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Outline The supplement is organized as follows. Section [A|provides additional technical details.
All proofs are presented in Section [B] We give experimental setups, details of datasets and ML APIs,
and further empirical results in Section|C]

A TECHNICAL DETAILS

Computation and space cost of MASA. One attractive property of MASA is its low computation
and space cost. In fact, it can be easily verified from Algorithm [I] that, the computation cost is only
linear in the number of samples /V. The occupied space is only constant. Therefore, MASA can be
easily applied for large number of samples.

Choice of parameter a. The parameter a is used to balance between exploiting and exploration in
Algorithm|[I] Throughout this paper, we set @ = 1 as the default value. While theoretically a should
depend on the partition size and sample number, in practice we found that a = 1 works well. An
in-depth analysis for this remains an interesting open problem.

Stopping rule under loss requirements. For MASA, we establish the upper bound on the loss by
(i) computing the upper bound on the estimated uncertainty score for each partition, and (ii) summing
up all those upper bounds weighted by the partition size to form the upper bound on the loss. For
Uniform sampling or stratified sampling, we directly use the upper bound on the Frobenius loss.
Here, we adopt the standard upper bound for Bernoulli variables. That is to say, for any estimator
using n samples, we use \/% as its upper bound, where c is a parameter to control the confidence.
For both methods, we choose ¢ to ensure a 1% error under 95% confidence level.

B PROOFS

We present all missing proofs here. For ease of expositions, let us first introduce a few notations. We
let -, denote the nth sample drawn in Algorithm [T} and use I;, to indicate from which partition the
sample x,, is drawn. For example, I,, = (i, k) indicates that z,, is drawn from the partition D; j.

Let 24, € [L] denote the ML API’s predicted label for the ¢th sample drawn from the partition
Dy j;. Abusing the notation a little bit, let Ny 1, ,, denote the value of N, j, after the n — 1th iteration
and before the nth iteration in Algorithm Similarly, let 6 x » be the value of 6k, fiy jn be the
value of i, 5, ;. and Hy j,, ;n, be the value of Hy , ;, all after the n — 1th iteration and before the nth

iteration in Algorithm In addition, let Ay j, = % and A i, = min Ay . Similarly,
o 1t Pl K100 k! )

let us denote @i, £ min 0 . By assumption that p, ;, > 0 and oy ;, > 0, we must have A;, > 0
and o, > 0.

B.1 USEFUL LEMMAS

Let us first give a few useful lemmas. The first gives a high probability bound on our estimated
uncertainty score.

Lemma 3. Let the event A be

42 1 1 ! 1 < log2/4

1<k<K,1<t<L =1 j=1,j#1i
1<t<N

Then for any 6 > 0, we have Pr[A] > 1 — LK NJ.

Proof. For any fixed ¢, let us first denote

t
1
fopas 2o, 20k) S 1— tt—1) DD Lasima,

i=1 j=1,j#i
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Its expectation is simply

t ¢
E[f(zek,1, 208,25+ s Ze,k,0)] =E[1 — ) Z Z Yoo ri=zen;)
i=1j=1,j#i
1 t t
=1- mE[Z 2 ']lzl,k:,i:zi,k,j]
i=1j=1,j7#i
=1- E[lze,k,izzz,k,j]
where the second equation applies the linearity of expectation, and the third equation uses the fact
that all 2, 1, ; are identically independent. Note that
E[]]‘zk,k,i:zk,k,j}

=Przo i, = 20,k 5]

L
ZPI‘[Z@JCJ = T’] PI"[Zg,k’j = r]
1

T

2
Pr[Z[Jw' = T]

M-

r=1

where the first equation uses the definition of indicator function, the second uses the fact that two
sample are independent and there are only L many possible labels, and the last equation uses the fact
that those samples’ distribution is identical. Applying this in the above equation, we get

Elf(zek1,200,2, 5 20kt)] =1 —E[lz, =z, ]

L oo
=1- ZPr[z&k,’i =r|= U%,k
r=1

That is to say, its expectation is simply the uncertainty score 3 ;. On the other hand, we note that,
for any ¢, we have

