adds the effect of problem diffi-
culty, and PKT considers student guessing and slipping behavior.
However, these models rely heavily on a sudden drop in knowledge
mastery to explain responses incorrectly, whereas PSKT provides
a more reasonable explanation. For example, on the Eedi dataset,
the student incorrectly answered six consecutive problems that
examined 154 KC, which DKT and PKT attributed to a decrease in
students’ knowledge mastery. We think that the practice process
positively affects learners and that students’ knowledge mastery
does not decline significantly during continuous answering. Specifi-
cally, although students answered problems 1 and 2 correctly, PSKT
considered that learners’ mastery of this knowledge was still only
about 0.5 because of the low difficulty of these two problems. The

student answered the last 6 problems incorrectly, though, which
PSKT attributed to the high difficulty and the low level of knowl-
edge application. At the same time, students correctly answered
the first problem (more difficult) but incorrectly answered the last
two problems, which PSKT attributed to the slipping.

5.4 Study the Problem Representation(Q3)
In this section, we conduct some experiments to demonstrate the
reliability of the problem representation learned in PSKT, including
the effectiveness of problem difficulty assessment and the inter-
pretability of the problem representation.

(1) Validity of problem difficulty assessment. Since there is
no problem difficulty indicator in all datasets, to evaluate the effec-
tiveness of the difficulty learned by PSKT, we refer to the Classical
Test Theory [37] and previous KT work that considers difficulty
[24, 32, 46], and defines the statistical difficulty of the problem as the
error rate. We conducted a Pearson correlation test between the two
difficulties. The experimental objects are the problems involved
in the test set. The experimental results are shown in subgraph
(b1) in Figure 4. PSKT learned difficulty is strongly correlated with
statistical difficulty (>0.7) on all datasets, which demonstrates the
reliability of its problem difficulty. In addition, the scatter plot on
ASSIST17 also shows a certain degree of correlation and consistency
between the two difficulties (Figure 4 (b2)).

(2) Interpretability of problem representation. We visualize
the correlation weights between problems by computing the cosine
similarity of the problem representations, as shown in Figure 5. We
randomly selected eight questions on ASSIST17. These problems
tested two KCs (9, 74). First, the correlation weights tend to be
higher between problems that test the same KC, such as problems
1, 2, and 3. Secondly, when different problems have the same KC,
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Figure 5: Weights of problem representations on ASSIST17.
The label [𝑖, 𝑗, 𝑘] indicates [𝐾𝐶,𝑑𝑖 𝑓 𝑓 𝑖𝑐𝑢𝑙𝑡𝑦, 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛].

the closer the difficulty and discrimination of the problems are, the
higher the similarity, for example, [9,0.60,0.81] and [9,0.58,0.85].

5.5 Ablation experiments(Q4)
We explore the impact of each module in PSKT through ablation
experiments. As shown in Table 3, we selected 6 variants, each
removing an element from the PSKT. PR is replacing the problem
representation with concatenate, EP denotes removing problem
perception, KA means removing knowledge application, and KP
denotes removing knowledge acquisition. KI is knowledge internal-
ization without considering knowledge acquisition and Knowledge
application, KF represents removing knowledge forgetting.

First, knowledge forgetting is vital in the learning process, and
deleting this module causes the most significant performance drop.

Table 3: Results of ablation experiments.

Data Metrics PR EP KA KP KI KF PSKT

ASSIST
-12

AUC 0.8248 0.8158 0.8243 0.8232 0.8244 0.8132 0.8252
ACC 0.7834 0.7784 0.7823 0.7817 0.7830 0.7764 0.7838
RMSE 0.3861 0.3905 0.3866 0.3871 0.3864 0.3918 0.3858
R2 0.2954 0.2793 0.2935 0.2918 0.2942 0.2744 0.2966

ASSIST
-17

AUC 0.8175 0.8146 0.8157 0.8166 0.8141 0.8078 0.8182
ACC 0.7496 0.7476 0.7485 0.7490 0.7473 0.7433 0.7503
RMSE 0.4080 0.4096 0.4088 0.4083 0.4097 0.4127 0.4075
R2 0.2917 0.2861 0.2889 0.2905 0.2856 0.2753 0.2933

Ednet
-KT1

AUC 0.7745 0.7729 0.7686 0.7724 0.7667 0.7640 0.7749
ACC 0.7311 0.7329 0.7277 0.7304 0.7261 0.7247 0.7318
RMSE 0.4222 0.4223 0.4247 0.4230 0.4256 0.4264 0.4220
R2 0.2119 0.2151 0.2025 0.2089 0.1991 0.1961 0.2125

Junyi

AUC 0.8052 0.8042 0.8048 0.8049 0.8042 0.8040 0.8057
ACC 0.8555 0.8550 0.8553 0.8554 0.8552 0.8555 0.8558
RMSE 0.3298 0.3303 0.3300 0.3299 0.3302 0.3303 0.3296
R2 0.2286 0.2262 0.2280 0.2281 0.2267 0.2265 0.2298

Eedi

AUC 0.8194 0.8193 0.8183 0.8180 0.8170 0.8090 0.8201
ACC 0.7569 0.757 0.7561 0.7555 0.7547 0.7482 0.7571
RMSE 0.4047 0.4049 0.4054 0.4057 0.4065 0.4103 0.4045
R2 0.2861 0.2854 0.2839 0.2827 0.2799 0.2663 0.2867

According to the design of PSKT, if forgetting is not considered,
the learner’s knowledge mastery will continue to increase (or re-
main unchanged) as the number of exercises increases, making
it challenging to identify incorrect answers. Secondly, the impact
of problem perception is also significant. This is because problem
perception involves modeling the problem’s initial state, the target
state, and the adapted operator. These three variables are through-
out the entire problem-solving process. Third, both knowledge
acquisition and knowledge application contribute to the perfor-
mance of PSKT, proving that knowledge acquisition and knowledge
application are both indispensable processes for problem-solving.

6 CONCLUSION
In this paper, we propose a problem-solving process-oriented knowl-
edge tracing model (PSKT) to explore the cognitive process of how
students transform theoretical knowledge into practical skills. Ac-
cording to the three stages of practice, before problem-solving, we
first obtain students’ personalized perceptions of the problem, and
simulate the students’ acquisition of the problem-related knowledge.
During problem-solving, we model the learner’s level of knowl-
edge application toward the problem target and use educationally
meaningful parameters for performance attribution to predict the
learner’s response. After problem-solving, we design an update
indicator to measure their level of knowledge internalization and
the forgetting effect over time intervals. Finally, we conducted
extensive experiments to validate the effectiveness of PSKT. In addi-
tion, PSKT not only performs well in response prediction, but also
more reasonably evaluates learners’ knowledge mastery patterns,
provides educational insights into students’ success or failure in
problems. Looking forward, PSKT still has room for improvement.
For example, we can consider collecting the details of students’
answers to problems and using large language model technology to
capture students’ knowledge transformation in a more fine-grained
manner from the students’ answer steps.
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