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A APPENDIX

A.1 INTRODUCTION ABOUT COMPARED APPROACHES

• Fine-tuning: With a ResNet-32 trained from scratch, ResNet-32 is trained on every task
with the same linear head using the cross-entropy loss for every new task. Hence, it suffers
from severe catastrophic forgetting.

• Joint (Oracle): Incrementally training the model by replaying all samples from previous
tasks at each incremental step as an upper bound of accuracy for continual learning.

• LwF Li & Hoiem (2016): intends to prevent forgetting by using knowledge distillation Hin-
ton et al. (2015). Incorporating historical information into the present model creates a
mapping between the last-stage model and the current model for every new job.

• EWC Kirkpatrick et al. (2017): Elastic Weight Consolidation (EWC) is a continual learning
technique that prevents catastrophic forgetting by preserving important weights from pre-
vious tasks. It calculates the Fisher information matrix to identify critical parameters and
adds a regularization term to the loss function for new tasks. This term penalizes changes to
essential weights, balancing learning new tasks while retaining old knowledge. The updated
loss function is:

Ltotal = Lnew task + λ
∑
i

Fi(θi − θ∗i )
2 (13)

Where Fi is the Fisher information matrix, θ∗i represents the previous task weights, and λ is
the regularization strength.

• PASS Zhu et al. (2021b): Prototype Augmentation and Self-Supervision for Incremental
Learning, uses the prototypical network to classify the input classes and memorize the stored
prototypes to update in each incremental stage with supervised-contrastive loss.

Lsup_contrastive =
∑
i∈I

1

|P (i)|
∑

p∈P (i)

− log
exp(sim(zi, zp)/τ)∑

a∈A(i) exp(sim(zi, za)/τ)
(14)

• LUCIR Hou et al. (2019a): LUCIR reveals that forgetting is due to data imbalances between
previous and new data and solves it with the help of cosine normalization, less-forget
constraints, and inter-class separation. It also utilizes the knowledge distillation as Li &
Hoiem (2016) with supervised contrastive loss during optimization.

• IL2A Zhu et al. (2021a): IL2A uses implicit semantic and class augmentation to mitigate
the representation and classifier bias dilemmas with the help of spectral analysis of learning
transferable and diverse representation.

• FetrIL Petit et al. (2023): FetrIL combines features extractor and pseudo-features generator
to improve stability-plasticity with the help of geometric translation of new class features to
recreate the representation of past classes

• Elastic Feature Consolidation (EFC) Magistri et al. (2024): EFC regularizes changes
in directions in feature space most relevant for previously learned tasks and allows more
plasticity in other directions with the help of the establishment of a pseudo-metric in feature
space generated by a matrix termed the Empirical Feature Matrix (EFM). The Empirical
Feature Matrix (EFM) Loss is given as the following:

LEFM
t = Ex∈Xt

[
(ft(x)− ft−1(x))

T
(λEFMEt−1 + ηI) (ft(x)− ft−1(x))

]
(15)

where ft(x) and ft−1(x) ∈ Rn represent the features of the sample x extracted from the
current model and the previous model, respectively.

• FeCAM Goswami et al. (2024): FeCAM explores Bayesian prototypical networks for CIL,
which generate new class prototypes using the frozen feature extractor and classify the
features based on the Mahalanobis distance to the prototypes during inference.

• SEED Rypeść et al. (2023): SEED approximates the class prototypes using the Gaussian
mixture model and computes the log-likelihood of the input features through the GMM as
the inference. They use feature distillation as the regularizer.
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• RanPAC McDonnell et al. (2024): RanPAC exploits parameter efficient fine-tuning (PEFT)
to fine-tune Pre-Trained Model-based features extractor, trained on ImageNet-21k to extract
the features and uses the random projection in the generated features to better estimate the
non-linear decisions boundary with the optimizing ridge-regression.

• EASE Zhou et al. (2024b): uses an adapter to fine-tune PTM-based features extractor,
trained in Imagenet-21k to extract the features and completes the uses of the prototypical
network to infer the class during the inference. It uses cosine-similarity to complete the
prototype of the old class in the new subspace. They trained task-specific adapters to
distinguish the class.

A.2 IMPLEMENTATION DETAILS

We simulate ProCEED based on the standards of the widely used continual learning (CL) framework,
FACIL, as outlined by Masana et al. (2022b). The comparison results are either reproduced from the
official implementations provided by the authors or through the FACIL and PyCIL frameworks (Zhou
et al., 2021). The code is written in Python Van Rossum & Drake Jr (1995), utilizing the PyTorch
machine learning library Paszke et al. (2019). All simulations were run on an NVIDIA RTX A6000
Ada Generation GPU with 48GB of memory. ProCEED is trained using the Stochastic Gradient
Descent (SGD) optimizer for 200 epochs per task, with a momentum of 0.9, weight decay of 0.0005,
and an initial learning rate of 0.05. The learning rate is decreased by a factor of 10 after 60, 120,
and 160 epochs. Additional hyperparameters include an α value of 0.99 and a temperature τ of 3.
Knowledge distillation is applied using the L2 distance in the latent space embeddings. The model is
configured with 5 experts by default, and the dimensionality of the latent space feature representation
is 64. A manual hyperparameter search using Grid Search on a validation dataset is conducted to
optimize ProCEED’s performance.