/
F(Zog 1, 20 ki1520 ki 20k it1s " 5 20kt) — F(Zok1s 0 s Z0kyim1, 20 ir BOk,it 1> s BE R t)
t
1 1
§ : :ﬂ'zévkﬁ':zl,k,j - lzz,k,izzz,k,,g < t(t — 1) : (t - 1) = n
Jj=1,5#i

where the inequality is due to the fact that the indicator function can only take values in {0, 1}.
Similarly, we have

f(zz,k,l, T R0 ki—15 20k B0k ,Ze,k,t) - f(ze,k,l, T ,Ze,k,i—l,Zé,k,mzz,k,wl, e ,Zz,k,t)
t
1 1 1
Tt 1) 2 ety merns = baimsins 2 tt—1) e =—g
J=1,j#i

By Mcdiarmid inequality, we have

262

- =t ,—-2 _ 2
Pr(|f(zen1,2en2, s 20kt) — Blf (Zog1,Zek2, > 20ne)]]| > €] <2 Timat™? = 2¢7 %€

Set § = 2¢~2t<". This simply becomes, with probability at most d,

|f(Zoka,2ek2, > Zek,t) — O 1]
log2/6
=f(zepa,2ek2, s 20kt) = Elf (2ek1, 2002, 5 20kt)]] 2 5
Note that f is positive, we can take square root of both side, and obtain with probability at most J,
log2/6
4
|\/f(zé,k,1,zz,k,27 S Zekt) —Oek| > T/
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Or alternatively, with probability at least 1 — 9,

+/log2/6
2t
which holds for fixed ¢, ¢, k. Taking union bound, we know that with probability 1 — K LN 4,

|\/f(zé,k,17zf,k,2a e Zkt) —Ook] <

log2/6

, .. ) — < ¢

|\/f(zé,k,1,ze,k,2, 7z£,k,t) Ue,k| > o

which holds for all ¢, ¢, k. Plugging in the form of f completes the proof. O

The next one is more technical: it gives a connection between stopping time and adaptive sampling.
We omit the proof and refer the interested readers to (Athreya & Lahiri, [2006)).

Lemma 4 (Wald’s second inequality). Let {F;}=1,...n be a filtration and {X,}i=1, ., be an F;
adapted sequence of i.i.d. random variables with finite expectation p and variance V ar. Assume that
Fiand 0({Xs : s > t + 1}) are independent for any t < n, and let T(< n) be a stopping time with

respect to F;. Then
T
2
E[(ZXZ» —Tu) — E[T] Var.
i=1

B.2 PRrROOF OF LEMMA[I

Proof. Recall that the loss, defined as the expected squared Frobenius norm error, is

2
E [HAC - ACA'HQF} :ZE (ACi,j - Aéi,j>2 = ZE (Zpi,k[ll'i,k,j - ﬂi,k,ﬂ)
] i,j k

= ZP?,kE ([y'i,k,j - ﬂi,k,j])Q

.5,k
Here we basically apply the definition of each entry. Suppose N, ;, samples are allocated to estimate
H; . ;- Then we have

E ([1i 1. —ﬂi,k,j])2 = Nli . Pr[g(z) = jlz € D;x](1 — Pr[j(z) = jlz € D;x])

since p; 5, ; 18 effectively a Bernoulli variable. Then the loss becomes
- . 2
E[IAC = ACIE:| = 3 p2E (i — i)

.5,k

1 . . . )
= szz,kﬁ Prj(z) = jlo € D;x](1 - Pr[j(z) = jlz € Dix))
i,k ”

1 . . . .
=D Py - > Pr(j(x) = jlo € Dixl(1 — Pr[j(x) = jlo € Dixl)
ik LR

where the last equation is simply by rearranging the summation. Note that
> Prlj(e) = jlz € Dig] =1
J

The last summation is simply
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Thus, the loss becomes
- 1
E[lac - AC3] = 2rhioty

By Cauchy Schwarz inequality, we have

2
2 2
Pi 0k
N S Nix | = (D piroix
ik ik ik ik
where the equality holds if and only if
2 2 2 2
Pik0ik Py w0k
2 2
Ni,k: Ni’,k’
for any 7,4, k, k’. That is to say, there exists some constant ¢, such that
PikOik _ PikOirg 1
N, N\ c
And thus, N; j; = p; 10, . Summing over ¢, k gives
N=Y Nip=) piroirc
ik ik
Thus,
N
C= —/——mmmm
> ik PikOik
and )
Dik0ik
N =Pir0ikC=Pi 0k =
Zi,kpi,kai,k Zz‘,kpi,kai,k
which completes the proof. O

B.3 PROOF OF THEOREM[Z]

Proof. To prove this theorem, we need a few more lemmas.

