
Under review as a conference paper at ICLR 2022

Outline The supplement is organized as follows. Section A provides additional technical details.
All proofs are presented in Section B. We give experimental setups, details of datasets and ML APIs,
and further empirical results in Section C.

A TECHNICAL DETAILS

Computation and space cost of MASA. One attractive property of MASA is its low computation
and space cost. In fact, it can be easily verified from Algorithm 1 that, the computation cost is only
linear in the number of samples N . The occupied space is only constant. Therefore, MASA can be
easily applied for large number of samples.

Choice of parameter a. The parameter a is used to balance between exploiting and exploration in
Algorithm 1. Throughout this paper, we set a = 1 as the default value. While theoretically a should
depend on the partition size and sample number, in practice we found that a = 1 works well. An
in-depth analysis for this remains an interesting open problem.

Stopping rule under loss requirements. For MASA, we establish the upper bound on the loss by
(i) computing the upper bound on the estimated uncertainty score for each partition, and (ii) summing
up all those upper bounds weighted by the partition size to form the upper bound on the loss. For
Uniform sampling or stratified sampling, we directly use the upper bound on the Frobenius loss.
Here, we adopt the standard upper bound for Bernoulli variables. That is to say, for any estimator
using n samples, we use

√
c
n as its upper bound, where c is a parameter to control the confidence.

For both methods, we choose c to ensure a 1% error under 95% confidence level.

B PROOFS

We present all missing proofs here. For ease of expositions, let us first introduce a few notations. We
let xn denote the nth sample drawn in Algorithm 1, and use In to indicate from which partition the
sample xn is drawn. For example, In = (i, k) indicates that xn is drawn from the partition Di,k.

Let zzz`,k,t ∈ [L] denote the ML API’s predicted label for the tth sample drawn from the partition
D`,k. Abusing the notation a little bit, letNNN `,k,n denote the value ofNNN `,k after the n− 1th iteration
and before the nth iteration in Algorithm 1. Similarly, let σ̂σσ`,k,n be the value of σ̂σσ`,k, µ̂µµ`,k,j,n be the
value of µ̂µµ`,k,j , andHHH`,k,,j,n be the value ofHHH`,k,j , all after the n− 1th iteration and before the nth
iteration in Algorithm 1. In addition, let ∆`,k , ppp`,kσσσ`,k∑

`′,k′ ppp`′,k′σσσ`′,k′
and ∆min = min ∆`,k. Similarly,

let us denote σσσmin , minσσσ`,k. By assumption that ppp`,k > 0 and σσσ`,k > 0, we must have ∆min > 0
and σσσmin > 0.

B.1 USEFUL LEMMAS

Let us first give a few useful lemmas. The first gives a high probability bound on our estimated
uncertainty score.

Lemma 3. Let the event A be

A ,
⋂

1≤k≤K,1≤`≤L
1≤t≤N


∣∣∣∣∣∣
√√√√1− 1

t(t− 1)

t∑
i=1

t∑
j=1,j 6=i

1zzz`,k,i=zzz`,k,j − σσσ`,k

∣∣∣∣∣∣ ≤ 4

√
log 2/δ

2t


Then for any δ > 0, we have Pr[A] ≥ 1− LKNδ.

Proof. For any fixed t, let us first denote

f(zzz`,k,1, zzz`,k,2, · · · , zzz`,k,t) , 1− 1

t(t− 1)

t∑
i=1

t∑
j=1,j 6=i

1zzz`,k,i=zzz`,k,j

14

Under review as a conference paper at ICLR 2022

Its expectation is simply

E[f(zzz`,k,1, zzz`,k,2, · · · , zzz`,k,t)] =E[1− 1

t(t− 1)

t∑
i=1

t∑
j=1,j 6=i

1zzz`,k,i=zzz`,k,j]

=1− 1

t(t− 1)
E[

t∑
i=1

t∑
j=1,j 6=i

1zzz`,k,i=zzz`,k,j]

=1− E[1zzz`,k,i=zzz`,k,j]

where the second equation applies the linearity of expectation, and the third equation uses the fact
that all zzz`,k,i are identically independent. Note that

E[1zzz`,k,i=zzz`,k,j]

= Pr[zzz`,k,i = zzz`,k,j]

=

L∑
r=1

Pr[zzz`,k,i = r] Pr[zzz`,k,j = r]

=

L∑
r=1

2

Pr[zzz`,k,i = r]

where the first equation uses the definition of indicator function, the second uses the fact that two
sample are independent and there are only L many possible labels, and the last equation uses the fact
that those samples’ distribution is identical. Applying this in the above equation, we get

E[f(zzz`,k,1, zzz`,k,2, · · · , zzz`,k,t)] =1− E[1zzz`,k,i=zzz`,k,j]

=1−
L∑
r=1

2

Pr[zzz`,k,i = r] = σσσ2
`,k

That is to say, its expectation is simply the uncertainty score σσσ2
`,k. On the other hand, we note that,

for any i, we have

f(zzz`,k,1, · · · , zzz`,k,i−1, zzz`,k,i, zzz`,k,i+1, · · · , zzz`,k,t)− f(zzz`,k,1, · · · , zzz`,k,i−1, zzz′`,k,i, zzz`,k,i+1, · · · , zzz`,k,t)

=
1

t(t− 1)

t∑
j=1,j 6=i

1zzz′`,k,i=zzz`,k,j
− 1zzz`,k,i=zzz`,k,j ≤

1

t(t− 1)
· (t− 1) =

1

t

where the inequality is due to the fact that the indicator function can only take values in {0, 1}.
Similarly, we have

f(zzz`,k,1, · · · , zzz`,k,i−1, zzz`,k,i, zzz`,k,i+1, · · · , zzz`,k,t)− f(zzz`,k,1, · · · , zzz`,k,i−1, zzz′`,k,i, zzz`,k,i+1, · · · , zzz`,k,t)

=
1

t(t− 1)

t∑
j=1,j 6=i

1zzz′`,k,i=zzz`,k,j
− 1zzz`,k,i=zzz`,k,j ≥

1

t(t− 1)
· −(t− 1) = −1

t

By Mcdiarmid inequality, we have

Pr[|f(zzz`,k,1, zzz`,k,2, · · · , zzz`,k,t)− E[f(zzz`,k,1, zzz`,k,2, · · · , zzz`,k,t)]| ≥ ε] ≤ 2e
− 2ε2∑t

i=1
t−2

= 2e−2tε
2

Set δ = 2e−2tε
2

. This simply becomes, with probability at most δ,

|f(zzz`,k,1, zzz`,k,2, · · · , zzz`,k,t)− σσσ2
`,k|

=|f(zzz`,k,1, zzz`,k,2, · · · , zzz`,k,t)− E[f(zzz`,k,1, zzz`,k,2, · · · , zzz`,k,t)]| ≥
√

log 2/δ

2t

Note that f is positive, we can take square root of both side, and obtain with probability at most δ,

|
√
f(zzz`,k,1, zzz`,k,2, · · · , zzz`,k,t)− σσσ`,k| ≥

4

√
log 2/δ

2t

15

Under review as a conference paper at ICLR 2022

Or alternatively, with probability at least 1− δ,

|
√
f(zzz`,k,1, zzz`,k,2, · · · , zzz`,k,t)− σσσ`,k| ≤

4

√
log 2/δ

2t

which holds for fixed t, `, k. Taking union bound, we know that with probability 1−KLNδ,

|
√
f(zzz`,k,1, zzz`,k,2, · · · , zzz`,k,t)− σσσ`,k| ≤

4

√
log 2/δ

2t

which holds for all t, `, k. Plugging in the form of f completes the proof.

The next one is more technical: it gives a connection between stopping time and adaptive sampling.
We omit the proof and refer the interested readers to (Athreya & Lahiri, 2006).

Lemma 4 (Wald’s second inequality). Let {Ft}t=1,...,n be a filtration and {Xt}t=1,...,n be an Ft
adapted sequence of i.i.d. random variables with finite expectation µ and variance V ar. Assume that
Ft and σ({Xs : s ≥ t+ 1}) are independent for any t ≤ n, and let T (≤ n) be a stopping time with
respect to Ft. Then

E

[(T∑
i=1

Xi − T µ
)2]

= E[T] Var .