A.3 MORE ON DATASET SPLITS

• Cold-start CIL and DIL scenarios: we have evenly distributed the whole dataset in an
equal number of classes in all incremental steps. Due to fewer initial classes, this approach
weakens the feature extractor and is better for the assessment of the model’s plasticity. We
have reproduced the baseline results for this setting using the FACIL Masana et al. (2022b)
and PyCIL Zhou et al. (2021) frameworks for both CIL and DIL experiments. We have
applied augmentation techniques: random crops, horizontal flips, cutouts, and AugMix
Hendrycks et al. (2019) to train all the baselines.

• Warm-start CIL and DIL training strategy: we follow the same approach as Hou et al.
(2019b), where the initial task contains 50% of the total classes, and the rest of the classes
are split evenly. This approach yields a more robust feature-extracting backbone. Employing
this setting allows the shared feature extractor to achieve improved results but has limited
plasticity. We reproduced the results for this setting from the baselines provided by FeTrIL
Petit et al. (2023). Both the cold-start and warm-start scenarios follow the task-agnostic
evaluation setting, where the task-id is unknown during the inference.

• Task-incremental scenarios: This is a task-aware setting, where task-id is available during
the inference. For this setting, we reproduced the baseline results from Wang et al. (2022d).
We have used a pre-trained feature extractor from ResNet-32 He et al. (2016a). Similar
augmentation techniques applied in the cold-start setting are used for this simulation as
well.

A.4 FEATURE EXTRACTOR BACKBONE

Following the approach in Rypeść et al. (2023), we utilized the same multi-head modified ResNet-32
architecture. During training, the network’s final layer was replaced with an identity function. In the
original ResNet blocks, ReLU activation functions are placed at the end of each block, which results
in latent feature vectors composed of positive values. As a result, the random variables corresponding
to each class are constrained within the interval [0;∞)N , where N is the dimension of the latent
vector. However, Gaussian distributions require random variables defined over real-valued intervals.
This restriction imposed by the ReLU activation limits the ability of the algorithm to represent classes
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as multivariate Gaussian distributions. To mitigate this, we excluded the final ReLU activation in
each block’s last layer of the ResNet architecture.

A.5 EVALUATION METRICS

In continual learning, many evaluation metrics rely on the Accuracy Matrix R ∈ RT×T , where T
is the total number of tasks (or domains). In the accuracy matrix R, the entry Ri,j represents the
accuracy of the model on task j after completing training on task i. In the proposed framework, we
focus on the following specific metrics.

Average Incremental Accuracy (Avg. Acc.) up to task t is defined as the average accuracy across
the first t tasks after incremental training on these tasks. We denote this metric as At and define it as:

At ≜
1

t

t∑
i=1

Rt,i. (16)

In this work, we have computed two different forms of accuracies based on Equation 12. Task-aware
accuracy (TAw Acc), where the task-id is available during the inference and the model performs
comparatively higher when it knows which task/domain is being evaluated. A more practical and
difficult metric, Task-agnostic accuracy (TAg Acc), is when the model is evaluated without the
task-id during inference. Furthermore, for the Task-aware setting, we have evaluated the Last Iterate
accuracy (LTAw) to assess how much the model’s average performance deviates with respect to its
last incremental session.

A.6 STORAGE REQUIREMENTS

The total number of parameters needed for ProCEED are:

|θF |+K |θG |+
K∑
i=1

T∑
j=i

|Cj |
(
N +

N(N + 1)

2

)
(17)

where |θF | and |θG | represent the number of parameters of F and G functions, respectively. N is the
dimensionality of the embedding feature space, K is the number of experts, T is the number of tasks,
and |Cj | is the number of classes in the j-th task. Table 5 shows the comparison of the model for
various numbers of experts. We can see that the ProCEED performs consistently better even with
fewer experts as compared to Rypeść et al. (2023); Wang et al. (2022a).