Lemma 5. Algorithm ’s computational cost is O(LK N) and space cost is O(L*K). Furthermore,
for any n > 2LK, after the n — 1th iteration and before the nth iteration, we have

n—1
Nep=Negn=> lr—@pn
=1

n—1

D Limem L=
i=1

1

Bokj = Bokjn = Nox
9 )n

n—1 n-—1
1

— 1;-7.— Yotw)=i(x,
Nign(Negn —1) 2 2 bietmenLisice)

i=1 =157

Ouk =0pkn=1

n—1

Hopj=Hppjn=> Li—ew)ly)—j
=1

Proof. The computational and space cost can be easily verified: as shown in Algorithm [I] the

variables &, f1, H, N take space LK, L2K, L? K, LK. Therefore, the space is bounded by O(L*K).
For the first 2L K iterations (line 3-8) in Algorithm [I} the computation cost is clearly O(LK).
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For the rest iterations (line 10- 16), the most expensive cost is computing I,,, which requires LK
computations per iteration. Therefore, the total computational cost is O(LK N).

Next we show that the above four equations hold for every n > 2L K. We prove this by induction.

1) n = 2LK + 1: One can easily verify this by plugging the initial values established in line 3-8 in
Algorithm [T}

2) Suppose the four equations hold for the case when n = m. Now consider n = m + 1. Now let us
consider two cases.

* Any ¢, k such that I,,,11 # (¢, k): There is nothing update,

m—1 m—1 m—1

Nygme1 =Negm = Z Ir—en) = Z Ir,—er) +0= Z Tr—er) + 11, =e.k)
=1 =1 =1

= Z Tr,=e.r)
i=1

Similarly, one can show that

R R 1
Kok jom+1 = Mo kjm = W Z Lr=(e,e) Ly(ai)=;
T =1
1 m m
O =0ipm=1— 1; 7. Liiw =i(.
0,k,m+1 0,k,m NeromNerm —1) ;j:;# Li=I;=(,k) Y g(x:)=9(x;)

m
Hopjma =Hopjm =Y 1 lyw)—s
=1

* For some ¢*, k* such that I,, 1 = (£*,k*).

Let us first consider N - ,~. We increment N ¢« ;« by one, and thus

m—1 m—1
Ny jrme1 =N oo +1 = Z Ir—(er sy +1= Z Lr=er oy + L1, =(e 1)
i=1 i=1

= Lp—e )
i=1

Next we consider fy. ;- ;. Using a similar argument as above, we have

Vg (@m)=j = B~ k> jm

Ny« ke mt1

)

Bos = jom+1 =Hex k= jm T

_N€*7k*7m+1 -1 + ]lg(wm):j
= 7 Mo rim TN

b
N i mt1 N« v m+1

o NE*,k*,m ~

1, .
flge e jm T Y(xm)=J

- )
N v m+1 N jov mt1
m—1

L > Tr—(er ey Lgon=s + Lo(en)=i
- i= (0%, k> xi)= ~N._
N e min Newweom = R

1

SR S S PSS PO
N@*,k*,m-‘rl Z I; (é 7]") y(x1) ]

i=1
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where the first equation is due to the update rule of fi,. ;. ;, the second equation is simply
grouping by fip. .« j,m>» the third equation is due to the fact that N« jox ma1 = Nopx e +1,
the forth equation is due to the induction assumption, and the forth equation is simply
algebraic rewriting.

. A2 .
Now let us consider 67. ;. ., ;. We can write

~2
aé*,k’*,m—i—l
2 Hyo

_ A2 s 7@(wm)7m ~2
_aé*,k’*,m + N (1 - N 1 - aé* k*, m)
£ k* mt1 ok mbl —
Ny g1 — 202 n 2 (1 Hy e g(a),m )
=~ x _ Oprkm —_
Ny« po me1 Ny« o me1 Ny jo g1 — 1

m—1 m—1

Ny promg1 — 2 1

1— -1, — e by L(on) =i,
N e m41 N e m (N g orom — 1) Z 2 nmt=e i) Lite=ite)