B.2 PROOF OF LEMMA 1

Proof. Recall that the loss, defined as the expected squared Frobenius norm error, is

E
[
‖∆CCC −∆ĈCC‖2F

]
=
∑
i,j

E
(

∆CCCi,j −∆ĈCCi,j

)2
=
∑
i,j

E

(∑
k

pppi,k[µµµi,k,j − µ̂µµi,k,j]

)2

=
∑
i,j,k

ppp2i,kE
(
[µµµi,k,j − µ̂µµi,k,j]

)2
Here we basically apply the definition of each entry. SupposeNNN i,k samples are allocated to estimate
µµµi,k,j . Then we have

E
(
[µµµi,k,j − µ̂µµi,k,j]

)2
=

1

NNN i,k
Pr[ŷ(x) = j|x ∈ Di,k](1− Pr[ŷ(x) = j|x ∈ Di,k])

since µµµi,k,j is effectively a Bernoulli variable. Then the loss becomes

E
[
‖∆CCC −∆ĈCC‖2F

]
=
∑
i,j,k

ppp2i,kE
(
[µµµi,k,j − µ̂µµi,k,j]

)2
=
∑
i,j,k

ppp2i,k
1

NNN i,k
Pr[ŷ(x) = j|x ∈ Di,k](1− Pr[ŷ(x) = j|x ∈ Di,k])

=
∑
i,k

ppp2i,k
1

NNN i,k

∑
j

Pr[ŷ(x) = j|x ∈ Di,k](1− Pr[ŷ(x) = j|x ∈ Di,k])

where the last equation is simply by rearranging the summation. Note that∑
j

Pr[ŷ(x) = j|x ∈ Di,k] = 1

The last summation is simply∑
j

Pr[ŷ(x) = j|x ∈ Di,k](1− Pr[ŷ(x) =j|x ∈ Di,k]) = 1−
∑
j

2

Pr[ŷ(x) = j|x ∈ Di,k])

=σσσ2
i,k

16

Under review as a conference paper at ICLR 2022

Thus, the loss becomes

E
[
‖∆CCC −∆ĈCC‖2F

]
=
∑
i,k

ppp2i,kσσσ
2
i,k

1

NNN i,k

By Cauchy Schwarz inequality, we have∑
i,k

ppp2i,kσσσ
2
i,k

NNN i,k

∑
i,k

NNN i,k

 ≥
∑

i,k

pppi,kσσσi,k

2

where the equality holds if and only if

ppp2i,kσσσ
2
i,k

NNN2
i,k

=
ppp2i′,k′σσσ

2
i′,k′

NNN2
i′,k′

for any i, i′, k, k′. That is to say, there exists some constant c, such that

pppi,kσσσi,k
NNN i,k

=
pppi′,k′σσσi′,k′

NNN i′,k′
=

1

c

And thus,NNN i,k = pppi,kσσσi,kc. Summing over i, k gives

N =
∑
i,k

NNN i,k =
∑
i,k

pppi,kσσσi,kc

Thus,

c =
N∑

i,k pppi,kσσσi,k

and
NNN i,k = pppi,kσσσi,kc = pppi,kσσσi,k ·

1∑
i,k pppi,kσσσi,k

=
pppi,kσσσi,k∑
i,k pppi,kσσσi,k

which completes the proof.

B.3 PROOF OF THEOREM 2

Proof. To prove this theorem, we need a few more lemmas.

Lemma 5. Algorithm 1’s computational cost is O(LKN) and space cost is O(L2K). Furthermore,
for any n > 2LK, after the n− 1th iteration and before the nth iteration, we have

NNN `,k = NNN `,k,n =

n−1∑
i=1

1Ii=(`,k)

µ̂µµ`,k,j = µ̂µµ`,k,j,n =
1

NNN `,k,n

n−1∑
i=1

1Ii=(`,k)1ŷ(xi)=j

σ̂σσ`,k = σ̂σσ`,k,n = 1− 1

NNN `,k,n(NNN `,k,n − 1)

n−1∑
i=1

n−1∑
j=1,j 6=i

1Ii=Ij=(`,k)1ŷ(xi)=ŷ(xj)

HHH`,k,j = HHH`,k,j,n =

n−1∑
i=1

1Ii=(`,k)1ŷ(xi)=j

Proof. The computational and space cost can be easily verified: as shown in Algorithm 1, the
variables σ̂σσ, µ̂µµ,HHH,NNN take space LK,L2K,L2K,LK. Therefore, the space is bounded by O(L2K).
For the first 2LK iterations (line 3-8) in Algorithm 1, the computation cost is clearly O(LK).

17

Under review as a conference paper at ICLR 2022

For the rest iterations (line 10- 16), the most expensive cost is computing In, which requires LK
computations per iteration. Therefore, the total computational cost is O(LKN).

Next we show that the above four equations hold for every n > 2LK. We prove this by induction.

1) n = 2LK + 1: One can easily verify this by plugging the initial values established in line 3-8 in
Algorithm 1.

2) Suppose the four equations hold for the case when n = m. Now consider n = m+ 1. Now let us
consider two cases.

• Any `, k such that Im+1 6= (`, k): There is nothing update,

NNN `,k,m+1 = NNN `,k,m =

m−1∑
i=1

1Ii=(`,k) =

m−1∑
i=1

1Ii=(`,k) + 0 =

m−1∑
i=1

1Ii=(`,k) + 1Im=(`,k)

=

m∑
i=1

1Ii=(`,k)

Similarly, one can show that

µ̂µµ`,k,j,m+1 = µ̂µµ`,k,j,m =
1

NNN `,k,m

m∑
i=1

1Ii=(`,k)1ŷ(xi)=j

σ̂σσ`,k,m+1 = σ̂σσ`,k,m = 1− 1

NNN `,k,m(NNN `,k,m − 1)

m∑
i=1

m∑
j=1,j 6=i

1Ii=Ij=(`,k)1ŷ(xi)=ŷ(xj)

HHH`,k,j,m+1 = HHH`,k,j,m =

m∑
i=1

1Ii=(`,k)1ŷ(xi)=j

• For some `∗, k∗ such that Im+1 = (`∗, k∗).

Let us first considerNNN `∗,k∗ . We incrementNNN `∗,k∗ by one, and thus

NNN `∗,k∗,m+1 = NNN `∗,k∗,m + 1 =

m−1∑
i=1

1Ii=(`∗,∗k) + 1 =

m−1∑
i=1

1Ii=(`∗,k∗) + 1Im=(`∗,k∗)

=

m∑
i=1

1Ii=(`∗,k∗)

Next we consider µ̂µµ`∗,k∗,j . Using a similar argument as above, we have

µ̂µµ`∗,k∗,j,m+1 =µ̂µµ`∗,k∗,j,m +
1ŷ(xm)=j − µ̂µµ`∗,k∗,j,m

NNN `∗,k∗,m+1
,

=
NNN `∗,k∗,m+1 − 1

NNN `∗,k∗,m+1
µ̂µµ`∗,k∗,j,m +

1ŷ(xm)=j

NNN `∗,k∗,m+1
,

=
NNN `∗,k∗,m

NNN `∗,k∗,m+1
µ̂µµ`∗,k∗,j,m +

1ŷ(xm)=j

NNN `∗,k∗,m+1
,

=
NNN `∗,k∗,m

NNN `∗,k∗,m+1

1

NNN `∗,k∗,m

m−1∑
i=1

1Ii=(`∗,k∗)1ŷ(xi)=j +
1ŷ(xm)=j

NNN `∗,k∗,m+1

=
1

NNN `∗,k∗,m+1

m∑
i=1

1Ii=(`∗,k∗)1ŷ(xi)=j

18

Under review as a conference paper at ICLR 2022

where the first equation is due to the update rule of µ̂µµ`∗,k∗,j , the second equation is simply
grouping by µ̂µµ`∗,k∗,j,m, the third equation is due to the fact thatNNN `∗,k∗,m+1 = NNN `∗,k∗,m+1,
the forth equation is due to the induction assumption, and the forth equation is simply
algebraic rewriting.

