
Supplementary Material

A When Does Exact Equivalence Between (16) and (5) Hold?

It is interesting to discuss when using the formulation in (16) can exactly approximate (5). To answer
this question, it is worth noting that if Q is a random matrix drawn from any jointly continuous
distribution, with Q>Q = I , then, kQk0 = MD holds with probability one—as the probability of
any continuous random variable being zero is zero.

Note that according to (16), the optimal solution of Q is given by

Q argmin
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The solution Q of the above consists of the eigenvectors of the covariance matrix of f(x) corre-
sponding to the D smallest eigenvalues. Assume that p(x) is a continuous joint PDF, and that f(·)
is continuous and invertible. Then, Q is a continuous function of E

⇥
f(x)f(x)>

⇤
(which is also a

continuous function of x by composition). It is known that, when E
⇥
f(x)f(x)>

⇤
’s eigenvalues are

all distinct, then Q is a continuous function of E
⇥
f(x)f(x)>

⇤
[46], thereby a continuous function

of x—which means Q is a continuous random matrix. A special case is that when f(x) is a normal
random vector, the columns of Q are uniformly distributed on a unit ball [47]. We should remark that
some conditions mentioned above (e.g., distinct eigenvalues) for the exact equivalence of (16) and (5)
are not easy to check or meet. Nonetheless, these are only sufficient conditions—violating them does
not mean a dense Q cannot be attained. As we mentioned, our approximation in (16) for (5) works
quite well—and dense Q’s were always observed in our experiments.

B Full Kruskal Rank of The Left Matrix in (11) of Theorem 1

In this section, we show that the matrix B as defined in (11) has full Kruskal rank with probability
one in different cases.

First, consider the case that B is a tall matrix, i.e.,
eK( eK+1)

2 � M . We only need to show that the
B matrix is full column rank. This can be obtained by showing that there exists a particular case
such that an M ⇥M submatrix of B has full column rank. The reason is that the determinant of any
M ⇥M submatrix of B is a polynomial of A, and a polynomial is nonzero almost everywhere if it
is nonzero somewhere [48, Lemma 2].

Consider a special case where A is a Vandermonde matrix, i.e., ak = [1, zk, z2k, . . . , z
M�1
k ]>, and

zi 6= zj . Hence, the corresponding B has the following form

2
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1 z
2
1 . . . z
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1

. . . . . . . . .

1 z
2
K . . . z

2(M�1)
K

1 z1z2 . . . (z1z2)M�1

. . . . . . . . .

1 zK�1zK . . . (zK�1zK)M�1

3

7777775
(18)

Note that one can always construct such a sequence—e.g., z1 = 1, z2 = 1.1, z3 = 1.11, . . . such
that any M rows of the matrix in (18) is full rank. This means that the linear combination of this
second order homogeneous polynomials is not identically zero, which implies that it is non-zero
almost everywhere; see a similar argument in [19, 20]. Thus, it further implies that the matrix B has
a Kruskal rank of M almost surely when

eK( eK+1)
2 �M .
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On the other hand, when
eK( eK+1)

2 < M , for any
eK( eK+1)

2 columns we have the following form
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2

a
2,
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2

· · ·
... · · ·
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a eK,
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77777777775

| {z }
fK(fK+1)

2

where the columns are reordered from 1 to
eK( eK+1)

2 . Then, the same proof technique may apply here.
Thus, by combining the two cases, it is clear that B has the following Kruskal rank with probability
one:

min

 
eK( eK + 1)

2
,M

!
.

C Proof of Lemma 1

By the definition of F in Assumption 3, we have

|fm(x)� fm(0)| = |w>
2⇣(w1x)�w>

2⇣(0)|
 kw2k2k⇣(w1x)� ⇣(0)k2
 Bkw1x� 0k2
 B

2
Cx,

=) |fm(x)|  B
2
Cx,

where the last inequality is because fm(0) = 0. Besides, the Rademacher complexity of the function
class F is bounded by [49]

R (F)  2B2
Cx

r
R

N
.