A.7 EUCLEDIAN NEAREST CLASS MEANS (NCM) CLASSIFIER

Class Representation (Centroids): For each class k, we compute the mean (centroid) of the feature
vectors extracted by a function Fk, parameterized by θ, on overall tasks. Let Xt denote the data from
task t and T be the total number of tasks. The feature representation for class k is defined as:

fk =

T∑
t=1

Fk(Xt;θ) (18)

For each class, the centroid (mean vector) ck is then calculated as the mean of these feature vectors.
Let the feature vectors of the training samples from class k be denoted as {fk

i }
nk
i=1, where nk is the

number of samples in class k. The centroid for class k, denoted as ck, is given by:

ck =
1

nk

nk∑
i=1

fk
i (19)

Classification: Given a new sample with a feature vector f extracted as f = F(X ;θ), we classify
the sample by finding the nearest class centroid. The predicted class k̂ for the sample f is:
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k̂ = argmin
k
∥f − ck∥ (20)

where ∥ · ∥ represents the Euclidean distance.

Euclidean Distance: For each class k, the Euclidean distance between the sample’s feature vector f
and the class centroid ck is calculated as:

d(f, ck) = ∥f − ck∥ =

√√√√ d∑
j=1

(fj − ck,j)2 (21)

where d is the dimensionality of the feature space, and fj and ck,j are the j-th components of the
vectors f and ck, respectively.

We can summarize NCM classifier steps as follows:

1. Compute the feature vector fk =
∑T

t=1 Fk(Xt;θ) for each class k.
2. Compute the centroid ck for each class k as the mean of the feature vectors.
3. For a new sample f , compute the distance d(f, ck) for each class.
4. Assign the sample to the class with the nearest centroid:

k̂ = argmin
k

d(f, ck) (22)

A.8 BAYESIAN NEAREST CLASS MEANS (NCM) CLASSIFIER

Mahalanobis Distance: The Mahalanobis distance is commonly employed to quantify the distance
between a data sample x and a distribution D. When the distribution is characterized by a mean µ
and an invertible covariance matrix Σ ∈ RD×D, the squared Mahalanobis distance can be expressed
as:

DM (x, µ) = (x− µ)TΣ−1(x− µ) (23)
In this expression, Σ−1 refers to the inverse of the covariance matrix.

The covariance matrix is symmetric and can be defined as follows:

Σ(i, j) =

{
var(i) if i = j

cov(i, j) if i ̸= j
(24)

Here, i, j ∈ 1, . . . , D, where var(i) indicates the variance of the data in the ith dimension, and
cov(i, j) denotes the covariance between the ith and jth dimensions. The diagonal elements of the
matrix represent the variances, while the off-diagonal elements represent the covariances. In the case
of Euclidean space, we have Σ = I , where I is the identity matrix. Therefore, in Euclidean space,
we assume equal variance across all dimensions and disregard the positive and negative correlations
between variables. When modeling the feature distribution of classes with a multivariate normal
feature distribution N (µy,Σy), the probability of a sample feature x belonging to class y can be
expressed as,

P (x|C = y) ≈ exp

(
−1

2
(x− µy)

TΣ−1
y (x− µy)

)
(25)

It is straightforward to see that this is the optimal Bayesian classifier, since:

argmax
y

P (Y |X) = argmax
y

P (X|Y )P (Y )

P (X)
= argmax

y
P (X|Y )P (Y ) (26)

where the optimal boundary occurs at those points where each class is equally probable P (yi) =
P (yj).

Since the logarithm is a concave function and thus argmaxy P (X|Y ) = argmaxy logP (X|Y ):

argmax
y

logP (X|Y ) = argmax
y

{
−(x− µy)

TΣ−1
y (x− µy)

}
= argmin

y
DM (x, µy) (27)

where the squared Mahalanobis distance DM (x, µy) = (x− µy)
TΣ−1

y (x− µy).
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Figure 8: Average incremental accuracy measured after each task in two scenarios for each of five
runs with seed (1993, 1994, 1995, 1996, 1997): (1) CIFAR100 (20 incremental tasks with 5 classes
in each)

Table 7: Reproducing Table 1 with a different number of incremental tasks evaluated on CIFAR100,
TinyImageNet200, ImageNetSubset100, and DomainNet using a cold-start scenario by introducing
500 exemplar samples from previous tasks. The best results are in bold.