Now let us consider σ̂σσ2
`∗,k∗,m+1. We can write

σ̂σσ2
`∗,k∗,m+1

=σ̂σσ2
`∗,k∗,m +

2

NNN `∗,k∗,m+1
(1−

HHH`∗,k∗,ŷ(xm),m

NNN `∗,k∗,m+1 − 1
− σ̂σσ2

`∗,k∗,m)

=
NNN `∗,k∗,m+1 − 2

NNN `∗,k∗,m+1
σ̂σσ2
`∗,k∗,m +

2

NNN `∗,k∗,m+1
(1−

HHH`∗,k∗,ŷ(xm),m

NNN `∗,k∗,m+1 − 1
)

=
NNN `∗,k∗,m+1 − 2

NNN `∗,k∗,m+1
(1− 1

NNN `∗,k∗,m(NNN `∗,k∗,m − 1)

m−1∑
i=1

m−1∑
j=1,j 6=i

1Ii=Ij=(`∗,k∗)1ŷ(xi)=ŷ(xj))

+
2

NNN `∗,k∗,m+1
(1−

HHH`∗,k∗,ŷ(xm),m

NNN `∗,k∗,m+1 − 1
)

=
NNN `∗,k∗,m+1 − 2

NNN `∗,k∗,m+1
(1− 1

(NNN `∗,k∗,m+1 − 2)(NNN `∗,k∗,m+1 − 1)

m−1∑
i=1

m−1∑
j=1,j 6=i

1Ii=Ij=(`∗,k∗)1ŷ(xi)=ŷ(xj))

+
2

NNN `∗,k∗,m+1
(1−

HHH`∗,k∗,ŷ(xm),m

NNN `∗,k∗,m+1 − 1
)

=1− 1

NNN `∗,k∗,m+1(NNN `∗,k∗,m+1 − 1)

m−1∑
i=1

m−1∑
j=1,j 6=i

1Ii=Ij=(`∗,k∗)1ŷ(xi)=ŷ(xj)

−
2HHH`∗,k∗,ŷ(xm),m

NNN `∗,k∗,m+1(NNN `∗,k∗,m+1 − 1)

where the first equation is by the update rule in Algorithm 1, the second equation is simply
rearranging the terms, the third equation uses the induction assumption, the forth one uses
the update rule onNNN `∗,k∗ and thusNNN `∗,k∗,m = NNN `∗,k∗,m+1 − 1, and the fifth equation is
also rearranging the terms.

On the other hand, by induction assumption, we have

HHH`∗,k∗,ŷ(xm),m =

m−1∑
i=1

1Ii=(`∗,k∗)1ŷ(xi)=ŷ(xm)

And thus

m−1∑
i=1

m−1∑
j=1,j 6=i

1Ii=Ij=(`∗,k∗)1ŷ(xi)=ŷ(xj) + 2HHH`∗,k∗,ŷ(xm),m

=

m∑
i=1

m∑
j=1,j 6=i

1Ii=(`∗,k∗)1ŷ(xi)=ŷ(xm)

Hence, the above equation becomes

σ̂σσ2
`∗,k∗,m+1 = 1− 1

NNN `∗,k∗,m+1(NNN `∗,k∗,m+1 − 1)

m∑
i=1

m∑
j=1,j 6=i

1Ii=Ij=(`∗,k∗)1ŷ(xi)=ŷ(xj)

19

Under review as a conference paper at ICLR 2022

Finally, let us considerHHH`∗,k∗,j . If j 6= ŷ(xm), it is clear that

HHH`∗,k∗,j,m+1 =HHH`∗,k∗,j,m =

m−1∑
i=1

1Ii=(`∗,k∗)1ŷ(xi)=j + 0

=

m−1∑
i=1

1Ii=(`∗,k∗)1ŷ(xi)=j + 1Ii=(`∗,k∗)1ŷ(xm)=j

=

m∑
i=1

1Ii=(`∗,k∗)1ŷ(xi)=j

where the first is due to that there is no update for this j, the third equation is due to the fact
that ŷ(xm) 6= j, and all the other equations are algebraic rewriting.

If j = ŷ(xm), it is clear that

HHH`∗,k∗,j,m+1 =HHH`∗,k∗,j,m + 1 =

m−1∑
i=1

1Ii=(`∗,k∗)1ŷ(xi)=j + 1

=

m−1∑
i=1

1Ii=(`∗,k∗)1ŷ(xi)=j + 1Ii=(`∗,k∗)1ŷ(xm)=j

=

m∑
i=1

1Ii=(`∗,k∗)1ŷ(xi)=j

where the first is due to that there is no update for this j, the third equation is due to the fact
that ŷ(xm) = j, and all the other equations are algebraic rewriting.

That is to say, we have shown that,

NNN `,k,m+1 =

m∑
i=1

1Ii=(`,k)

µ̂µµ`,k,j,m+1 =
1

NNN `,k,m+1

m∑
i=1

1Ii=(`,k)1ŷ(xi)=j

σ̂σσ`,k,m+1 = 1− 1

NNN `,k,m+1(NNN `,k,m+1 − 1)

m∑
i=1

m∑
j=1,j 6=i

1Ii=Ij=(`,k)1ŷ(xi)=ŷ(xj)

HHH`,k,j,m+1 =

m∑
i=1

1Ii=(`,k)1ŷ(xi)=j

always hold. By induction, we can say that for any n > 2LK, the original equations hold, which
completes the proof.

Lemma 6. Suppose that the event A holds. Set δ = 2e−a. Then for each `, k, we have

1

NNN `,k
≤ 1

NNN∗`,k

1 + 4LKN−1 +
4

σσσmin

4

√
log 2/δ

∆min
N−

1
4


for any 1 ≤ ` ≤ L, 1 ≤ k ≤ K.

Proof. To show this, let us first establish the following useful lemma.

Lemma 7. Suppose that the event A holds. If Algorithm 1 draws at least one sample from D`0,k0
after the first 2LK iterations, we must have, for every `, k,

NNN `,k ≥ (NNN `0,k0 − 1)σσσ`,k
ppp`,k
ppp`0,k0

(
σσσ`0,k0 + 2 4

√
log 2/δ

2(NNN `0,k0 − ‘1)

)−1

20

Under review as a conference paper at ICLR 2022

Proof. Since the event A holds, we have
∣∣∣∣∣∣
√√√√1− 1

t(t− 1)

t∑
i=1

t∑
j=1,j 6=i

1zzz`,k,i=zzz`,k,j − σσσ`,k

∣∣∣∣∣∣ ≤ 4

√
log 2/δ

2t


for every `, k, t. Since this holds for every fixed t, it should also holds for any random variable t.
Specifically, we must have∣∣∣∣∣∣

√√√√1− 1

NNN `,k,n(NNN `,k,n − 1)

NNN`,k,n∑
i=1

NNN`,k,n∑
j=1,j 6=i

1zzz`,k,i=zzz`,k,j − σσσ`,k

∣∣∣∣∣∣ ≤ 4

√
log 2/δ

2NNN `,k,n

Note that, by definition,

σ̂σσ`,k,n =

√√√√1− 1

NNN `,k,n(NNN `,k,n − 1)

NNN`,k,n∑
i=1

NNN`,k,n∑
j=1,j 6=i

1zzz`,k,i=zzz`,k,j

We can then rewrite the above inequality as

|σ̂σσ`,k,n − σσσ`,k| ≤ 4

√
log 2/δ

2NNN `,k,n

That is to say,

σσσ`,k − 4

√
log 2/δ

2NNN `,k,n
≤ σ̂σσ`,k,n ≤ σσσ`,k + 4

√
log 2/δ

2NNN `,k,n

Adding 4

√
log 2/δ
2NNN`,k,n

to both sides, this becomes

σσσ`,k ≤ σ̂σσ`,k,n + 4

√
log 2/δ

2NNN `,k,n
≤ σσσ`,k + 2 4

√
log 2/δ

2NNN `,k,n

Multiplying both sides by ppp`,k
NNN`,k,n

, we have

ppp`,k
NNN `,k,n

σσσ`,k ≤
ppp`,k
NNN `,k,n

(
σ̂σσ`,k,n + 4

√
log 2/δ

2NNN `,k,n

)
≤ ppp`,k
NNN `,k,n

(
σσσ`,k + 2 4

√
log 2/δ

2NNN `,k,n

)
(B.1)

which holds for any `, k, n. Note that N > 2LK, there must exist some `0, k0, such that Algorithm
1 draws a sample from the data partition D`0,k0 after the first 2LK iterations. Suppose the last
time a sample is drawn from D`0,k0 is n0 > 2LK. That is to say,NNN `0,k0,n0