i=1 j=1,j#i
2 (1 _ Hé*ak*:@(w'mLm )
N = mt1 Np peom+1 — 1
-1 m-1
_NZ*,k*,m+1 - 2(1 ]. e e 1 :[]_ )
Ii=1;=(£*k*
NZ*,k*,’rrL-‘rl (N[* k* m+1 —2)(N€* k* m+1 —1) pa eyl J ( ) y(’l') y(TJ)
i 2 (1 B HE*,k*,@(zm),m
Ny jo my1 Ny« o my1 — 1
1 m—1 m—1
1 L PRTRIN PURNI
NE*,k*7m+1(NZ*,k*’m+1 - ].) 722; ]:;;éz Li=I;=(£* k") “g(z:)=9(z;)

B 2H ke g()m
Ny e ma1(N s e g1 — 1)

where the first equation is by the update rule in Algorithm[I] the second equation is simply
rearranging the terms, the third equation uses the induction assumption, the forth one uses

the update rule on Ny« ;- and thus N g« p« , = Ny« g 41 — 1, and the fifth equation is
also rearranging the terms.

On the other hand, by induction assumption, we have

m—1
Hp oo genym = O, Ui=ee k) Lg(an =g (am)
1=1

And thus

>_A

m—1 m—

Lp= = %) Ly(wi)=g(a) + 2H ox o g(2,),m

=1 j=1,j#i
m m

=2 2 L= Lio=itn)
i=1j=1,j#i

Hence, the above equation becomes

1 m m

~2 § §

O g fox +1:1— ]1117[:?‘]@)]1 D=9(z;
k*m NZ*,k*,m+1(NZ*,k*,m+1 _ 1 pc iy O J (z:)=9(z;)
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Finally, let us consider H ¢« j- ;. If j # §(xy,), it is clear that

—1
Hp e jomir =Hes e jm = Y Lr—(ee oy Lyay)=j + 0
=1

m—1
= Vi b ieo=5 + Lii=(er k) i) =3
i=1

= Trme k) L=
i=1

where the first is due to that there is no update for this j, the third equation is due to the fact
that §(z,,) # j, and all the other equations are algebraic rewriting.

If j = g(a,n), it is clear that

m—1

Hy o jomyr =Hpe g jom +1= Z Lr=(er ) Lg(ai=5 +1
=1

m—1
= Lp—(e k) Lyei=i + Lii=(e k) L(anm)=i
=1

= Lrm(ee b Lyenr=

i=1

where the first is due to that there is no update for this j, the third equation is due to the fact
that §(x,,,) = j, and all the other equations are algebraic rewriting.

That is to say, we have shown that,

m
Nygmyr = E L7,—(e,k)
=1

X 1 G
Bk jmer = N > 11,0 Lg(ai)=g
ML =1

00 kmi1 =1—

1 m m
Tr—r.=.0) Ly =i(=;
Ng,k77n+1(Ng’k7m+1 — 1) ;j=1zj:7éi i=k) Ly (xi)=7(z;)

Hogjmer =Y L—r) L=
=1

always hold. By induction, we can say that for any n > 2L K, the original equations hold, which
completes the proof. O

Lemma 6. Suppose that the event A holds. Set § = 2e~*. Then for each {, k, we have

1 _ 4 log2/6 1
— < 1+ 4LKN™ + — {2 N"3
Nf,k - Nz,k * * O min Amin

1 1
forany 1 </ <L, 1<k<K.

Proof. To show this, let us first establish the following useful lemma.

Lemma 7. Suppose that the event A holds. If Algorithm draws at least one sample from Dy, 1,
after the first 2L K iterations, we must have, for every {, k,

Pe.k log2/é -
Ny, > (N -1 : 24—
ok = (Neoky )w’kpe(),ko (aéo’ko - V 2(N g ko — 1)
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Proof. Since the event A holds, we have

t t
1 log2/6
— 1) Z Z ]lze,k,i:zz,k,j — Ok < v o

i=1 j=1,j#i

for every ¢, k,t. Since this holds for every fixed ¢, it should also holds for any random variable ¢.
Specifically, we must have

Nokn Nekon

./ log2/8
1-— 1 = -0 <
Nekn(NMn ; 2 Meupimsuns ~O0k| < 2Ny ko
Jj=1,j#1i
Note that, by definition,
Nykn Negn
&l,k,n =.4|1- ]lze,k,1;ze,k,j
Nﬁkn(len - =1 j=1,ji
We can then rewrite the above inequality as
6 | log2/4
o -0
L.k, Lkl > 2N@ o