Approach CIFAR100 TinyImageNet ImageNetSubset DomainNet

T=10 T=20 T=50 T=10 T=20 T=10 T=20 T=12 T=24 T=36

Finetuning 29.93 22.74 12.41 25.28 19.35 30.48 24.15 23.78 19.33 16.93
EWC Kirkpatrick et al. (2017) 35.34 27.92 15.39 25.14 19.55 31.77 22.52 22.94 17.83 15.82
LwF Li & Hoiem (2016) 43.60 33.82 18.62 27.61 21.21 49.02 38.63 23.54 15.66 15.66
LUCIR Hou et al. (2019a) 41.17 28.46 15.23 29.21 21.73 39.07 25.69 24.07 17.56 14.52
IL2A Zhu et al. (2021a) 42.62 45.63 44.40 47.75 34.89 – – 22.54 20.74 19.34
PASS Zhu et al. (2021b) 42.36 46.83 46.14 51.11 38.92 54.56 47.04 29.56 25.45 15.26
SSRE Zhu et al. (2022) 47.03 36.16 36.07 50.34 47.56 46.98 35.66 29.79 24.31 24.45
FeTrIL Petit et al. (2023) 47.16 42.96 39.30 55.57 49.09 48.56 39.37 41.32 35.76 34.14
SEED Rypeść et al. (2023) 64.90 61.01 36.91 50.92 43.39 69.72 67.71 48.64 38.32 34.12
EFC Magistri et al. (2024) 65.48 58.03 34.34 42.85 37.15 64.85 59.34 – – –
FeCAM Goswami et al. (2024) 66.32 63.85 41.61 50.34 44.85 62.03 48.73 – – –
ProCEEDNCMA.7 71.66 60.99 51.09 49.08 48.77 69.72 69.21 50.26 48.84 45.54
ProCEEDBayesA.8 72.13 61.06 52.09 48.08 49.07 66.34 70.04 49.26 49.84 44.54
ProCEEDMLE 76.56 65.23 55.34 56.00 53.15 73.55 72.46 54.33 54.15 51.34
Joint (Oracle) 79.00 79.52 80.77 67.74 69.34 83.23 84.64 64.08 65.43 69.72

A.9 ADDITIONAL RESULTS

A.9.1 MULTIPLE RUNS

In the main section, we report the average incremental accuracy which is the average of five multiple
runs for each of the experiments. Figure 8 shows the standard deviation spread for each incremental
step of the accuracy for different approaches.

A.9.2 MORE RESULTS

We also have presented the results of our model after introducing the 500 samples from previous
tasks for a fair comparison by evaluating the ProCEED after incorporating the nearest class means
(NCM) Janson et al. (2022) and Bayesian classifier Goswami et al. (2024) at the classification head.
Table 7 shows the detailed accuracy of each CIL method with exemplar-based methods by using
ResNet-18 He et al. (2016a) as a feature extractor backbone, where ProCEED is evaluated with
NCM, Bayes (Mahalanobis), or maximum likelihood estimation (MLE) classifier at the classification
head. The results show that incorporating the existing CIL heads also performs better after having a
mixture-of-experts (MoE) model.
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Figure 9: Average incremental accuracies of ProCEED on CIFAR100/10 after varying the hyperpa-
rameters of Equation 2.

A.9.3 ABLATION ON HYPERPARAMETERS

We also performed the ablation analysis to observe the effect range of hyperparameters α and λ in
Equation 2. Figure 9 shows that the model performs best when α = 1 and λ = 0.99. The choice of
hyperparameters is also very critical playing a vital role in maintaining the plasticity of the model,
during optimization as with wrong choice, it might result in drastic degradation in performance.

A.10 ALGORITHMS

Algorithm 1 Expert (Learning Model) Selection
Require: Training data Dt, Model θ, Number of experts K.

1: Initialize an empty set of expert representations P = {}.
2: for each class c in task t do
3: for each expert k in K do
4: Generate latent representations pc,k for class c.
5: Approximate pc,k ∼ N (πk,µc,k,Σc,k) using the EM Algorithm Bishop (2006b)).
6: Append (µc,k,Σc,k) to P .
7: end for
8: end for
9: Compute KL divergence between the distributions in P .

10: Return the expert with the highest KL metric (k̂) among the classes for fine-tuning.
11:

k̂ = argmax
k

∑
pi,k,pj,k

JKL(pi,k, pj,k).
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Algorithm 2 Training and Fine-Tune for ProCEED
Require: Training data Dt = {(X ,Y)}|y ∈ Ct for t ∈ T , Model θ, Experts K, Regularization

parameter α, Distillation parameter λ, Learning rate η
1: for task t ∈ [1, 2, . . . , T ] do
2: if t > K then
3: Select the optimal expert Fk̂ using Algorithm 1.
4: Compute the cross-entropy loss LCE on the current task.
5: Compute the knowledge-distillation loss LKD using Equation 2.
6: Set total loss L(θ,Dt) = (1− α) · LCE + α · LKD.
7: else
8: Compute the cross-entropy loss LCE on the current task.
9: Set total loss L(θ,Dt) = LCE

10: end if
11: Update parameters using SGD: θ ← θ − η∇θL(θ,Dt).
12: Freeze feature extractor F and remove Linear head A.
13: Remove linear head, extract and realign the prototypes up to Dt−1 using 8.
14: Evaluate Dvalid

i upto i = 1, · · · , t on the model using 11.
15: Move to the next task by appending the linear head with new classes and optimizing.
16: end for
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