= NNN `0,k0,n − 1,∀n =
n0 + 1, · · · , N . Since Algorithm 1 chooses `0, k0 at iteration n0, by line 11 in Algorithm 1, we have

`0, k0 = arg max
ppp`,k

NNN `,k,n0

(σ̂σσ`,k,n0
+ 4

√
log 2/δ

2NNN `,k,n0

)

By definition of arg max, we have

ppp`0,k0
NNN `0,k0,n0

(σ̂σσ`0,k0,n0
+ 4

√
log 2/δ

2NNN `0,k0,n0

) ≥ ppp`,k
NNN `,k,n0

(σ̂σσ`,k,n0
+ 4

√
log 2/δ

2NNN `,k,n0

)

Setting n = n0 in the first half of inequality B.1, we have

ppp`,k
NNN `,k,n0

(
σ̂σσ`,k,n0

+ 4

√
log 2/δ

2NNN `,k,n0

)
≥ ppp`,k
NNN `,k,n0

σσσ`,k,n0

Combining the above two inequalities gives

ppp`0,k0
NNN `0,k0,n0

(σ̂σσ`0,k0,n0
+ 4

√
log 2/δ

2NNN `0,k0,n0

) ≥ ppp`,k
NNN `,k,n0

σσσ`,k

21

Under review as a conference paper at ICLR 2022

Noting that by definition,NNN `,k,n0
≤NNN `,k,N = NNN `,k, we can lower bound 1/NNN `,k,n0

by 1/NNN `,k, and
the above inequality becomes

ppp`0,k0
NNN `0,k0,n0

(σ̂σσ`0,k0,n0
+ 4

√
log 2/δ

2NNN `0,k0,n0

) ≥ ppp`,k
NNN `,k

σσσ`,k

Now setting n = n0, ` = `0, k = k0 in the second half of inequality B.1, we have

ppp`0,k0
NNN `0,k0,n

(
σ̂σσ`0,k0,n + 4

√
log 2/δ

2NNN `0,k0,n0

)
≤ ppp`0,k0
NNN `0,k0,n0

(
σσσ`0,k0 + 2 4

√
log 2/δ

2NNN `0,k0,n0

)

Combining the above two inequalities, we have

ppp`0,k0
NNN `0,k0,n0

(σσσ`0,k0 + 2 4

√
log 2/δ

2NNN `0,k0,n0

) ≥ ppp`,k
NNN `,k

σσσ`,k

Observe that n0 is the last time a sample is drawn from partition D`0,k0 , we have NNN `0,k0,n0
=

NNN `0,k0,n−1,∀n = n0+1, · · · , N . Specifically,NNN `0,k0,n0 = NNN `0,k0,N−1 = NNN `0,k0−1. Replacing
NNN `0,k0,n0 byNNN `0,k0 − 1 in the above inequality, we get

ppp`0,k0
NNN `0,k0 − 1

(σσσ`0,k0 + 2 4

√
log 2/δ

2(NNN `0,k0 − ‘1)
) ≥ ppp`,k

NNN `,k
σσσ`,k

which holds for every `, k. Rearranging the terms completes the proof.

Now we are ready to prove the bound onNNN `,k −NNN∗`,k.

Let us first consider the lower bound. By definition, we have

L∑
`=1

K∑
k=1

NNN `,k = N

Subtracting 2 from each element, we have

L∑
`=1

K∑
k=1

(NNN `,k − 2) = N − 2LK =
N − 2LK

N
N

Note that by definition, N =
∑L
`=1

∑K
k=1NNN

∗
`,k. We can now replace the second N in the above

equality, and obtain

L∑
`=1

K∑
k=1

(NNN `,k − 2) =
N − 2LK

N
N =

N − 2LK

N

L∑
`=1

K∑
k=1

NNN∗`,k =

L∑
`=1

K∑
k=1

NNN∗`,k(N − 2LK)

N

Now let us consider two cases.

(i) AssumeNNN `,k − 2 ≥ NNN∗`,k(N−2LK)

N . That is to say,NNN `,k ≥
NNN∗`,k(N−2LK)

N + 2. Then we have

1

NNN `,k
≤ 1

NNN∗`,k(N−2LK)

N + 2

22

Under review as a conference paper at ICLR 2022

subtracting 1
NNN∗`,k

from both sides, we get

1

NNN `,k
− 1

NNN∗`,k
≤ 1

NNN∗`,k(N−2LK)

N + 2
− 1

NNN∗`,k

=
NNN∗`,k −

NNN∗`,k(N−2LK)

N − 2

NNN∗`,k · (
NNN∗`,k(N−2LK)

N + 2)

≤
NNN∗`,k −

NNN∗`,k(N−2LK)

N

NNN∗`,k · (
NNN∗`,k(N−2LK)

N)

=

2LKNNN∗`,k
N

NNN∗`,k · (
NNN∗`,k(N−2LK)

N)

=
2LK

NNN∗`,k(N − 2LK)

where the last inequality is simply by removing the constant 2. Now by assumption, N > 4LK, we
have N − 2LK < 1

2N . The above inequality can be further simplified as

1

NNN `,k
− 1

NNN∗`,k
≤ 2LK

NNN∗`,k(N − 2LK)
≤ 4LK

NNN∗`,kN

By definition, we haveNNN∗`,k = N∆`,k ≤ N∆min. Therefore, we have

1

NNN `,k
− 1

NNN∗`,k
≤ 2LK

NNN∗`,k(N − 2LK)
≤ 4LK

NNN∗`,kN

That is to say,

1

NNN `,k
≤ 1

NNN∗`,k

[
1 +

4LK

N

]
And thus, apparently,

1

NNN `,k
≤ 1

NNN∗`,k

1 + 4LKN−1 +
4

σσσmin

4

√
log 2/δ

∆min
N−

1
4


(ii) AssumeNNN `,k − 2 <

NNN∗`,k(N−2LK)

N . Then there must exists some `0, k0 such thatNNN `0,k0 − 2 >
NNN∗`0,k0

(N−2LK)

N > 0. That is to say, Algorithm 1 draws at least one sample from D`0,k0 after the first
2LK iterations. By Lemma 7, we must have

NNN `,k ≥ (NNN `0,k0 − 1)σσσ`,k
ppp`,k
ppp`0,k0

(
σσσ`0,k0 + 2 4

√
log 2/δ

2(NNN `0,k0 − ‘1)

)−1

NNN `0,k0 − 2 >
NNN∗`0,k0

(N−2LK)

N implies

NNN `0,k0 − 1 >NNN `0,k0−2 >
NNN∗`0,k0(N − 2LK)

N

Therefore, we can use this lower bound onNNN `0,k0 − 1 in the above inequality and obtain

23

Under review as a conference paper at ICLR 2022

NNN `,k ≥
NNN∗`0,k0(N − 2LK)

N
σσσ`,k

ppp`,k
ppp`0,k0

σσσ`0,k0 + 2 4

√√√√ log 2/δ

2
NNN∗`0,k0

(N−2LK)

N

−1

=
NNN∗`0,k0(N − 2LK)

N

σσσ`,kppp`,k
σσσ`0,k0ppp`0,k0

1 +
2

σσσ`0,k0
4

√√√√ log 2/δ

2
NNN∗`0,k0

(N−2LK)

N

−1

=
NNN∗`,k(N − 2LK)

N

1 +
2

σσσ`0,k0
4

√√√√ log 2/δ

2
NNN∗`0,k0

(N−2LK)

N

−1

where the first equality is by dividing σσσ`0,k0 at both denominator and numerator, and the second
equality uses the fact that NNN∗`,k is proportional to p`,kσσσ`,k. Taking inverse of the above inequality
gives

1

NNN `,k
≤ N

NNN∗`,k(N − 2LK)