The invertible function class subset is also upper bounded by this complexity. Note that the function
class that we are interested in is

��Q>f(x`)
��2
2
2 T : RM ! R,
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which has the following Rademacher complexity
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where the last inequality is because of the Lipschitz composition property of the Rademacher
complexity [50]. Besides, we also have

��Q>f(x`)
��2
2
 DB

4
C

2
x.

D Proof of Theorem 2

Our proof uses the proof technique from [19, 28, 29] that considered the simplex-structured and
multiview nonlinear models, with nontrivial modifications to accommodate our generative model.

To perform finite-sample analysis, consider the finite-sample version formulation

min
Q,f

1

N

NX

`=1

��Q>f(x`)
��2
2

(19a)

s.t. kQk0 = MD, Q>Q = I, fm(·) 2 F , (19b)

where Q 2 RM⇥D, fm’s are the nonlinear functions that we aim to learn.

The overall idea of proof is to use the empirical error on (19a) to bound the true error. Then use the
numerical differentiation to estimate the second-order derivatives of h00

m. The framework is similar to
that of [19, 28].
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The problem can be regarded as a regression problem with data tuples {x`,0D}N`=1. According
to [50, 51], we have
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since
��Q>u(x`)

��
2
= 0 holds for all `, where (a) is by triangle inequality and (b) is by both triangle

inequality and Assumption 1.

Next, we estimate the second order derivative given the solution of (12). Suppose for any sample x`

we have
��Q>f(x`)

��2
2
= ✏`

where "` � 0 such that E ["`]  ".
Consider each column of Q separately. For each column qk with k = 1, · · · , D, we have

�k(s`) := q>
k
bh(As`) = ±p✏`,k (20)

where "` =
PD

k=1 "`,k with each "`,k � 0. In the following part, we will estimate the second-order
derivative @2�k(s)

@s2i
and the cross second-order derivative @2�k(s)

@sisj
, respectively.

D.1 Estimating the Second-Order Derivatives

Define �si = [0, . . . ,�si, . . . , 0]> for i = 1, . . . , eK, and sb̀ = s` + �si and sè = s` � �si.
Therefore, we have

�k(sb̀) = q>
k
bh(A(s` +�si)) = ±p"b̀,k,

�k(sè) = q>
k
bh(A(s` ��si)) = ±p"è,k,

(21)

where E["b̀,k] = E["è,k] 
"
D .

For any continuous function !(z) that admits non-vanishing 4th order derivatives, the second order
derivative at z can be estimated as follows [52]

!
00(z) =

!(z +�z)� 2!(z) + !(z ��z)

�z2
� �z

2

12
!
(4)(⇠),

where ⇠ 2 (z ��z, z +�z).

Following this definition, one can see that

@
2
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p
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2
i

12
�
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where ⇠i 2 (sè, sb̀). Consequently, we have the following inequalities
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�s2i

� �s
2
i

12
�
(4)(⇠i)

�����


p
"b̀,k + 2

p
"`,k +

p
"è,k

�s2i

+
�s

2
i

12

����(4)(⇠i)
��� .
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where the second inequality is by the Jensen’s inequality
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which holds by the concavity of
p
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We are interested in finding the best upper bound, i.e.,
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This is an convex problem with �si 2 (0,1) which can be solved to global optimal. By taking
derivative w.r.t. �si, we have the minimizer
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D.2 Estimating the Cross Derivatives

To show the bound for cross-derivatives, we define

�s++
ij = [0, . . . ,+�si, . . . ,0, . . . ,+�sj , . . . ,0]

>
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By Lemma 6 in [19], the cross derivative of a continuous function  (x, y) is estimated as
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where ⇠1i 2 (x��x, x+�x) and ⇠2i 2 (y ��y, y +�y) for i 2 {1, · · · , 8}. Then, we have
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Taking expectation and by Jensen’s inequality, we have�����E
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Note that we aim to find the smallest upper bound, i.e.,
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Without loss of generality, we assume that �s = �si = �sj . Then, we have
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By defining
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we have the following form of (26)
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D.3 Combining the Results

Now we put together the estimation in (24) and (30). Since the `2 norm is upper bounded by `1 norm,
we have the following
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due to the fact that
p
a+ b 

p
a+
p
b for a, b � 0. The above can be further written as
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which completes the proof.
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