That is to say,

log2/6 [log2/d
4 < < 4
WNopm = Opkn SO¢k+ Noin

Adding {/ 53¢ log 2/ 0 - to both sides, this becomes

. [log2/§ [log2/§
Ok <Orknt+ <opr+24
2N€,k,n QNZJ%TL

Multiplying both sides by <2

N

Dok Pk | - ./ log2/0 Dok ./ log2/d
< P et < Pt P B.1
Ne,k,naé’k " Nygn <Ue,k, * 2Nikn ) ~ Negn Tek T+ 2N kn (B.1)

which holds for any ¢, k, n. Note that N > 2L K, there must exist some £y, kg, such that Algorithm
draws a sample from the data partition Dy, j, after the first 2L K iterations. Suppose the last
time a sample is drawn from Dy, i, is no > 2LK. That is to say, N ¢, 1g.no = Neg,kon — 1, V0 =
ng+1,---,N. Since Algorithmchooses ly, ko at iteration ng, by line 11 in Algorithm we have

Lo, kg = arg max i —)
£,k,no 2N€ k,no

By definition of arg max, we have

Dio ko, a .| log2/é Dek . ./ log2/d
~——(0¢y,ko,no T+ > Ot kmg + \| oo
Neo,ko,no( e \/m) Né,k,no< " 2Ne,k,no)

Setting n = ny in the first half of inequality [B.T]| we have

Do . .| log2/6 Dk
00k + > Ok,
Ny ko < "o 2N ¢ iemo o

2y

Combining the above two inequalities gives

Deo ko ,x .| log2/6 Dk
Jvi(afmko,no + oN ) > N Ok
£o,ko,n0 £o,ko,n0 £,k,no
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Noting that by definition, N ., < Ny g~ = Ny i, we can lower bound 1/N i, ,, by 1/N 1, and
the above inequality becomes

Deo ko /a .| log2/é Dk
T (A > ok
Nfo,ko,no ( oromo 2N€0,/€07’ﬂ0) Nék

Now setting n = ng, ¢ = {o, k = ko in the second half of inequality [B.T| we have

log2/6 log2/6
Pioko (g af 108 / < Pk (g ol 108 /
NKOJCOJI 2N€07k0,n0 Nfo,koﬂbo 2N€0-,k0,710

Combining the above two inequalities, we have

Peo ko 4 log 2/6 Dok
~ Ok + 2 Oy k
Nfo,’foﬂlo ( o 2N@0,k07n0 ) N@ k

Observe that ng is the last time a sample is drawn from partition Dy, r,, we have Ny, 1 no =
Nykoon—1,Yn =no+1,---, N. Specifically, No; 1o no = Neo,ko,v —1 = Ny, 1, — 1. Replacing
Ny ko ,mo bY Noy ko — 1 in the above inequality, we get

Deo ko 4 log2/0 Dok
Neo,k’o - 1( forko Z(meko )) NF k TLk

which holds for every ¢, k. Rearranging the terms completes the proof. O

Now we are ready to prove the bound on Ny, — N7 ,.

Let us first consider the lower bound. By definition, we have

L K
N —2LK
ZZ(NM—Z) =N -2LK =——N

Note that by definition, N = 2521 Zle N7 ;.- We can now replace the second N in the above
equality, and obtain

L& N-2LK = N-2LK g e~ ., == Nj (N —2LK)
ZlgNek—2 N N = N ZZNE,]C:ZZM#

k=1 l=1 k=1 {=1 k=1

Now let us consider two cases.