1 +
2

σσσ`0,k0
4

√√√√ log 2/δ

2
NNN∗`0,k0

(N−2LK)

N


Now let us simplify this inequality. Let us first expand all terms and obtain

1

NNN `,k
≤ N

NNN∗`,k(N − 2LK)

1 +
2

σσσ`0,k0
4

√√√√ log 2/δ

2
NNN∗`0,k0

(N−2LK)

N


=

1

NNN∗`,k
+

2LK

NNN∗`,k(N − 2LK)
+

N

NNN∗`,k(N − 2LK)
· 2

σσσ`0,k0
4

√√√√ log 2/δ

2
NNN∗`0,k0

(N−2LK)

N

=
1

NNN∗`,k
+

2LK

NNN∗`,k(N − 2LK)
+

2

σσσ`0,k0

4

√(
N

N − 2LK

)5
log 2/δ

2NNN∗4`,kNNN
∗
`0,k0

For the second term, by assumption, N > 4LK and thus N − 2LK > 1/2N , we have

2LK

N − 2LK
≤ 4LK

N

Thus the above equation becomes

1

NNN `,k
≤ 1

NNN∗`,k
+

4LK

NNN∗`,kN
+

2

σσσ`0,k0

4

√(
N

N − 2LK

)5
log 2/δ

2NNN∗4`,kNNN
∗
`0,k0

For the third term, N > 4LK also implies

N

N − 2LK
= 1 +

2LK

N − 2LK
< 1 +

2LK

4LK − 2LK
= 2

Thus the above inequality can be further simplified as

1

NNN `,k
≤ 1

NNN∗`,k
+

4LK

NNN∗`,kN
+

4

σσσ`0,k0

4

√
log 2/δ

NNN∗4`,kNNN
∗
`0,k0

≤ 1

NNN∗`,k

[
1 +

4LK

N
+

4

σσσ`0,k0

4

√
log 2/δ

NNN∗`0,k0

]

24

Under review as a conference paper at ICLR 2022

Now by definition, σσσ`0,k0 ≥ σσσmin, andNNN∗`0,k0 = N∆`0,k0 ≥ N∆min, we can further simplify the
above inequality

1

NNN `,k
≤ 1

NNN∗`,k

[
1 +

4LK

N
+

4

σσσ`0,k0

4

√
log 2/δ

NNN∗`0,k0

]

≤ 1

NNN∗`,k

1 +
4LK

N
+

4

σσσ`0,k0

4

√
log 2/δ

N∆min


≤ 1

NNN∗`,k

1 +
4LK

N
+

4

σσσmin

4

√
log 2/δ

N∆min


That is to say,

1

NNN `,k
≤ 1

NNN∗`,k

1 + 4LKN−1 +
4

σσσmin

4

√
log 2/δ

∆min
N−

1
4


That is to say, no matter NNN `,k − 2 <

NNN∗`,k(N−2LK)

N or not, this inequality always holds, which
completes the proof.

Now we are ready to prove Theorem 2. Let us first note that the loss can be written as

LN =

L∑
`=1

K∑
k=1

L∑
j=1

ppp2`,kE[µµµ`,k,j − µ̂µµ`,k,j]2

=

L∑
`=1

K∑
k=1

L∑
j=1

ppp2`,kE[(µµµ`,k,j −
1

NNN `,k

NNN`,k∑
t=1

1zzz`,k,t=j)
2
1A]

+

L∑
`=1

K∑
k=1

L∑
j=1

ppp2`,kE[(µµµ`,k,j −
1

NNN `,k

NNN`,k∑
t=1

1zzz`,k,t=j)
2
1AC]

(B.2)

Let us first consider the first term.
L∑
`=1

K∑
k=1

L∑
j=1

ppp2`,kE[(µµµ`,k,j − µ̂µµ`,k,j)21A]

=

L∑
`=1

K∑
k=1

L∑
j=1

ppp2`,kE[(µµµ`,k,j −
1

NNN `,k

NNN`,k∑
t=1

1zzz`,k,t=j)
2
1A]

=

L∑
`=1

K∑
k=1

L∑
j=1

ppp2`,kE

 1

NNN2
`,k

NNN `,kµµµ`,k,j −
NNN`,k∑
t=1

1zzz`,k,t=j

2

1A


(B.3)

where we plug in the definition of µ̂µµ. By Lemma 6, we have the upper bound on 1/NNN `,k

1

NNN `,k
≤ 1

NNN∗`,k

1 + 4LKN−1 +
4

σσσmin

4

√
log 2/δ

∆min
N−

1
4


Therefore, we can use this inequality to obtain

E

 1

NNN2
`,k

NNN `,kµµµ`,k,j −
NNN`,k∑
t=1

1zzz`,k,t=j

2

1A


≤[

1

NNN∗`,k
+

4LK

∆min
N−2 +

4

σσσmin

4

√
log 2/δ

∆5
min

N−
5
4]2E


NNN `,kµµµ`,k,j −

NNN`,k∑
t=1

1zzz`,k,t=j

2

1A


(B.4)

25

Under review as a conference paper at ICLR 2022

It is not hard to see thatNNN `,k is a stopping time. In fact, for any `, k, and any time n, a new sample is
drawn purely based on estimated uncertainty score σ̂σσ and observed sample numberNNN `,k,n−1 up to
the current iteration, which is part of the history. AsNNN `,k < N is bounded,NNN `,k is a stopping time.
Hence, we can apply Lemma 4, and obtain

E


NNN `,kµµµ`,k,j −

NNN`,k∑
t=1

1zzz`,k,t=j

2

1A

 ≤ E


NNN `,kµµµ`,k,j −

NNN`,k∑
t=1

1zzz`,k,t=j

2


≤E[NNN `,k] Pr[zzz`,k,1 = j](1− Pr[zzz`,k,1 = j])

where the first inequality uses the fact that square term must be non-negative, and the second inequality
uses the fact that, for Bernoulli distribution with mean a, its variance is a(1− a). Applying this in
inequality B.4, we have

E

 1

NNN2
`,k

NNN `,kµµµ`,k,j −
NNN`,k∑
t=1

1zzz`,k,t=j

2

1A


≤[

1

NNN∗`,k
+

4LK

∆min
N−2 +

4

σσσmin

4

√
log 2/δ

∆5
min

N−
5
4]2E


NNN `,kµµµ`,k,j −

NNN`,k∑
t=1

1zzz`,k,t=j

2

1A


≤[

1

NNN∗`,k
+

4LK

∆min
N−2 +

4

σσσmin

4

√
log 2/δ

∆5
min

N−
5
4]2E[NNN `,k] Pr[zzz`,k,1 = j](1− Pr[zzz`,k,1 = j])

Now applying this in equality B.3, we get

L∑
`=1

K∑
k=1

L∑
j=1

ppp2`,kE[(µµµ`,k,j − µ̂µµ`,k,j)21A]

=

L∑
`=1

K∑
k=1

L∑
j=1

ppp2`,kE

 1

NNN2
`,k

NNN `,kµµµ`,k,j −
NNN`,k∑
t=1

1zzz`,k,t=j

2

1A


≤

L∑
`=1

K∑
k=1

L∑
j=1

ppp2`,k[
1

NNN∗`,k
+

4LK

∆min
N−2 +

4

σσσmin

4

√
log 2/δ

∆5
min

N−
5
4]2E[NNN `,k] Pr[zzz`,k,1 = j](1− Pr[zzz`,k,1 = j])

=

L∑
`=1

K∑
k=1

ppp2`,kσσσ
2
`,k[

1

NNN∗`,k
+

4LK

∆min
N−2 +

4

σσσmin

4

√
log 2/δ

∆5
min

N−
5
4]2E[NNN `,k]

(B.5)

where the last equation uses the fact that σσσ`,k = 1 −
∑L
j=1 Pr2[zzz`,k,1 = j] =

∑L
j=1 Pr[zzz`,k,1 =

j](1− Pr[zzz`,k,1 = j]). Applying the inequality 1/(1 + x) ≤ 1− x

1

NNN `,k
≤ 1

NNN∗`,k

1 + 4LKN−1 +
4

σσσmin

4

√
log 2/δ

∆min
N

1
4


26

Under review as a conference paper at ICLR 2022

Note that

ppp2`,kσσσ
2
`,k[

1

NNN∗`,k

1 + 4LKN−1 +
4

σσσmin

4

√
log 2/δ

∆min
N−

1
4

]2E[NNN `,k]

=(
ppp`,kσσσ`,k
NNN∗`,k

)2

1 + 4LKN−1 +
4

σσσmin

4

√
log 2/δ

∆min
N−

1
4

2

E[NNN `,k]

=N−2(
∑
`′,k′

ppp`′,k′σσσ`′,k′)
2

1 + 4LKN−1 +
4

σσσmin

4

√
log 2/δ

∆min
N−

1
4

2

E[NNN `,k]

where the last equation is by definition ofNNN `,k. Now applying this in inequality B.5, we have
L∑
`=1

K∑
k=1

L∑
j=1

ppp2`,kE[(µµµ`,k,j − µ̂µµ`,k,j)21A]

≤
L∑
`=1

K∑
k=1

ppp2`,kσσσ
2
`,k[

1

NNN∗`,k
+

4LK

∆min
N−2 +

4

σσσmin

4

√
log 2/δ

∆5
min

N−
5
4]2E[NNN `,k]

=

L∑
`=1

K∑
k=1

N−2(
∑
`′,k′

ppp`′,k′σσσ`′,k′)
2

1 + 4LKN−1 +
4

σσσmin

4

√
log 2/δ

∆min
N−

1
4

2

E[NNN `,k]

=N−2(
∑
`′,k′

ppp`′,k′σσσ`′,k′)
2

1 + 4LKN−1 +
4

σσσmin

4

√
log 2/δ

∆min
N−

1
4

2
L∑
`=1

K∑
k=1

E[NNN `,k]

=N−2(
∑
`′,k′

ppp`′,k′σσσ`′,k′)
2

1 + 4LKN−1 +
4

σσσmin

4

√
log 2/δ

∆min
N−

1
4

2

N

=N−1(
∑
`,k

ppp`,kσσσ`,k)2

1 + 4LKN−1 +
4

σσσmin

4

√
log 2/δ

∆min
N−

1
4

2

(B.6)

where the second equation uses the fact that only E[NNN `,k] depends on `, k, the third equation uses the
fact that

∑L
`=1

∑K
k=1NNN `,k = N and thus

∑L
`=1

∑K
k=1 E[NNN `,k] = N . Note that δ = L−1K−1N−

5
4 ,

we have

N−1(
∑
`,k

ppp`,kσσσ`,k)2

1 + 4LKN−1 +
4

σσσmin

4

√
log 2/δ

∆min
N−

1
4

2

=N−1(
∑
`,k

ppp`,kσσσ`,k)2
[
1 +O(N−

1
4 log

1
4 N)

]
=N−1(

∑
`,k

ppp`,kσσσ`,k)2 +O(N−
5
4 log

1
4 N)

Applying this back to inequality B.6, we have
L∑
`=1

K∑
k=1

L∑
j=1

ppp2`,kE[(µµµ`,k,j − µ̂µµ`,k,j)21A] ≤ N−1(
∑
`,k

ppp`,kσσσ`,k)2 +O(N−
5
4 log

1
4 N) (B.7)

Now consider the second term in equation B.2. As µµµ and µ̂µµ are within {0, 1}, we have

(µµµ`,k,j −
1

NNN `,k

NNN`,k∑
t=1

1zzz`,k,t=j)
2 ∈ [0, 1]

27

Under review as a conference paper at ICLR 2022

Therefore,
L∑
`=1

K∑
k=1

L∑
j=1

ppp2`,kE[(µµµ`,k,j −
1

NNN `,k

NNN`,k∑
t=1

1zzz`,k,t=j)
2
1AC] ≤

L∑
`=1

K∑
k=1

L∑
j=1

ppp2`,k Pr[AC]

By Lemma 3, the probability of A is at least 1−KLNδ. Hence, the probability of AC is at most
KLNδ. Hence,

L∑
`=1

K∑
k=1

L∑
j=1

ppp2`,kE[(µµµ`,k,j −
1

NNN `,k

NNN`,k∑
t=1

1zzz`,k,t=j)
2
1AC]

≤
L∑
`=1

K∑
k=1

L∑
j=1

ppp2`,k Pr[AC]

≤
L∑
`=1

K∑
k=1

L∑
j=1

ppp2`,kLKNδ

≤
L∑
j=1

LLLKNδ = L2KNδ

where the last inequality uses the fact that
∑L
`=1

∑K
k=1 ppp

2
`,k ≤ 1 since

∑L
`=1

∑K
k=1 ppp`,k = 1 and

ppp`,k ≥ 0. Since δ = L−2K−1N−
9
4 , we have

L∑
`=1

K∑
k=1

L∑
j=1

ppp2`,kE[(µµµ`,k,j −
1

NNN `,k

NNN`,k∑
t=1

1zzz`,k,t=j)
2
1AC]

≤L2KNδ ≤ N− 5
4

Applying this as well as inequality B.7 to the equation B.2, we have

LN =

L∑
`=1

K∑
k=1

L∑
j=1

ppp2`,kE[µµµ`,k,j − µ̂µµ`,k,j]2

=

L∑
`=1

K∑
k=1

L∑
j=1

ppp2`,kE[(µµµ`,k,j −
1

NNN `,k

NNN`,k∑
t=1

1zzz`,k,t=j)
2
1A]

+

L∑
`=1

K∑
k=1

L∑
j=1

ppp2`,kE[(µµµ`,k,j −
1

NNN `,k

NNN`,k∑
t=1

1zzz`,k,t=j)
2
1AC]

≤N−1(
∑
`,k

ppp`,kσσσ`,k)2 +O(N−
5
4 log

1
4 N) +N−

5
4

Note that the loss of the optimal allocation is simply L∗N = N−1(
∑
`,k ppp`,kσσσ`,k)2. The above

inequality is simply

LN − L∗N ≤ O(N−
5
4 log

1
4 N)

which completes the proof.

C EXPERIMENTAL DETAILS

Experimental Setups. All experiments were run on a machine with 2 E5-2690 v4 CPUs, 160 GB
RAM and 500 GB disk with Ubuntu 18.04 LTS as the OS. Our code is implemented and tested in
python 3.7. All experimental results were averaged over 1500 runs, except the case study. Overall
the experiments took about two month, including debugging and evaluation on all datasets. Running
MASA once to draw a few thousand samples typically only takes a few seconds. Our implementation
is purely in Python for demonstration purposes, and more code optimization (e.g., using cython or
multi-thread) can generate a much faster implementation.

28

Under review as a conference paper at ICLR 2022

Table 2: Dataset statistics.
Dataset Size # Classes Dataset Size # Classes Tasks

FER+ 6358 7 RAFDB (Li et al.) 15339 7
FEREXPW 31510 7 AFFECTNET 87401 7

YELP 20000 2 SHOP 62774 2
SAIMDB 25000 2 WAIMAI 11987 2

DIGIT 2000 10 AUDIOMNIST 30000 10
STTFLUENT 30043 31 COMMAND 64727 31

Table 3: ML services used for each task. Price unit: USD/10,000 queries. We consider three tasks,
sentiment analysis (SA), facial emotion recognition (FER), and spoken command recognition (SCR)

.
Tasks ML service Price ML service Price ML service Price

SA Google NLP (GoN) 2.5 AMZN Comp (Ama) 0.75 Baidu NLP (Bai) 3.5

FER Google Vision (Goo, a) 15 MS Face (Mic, a) 10 Face++ (Fac) 5

SCR Google Speech (Goo, b) 60 MS Speech (Mic, b) 41 IBM Speech (IBM) 25

ML APIs and Dataset Statistics. We focus on three common classification tasks, namely, senti-
ment analysis, facial emotion recognition, and spoken command recognition. For each of the tasks,
we evaluated three APIs’ performance in spring 2020 and spring 2021, respectively, for four datasets.
The details of datasets and ML APIs are summarized in Table 2 and Table 3 respectively. Now we
give more context of the datasets.

For sentiment analysis, we use four datasets, YELP, IMDB, SHOP, and WAIMAI. YELP and IMDB
are both English text datasets. YELP (Dat, c) is generated by drawn twenty thousand samples from
the large YELP review challenge dataset. Each original review is labeled by rating in {1,2,3,4,5}.
We generate the binary label by transforming rating 1 and 2 into negative, and rating 4 and 5 into
positive. Ten thousand positive reviews and ten thousand negative reviews are then randomly drawn,
respectively. IMDB (Maas et al.) is a polarized sentiment analysis dataset with provided training
and testing partitions. We use its testing partition which has twenty-five thousand text paragraphs.
SHOP (Dat, a) and WAIMAI (Dat, b) are two Chinese text datasets. SHOP contains polarized
labels for reviews for various purchases including fruits, hotels, computers. WAIMAI is a dataset
for polarized delivery reviews. Both SHOP and WAIMAI are publicly available without licence
requirements. There is a dataset user agreement for YELP dataset, which disallows commercial usage
of the datasets but encourages academic study. Same thing applies to the IMDB dataset.

For facial emotion recognition, we use four datasets: FER+, RAFDB, EXPW, and AFNET. All
the datasets are annotated by the standard seven basic emotions, i.e., {anger, disgust, fear, happy,
sad, surprise, neutral}. The images in FER+ (Goodfellow et al., 2015) are from the ICML 2013
Workshop on Challenges in Representation. We use the provided testing portion in FER+. RAFDB
(Li et al.) and AFFECTNET (Mollahosseini et al., 2019) were annotated with both basic emotions
and fine-grained labels. In this paper, we only use basic emotions since commercial APIs cannot
work for compound emotions. EXPW (Zhang et al.) contains raw images and bound boxes pointing
out the face locations. Here we use the true bounding box associated with the dataset to create aligned
faces first, and only pick the images that are faces with confidence larger than 0.6. We cotnacted the
creators of RAFDB and AFNET to obtain the data access for academic purposes. FER+ and EXPW
are both publicly available online without consent or licence requirements.

For spoken command recognition, we use DIGIT, AMNIST, CMD, and FLUENT. DIGIT (Dat, d)
and AMNIST (Becker et al., 2018) are spoken digit datasets, where the label is is a spoken digit (i.e.,
0-9). The sampling rate is 8 kHz for DIGIT and 48 kHz for AMNIST. Each sample in CMD (Warden,
2018) is a spoken command such as “go”, “left”, “right”, “up”, and “down”, with a sampling rate of
16 kHz. In total, there are 30 commands and a few white noise utterances. FLUENT (Lugosch et al.)
is another recently developed dataset for speech command. The commands in FLUENT are typically

29

Under review as a conference paper at ICLR 2022

positive negative
Predicted label

po
si

tiv
e

ne
ga

tiv
e

Tr
ue

 la
be

l 44.1 5.9

15.0 35.0

Overall accuracy:79.1

(a) Amazon IMDB 2020

positive negative
Predicted label

po
si

tiv
e

ne
ga

tiv
e

Tr
ue

 la
be

l 39.0 11.0

11.0 39.0

Overall accuracy:78.0

(b) Amazon IMDB 2021

positive negative
Predicted label

po
si

tiv
e

ne
ga

tiv
e

Tr
ue

 la
be

l -5.1 +5.1

-4.0 +4.0

Overall change:-1.1

(c) Amazon IMDB 2021

anger disgust fear happy sad surprise neutral
Predicted label

anger

disgust

fear

happy

sad

surprise

neutral

Tr
ue

 la
be

l

5.9 0.0 0.1 0.3 0.2 0.1 2.1

0.1 0.3 0.0 0.0 0.0 0.0 0.1

0.0 0.0 1.2 0.1 0.1 0.3 0.4

0.1 0.0 0.0 23.9 0.2 0.3 3.3

0.2 0.0 0.1 0.3 6.0 0.1 4.8

0.1 0.0 0.2 0.4 0.0 10.3 1.8

0.2 0.0 0.0 1.2 0.6 0.6 33.7

Overall accuracy:81.4

(d) Microsoft FER+ 2020

anger disgust fear happy sad surprise neutral
Predicted label

anger

disgust

fear

happy

sad

surprise

neutral

Tr
ue

 la
be

l

6.2 0.0 0.0 0.2 0.1 0.1 2.1

0.1 0.3 0.0 0.0 0.0 0.0 0.1

0.0 0.0 1.3 0.0 0.1 0.3 0.4

0.0 0.0 0.0 24.9 0.0 0.2 2.7

0.1 0.0 0.1 0.1 6.5 0.0 4.6

0.1 0.0 0.2 0.3 0.0 10.7 1.7

0.1 0.0 0.0 0.8 0.5 0.3 34.6

Overall accuracy:84.4

(e) Microsoft FER+ 2021

anger disgust fear happy sad surprise neutral
Predicted label

anger

disgust

fear

happy

sad

surprise

neutral

Tr
ue

 la
be

l

+0.3 +0.0 -0.0 -0.1 -0.0 -0.0 -0.1

+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0

+0.0 +0.0 +0.0 -0.0 +0.0 +0.0 -0.0

-0.0 +0.0 -0.0 +1.0 -0.2 -0.1 -0.6

-0.1 +0.0 +0.0 -0.2 +0.5 -0.0 -0.2

-0.0 +0.0 +0.0 -0.2 -0.0 +0.4 -0.2

-0.1 +0.0 -0.0 -0.4 -0.0 -0.3 +0.8

Overall change:+3.0

(f) Microsoft FER+ API shift

0 1 2 3 4 5 6 7 8 9 ""
Predicted label

0
1

2
3

4
5

6
7

8
9

""
Tr

ue
 la

be
l

5.9 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 3.8
0.0 3.3 0.1 0.0 0.0 0.0 0.0 0.0 0.3 0.0 6.3
0.0 0.0 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.2
0.0 0.0 0.0 3.1 0.0 0.0 0.0 0.1 0.1 0.0 6.8
0.0 0.1 0.0 0.1 1.5 0.0 0.0 0.0 0.0 0.0 8.5
0.0 0.1 0.0 0.0 0.0 1.2 0.4 0.0 0.0 0.1 8.2
0.0 0.0 0.1 0.1 0.0 0.0 3.4 0.4 0.0 0.0 6.1
0.0 0.0 0.1 0.0 0.0 0.0 0.2 1.9 0.0 0.0 7.8
0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.9 0.1 8.9
0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.1 5.1 4.5
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Overall accuracy:30.1

(g) Google DIGIT 2020

0 1 2 3 4 5 6 7 8 9 ""
Predicted label

0
1

2
3

4
5

6
7

8
9

""
Tr

ue
 la

be
l

8.3 0.0 0.0 0.0 0.7 0.0 0.0 0.1 0.0 0.1 0.9
0.0 5.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 4.8
0.0 0.0 5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.3
0.0 0.0 0.4 4.7 0.0 0.0 0.0 0.0 0.1 0.0 5.0
0.0 0.1 0.0 0.0 3.6 0.0 0.0 0.0 0.0 0.0 6.3
0.0 0.1 0.0 0.0 0.0 3.1 0.3 0.0 0.0 0.0 6.5
0.1 0.0 0.1 0.0 0.0 0.0 5.2 0.2 0.0 0.0 4.3
0.1 0.0 0.1 0.0 0.0 0.1 0.1 4.5 0.0 0.0 5.1
0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 4.8 0.0 5.1
0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 9.2 0.5
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Overall accuracy:54.2

(h) Google DIGIT 2021

0 1 2 3 4 5 6 7 8 9 ""
Predicted label

0
1

2
3

4
5

6
7

8
9

""
Tr

ue
 la

be
l

+2.4+0.0+0.0+0.0+0.4+0.0+0.0+0.1+0.0+0.1 -2.8
+0.0+1.8 -0.1 +0.0+0.0+0.0+0.0+0.0 -0.2 +0.0 -1.6
+0.0+0.0+1.9+0.0+0.0+0.0+0.0+0.0+0.0+0.0 -1.9
+0.0+0.0+0.4+1.5+0.0+0.0+0.0 -0.1 +0.0+0.0 -1.8
+0.0+0.0+0.0 -0.1 +2.1+0.0+0.0+0.0+0.0+0.0 -2.1
+0.0 -0.1 +0.0+0.0+0.0+1.9 -0.1 +0.0+0.0 -0.1 -1.7
+0.1+0.0+0.0 -0.1 +0.0+0.0+1.9 -0.1 +0.0+0.0 -1.8
+0.1+0.0+0.0+0.0+0.0+0.1 -0.1 +2.6+0.0+0.0 -2.7
+0.0+0.0+0.0 -0.1 +0.0+0.0+0.0+0.0+3.9 -0.1 -3.8
+0.0+0.0 -0.1 +0.0+0.0+0.0+0.0+0.0 -0.1 +4.1 -4.0
+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.0

Overall change:+24.2

(i) Google DIGIT 2021

Figure 6: Confusion matrices of a few APIs in spring 2020/2021, along with their API shifts.

a phrase (e.g., “turn on the light” or “turn down the music”). There are in total 248 possible phrases,
which are mapped to 31 unique labels. The sampling rate is also 16 kHz. All those datasets are freely
available online for academic purposes.

Some of the datasets may contain personal information. For example, the human faces contained in
the facial emotion recognition dataset may be deemed as personal information. On the other hand, our
study focuses on whether there is a performance change on the dataset, and does not use or disclose
any personal information.

For sentiment analysis, we use the Google NLP API (GoN), Amazon Comprehend API (Ama), and
the Baidu NLP API (Bai). For facial emotion recognition, we use Google Vision API (Goo, a),
Microsoft Face API (Mic, a), and the Face++ API (Fac). For spoken command recognition, we adopt
Google speech API (Goo, b), Microsoft Speech API (Mic, b), and IBM speech API (IBM).

Details of observed ML API Shifts. Now we present a few more observed ML API shifts, as
shown in Figure 6. One observation is that individual entry’s change in the API shift can be larger
than the overall accuracy’s. For example, as shown in Figure 6 (c), the overall accuracy change is
about -1.1% for Amazon on IDMB, but the performance drop for positive texts is as large as 5%. This
indicates the importance of using fine-grained confusion matrix difference to measure API shifts. In
addition, when the overall accuracy increases, it is possible that the accuracy for each label has been
improved. This can be easily verified by Figure 6 (d-f). On the other hand, as shown in Figure 6 (g-i),
Google API’s large accuracy improvement (24%) is mostly because it is able to correctly predict
many samples that were previously deemed as empty. One possible explanation is that Google API
internally uses a higher threshold to generate a recognition. When the number of label increases, it

30

Under review as a conference paper at ICLR 2022

1000 2000
Sample size

10 4

10 3

Sq
ua

re
d

F
no

rm
 e

rr
or

K=1
K=2
K=3

(a) Amazon YELP

1000 2000
Sample size

10 4

10 3

(b) Amazon SHOP

1000 2000
Sample size

10 3

(c) Amazon IMDB

1000 2000
Sample size

10 4

10 3

(d) Amazon WAIMAI

1000 2000
Sample size

10 4

10 3

(e) Microsoft FER+

1000 2000
Sample size

10 4

10 3

(f) Google EXPW+

1000 2000
Sample size

10 4

10 3

(g) IBM DIGIT

1000 2000
Sample size

10 4

10 3

(h) IBM AMNIST

1000 2000
Sample size

10 3

(i) Google DIGIT

1000 2000
Sample size

10 4

10 3

(j) Google AMINST

1000 2000
Sample size

10 4

10 3

(k) Google CMD

1000 2000
Sample size

10 4

10 3

(l) Microsoft DIGIT

Figure 7: Effects of partition parameter K. The total number of partitions is LK, and thus Larger K
implies more partitions. Generally, across 12 cases where API shifts are identified, larger number of
partitions usually leads to smaller estimation error for large samples. In practice, we observe that
K = 3 is enough to reach good error rate.

might become hard to manually check the API shifts. For those cases, an anomaly detector can be
applied to quickly identify the most surprising components in the API shifts.

Partition size’s effects on MASA. Now we study how the partition number affects the perfor-
mance of MASA, as shown in Figure 7. Across all API shifts we estimated, we note that larger
number of partitions leads to a smaller overall Frobenious norm in general. This is expected, as larger
K effectively introduces more parameters to estimate and thus is more powerful. The trade-off is that
the computational cost increases, and more samples are needed for initial estimation. Interestingly, as
K becomes large, the relative error reduction improvement becomes small. This is probably because
there is no strong uncertainty difference within small partitions. In practice, we found that K = 3
already gives a small enough error reduction.

Comparison with baselines for case study on YELP. To further understand MASA’s perfor-
mance, We compared the performance of MASA with two baselines: random sampling and standard
stratified sampling (proportionate allocation). We drawed 2000 samples for all methods, and repeated
the experiments 1000 times to obtain an average of the Frobenius norm error. MASA outperforms
both baselines significantly: the observed error is 0.015 for random sampling, 0.009 for stratified
sampling, and 0.006 for MASA.

Understanding uncertainty score. MASA is developed based on the notion of uncertainty scores,
and thus it is worthy understanding how uncertainty scores of different partitions for an ML API
are computed. Here, we provide an illustrative example, as shown in Figure 8. The dataset contains
three partitions and each partition includes six data points. We use a small ball to represent each data
point, its interior color to denote its true label, and its edge color to denote the predicted label of an
evaluated ML API. For example, on partition 1 and partition 3, all edge colors match interior colors,

31

Under review as a conference paper at ICLR 2022

1

Accuracy: 1.0

Uncertainty: 0.50

Accuracy: 0.5

Uncertainty: 0.00

Partition 2Partition 1

Accuracy: 1.0

Uncertainty: 0.67

Partition 3

Figure 8: Illustrative examples of uncertainty scores. The dataset contains three partitions, each of
which includes six data points. Here we use a ball to represent a data point, its interior color to denote
its true label, and its edge color to indicate an ML API’s predicted label. For example, as shown in
the left panel, three points are labeled as red and the other three are labeled as blue. All points are
predicted correctly, and thus the accuracy is 1.0. As the ML API predicts half of the points as red and
half as blue, the uncertainty score is 1− 0.5× 0.5− 0.5× 0.5 = 0.5. Note that high accuracy does
not necessarily imply low uncertainty. For example, accuracy on partition 1 (1.0) is higher than that
on partition 2(0.5), but its uncertainty score is actually larger than the latter. Yet, high diversity in
the predicted labels does imply higher uncertainty. For example, while accuracy on partition 1 and
partition 3 are both perfect, partition 3 incurs a higher uncertainty. This is because while only two
unique predicted labels exist in partition 1, three occur in partition 3.

and thus the accuracy is 1.0. On partition 2, interior and edge colors match only on half of the points,
and thus the accuracy is only 0.5.

To understand the calculation of the uncertainty score, let us take partition 1 as an example. The
ML API predicts the label red for half of the partition and blue for the other half. Thus, the
uncertainty score is 1 subtracting the sum of the square of likelihood of each predicted label, i.e.,
1 − 0.5 × 0.5 − 0.5 × 0.5 = 0.5. Similarly, on partition 2, the ML API always predicts the label
blue, and thus the uncertainty is simply 1− 1 = 0. On partition 3, the ML API evenly predicts three
unique labels, and thus the uncertainty score becomes 1− 1

3 ×
1
3 −

1
3 ×

1
3 −

1
3 ×

1
3 = 1

3 ≈ 0.67.

Two observations are worthy mentioning about uncertainty scores, in addition to their non-negativity
and upper bound of 1. First, higher accuracy on a partition does not imply lower uncertainty. To
see this, note that the accuracy on partition 1 (1.0) is higher than that on partition 2 (0.5), but its
uncertainty score is actually larger than that of partition 2. In fact, an API’s accuracy on a partition
is orthogonal to its uncertainty, as uncertainty score only depends on the predicted labels and is
independent of the true labels. Second, diversity of the predicted labels is correlated to the uncertainty
score. For example, the accuracy is same on partition 1 and 3, but the uncertainty score is higher on
partition 3, mainly because there are three unique labels (red, blue, and green) in partition 3. This is
expected, as uncertainty scores are designed to capture how diverse an ML API’s prediction can be.

32