(i) Assume Ny — 2 > w That is to say, N, > w + 2. Then we have

1 1

< *
Nl,k - Né,k(]\Jf\;zLK) +9
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subtracting z+— from both sides, we get
0,k

11 1 1
New Nj, = NixW22ER) o0 NG,
) Ny, - N;f,k(J\JTV—2LK) Ly
= N;ﬁyk . (Nzk(J\]rV—2LK) n 2)
N, - N;,C(J\J/V—2LK)

> N;fk . (Nzk(J\]iV—QLK)>
2LKN7y ,
_ N
NZ,k _ (N;Yk(]\]/V—QLK))
B 2LK
- N;, (N —2LK)

where the last inequality is simply by removing the constant 2. Now by assumption, N > 4L K, we
have N — 2LK < %N . The above inequality can be further simplified as

1 < 2LK < ALK
Nep Nj,— Nzk(N—QLK) - NN

By definition, we have N =N Ay < NApin. Therefore, we have

1 1 < 2LK < 4LK
Ny NZk - NZ,C(N—2LK) - Nsz

That is to say,

1 1 4LK
< |1+
Ny Né,k N
And thus, apparently,
1 1 4 log2/6 1

— < 1+ 4LKN™ + — ([ —2>"—N"1

N[yk - N; k + * O min Amin
(ii) Assume Ny — 2 < w Then there must exists some £y, ko such that Ny, .0 — 2 >

N; . (N—2LK . .
Nigug W-2LE) > (. That is to say, Algorlthmdraws at least one sample from Dy, 1, after the first

N
2LK iterations. By Lemma([7] we must have

Dok log2/6 B
N > N . 1 s 2 Y g = R
Lk Z ( £o,ko )Uévkpeo)ko (U&”ko + Q(Nfo,ko - ‘1>

N; o (N—2LK)
N

Nygo —2> implies

N7, ko (N — 2LK)
N

Therefore, we can use this lower bound on N, 1, — 1 in the above inequality and obtain

Nfoyko -1> Nlo.,kng >
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log2/6

N; , (N —-2LK)
Lo, ko k PLk Opy ko 24 "N . (N—2LK)

' N " Do ko 9" t0:ko
N

Nzo,ko(N_QLK) O, kDek 2 \ log2/6

= 14 .
N 0‘[07k‘opfg,k0 afo,ko 2W

-1

NZk(N —2LK) . 9 g 2/5
N 1
N O 44,ko QM
N

where the first equality is by dividing o, , at both denominator and numerator, and the second
equality uses the fact that Nj , is proportional to p, ;0 ;. Taking inverse of the above inequality
gives

1 N 2 log2/6
< 1+ 4 -
Nf,k N)Z k(N - QLK) 0 4y,ko QM
' N

Now let us simplify this inequality. Let us first expand all terms and obtain

1 N 2 log2/4
< 1+ 4 -
New = NipV =2LK) | ot \| pNiasn N22L0
’ N

N 1 i 2LK " N 2 \ 10g2/5
T Ni. N (N -2LK) Ny (N =2LK) 0uk, \| g Ve 215
’ ’ 7 N

. 2LK R < N >5 log 2/8
N;, N;,(N-2LK) oy | \N-2LK) 2NjAN;

For the second term, by assumption, N > 4LK and thus N — 2LK > 1/2N, we have

2LK < ALK
N-2LK — N

Thus the above equation becomes

Lo 1 K 2 < N )5 log 2/8
Ng)k - NZk Nsz T4, ko N —2LK 2Nz4szo,ko

For the third term, N > 4L K also implies

N 2LK 2LK

N ok TN ok “'Tiok —ork 2

Thus the above inequality can be further simplified as

1 1 4LK 4 log2/6
S * + * + ¢ *4 *
Ny Nl,k Ne,kN 0 4y,ko NZ,kNEO,kO

<

"
N7,

1 4LK 4 log2/6
14+ + :/ 1082/
N T 2o,ko Nfg,krg
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Now by definition, 0, 1, > Omin, and N Toko =N Ay ko > NAnin, we can further simplify the
above inequality

1 1 [ 4Lk 4 [flog2/s
<= [1+ + Vv
Ny Ne,k L N 0 0y,ko Nfo,ko
< 1* 14 4LK n 4 ,llog2/é
Né,k N [ NAmin
1 4LK 4 log 2
< 1+ L4 gfloe2/d
NZk N O min NAmin
That is to say, )
1 1 _ 4 log2/6 1
— < 1 +4LKN" 4 — ¢ =2 N1
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That is to say, no matter N, — 2 < % or not, this inequality always holds, which

completes the proof. O

Now we are ready to prove Theorem 2] Let us first note that the loss can be written as
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where we plug in the definition of fi. By Lemma@ we have the upper bound on 1/N j,
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It is not hard to see that N, ;, is a stopping time. In fact, for any ¢, k, and any time n, a new sample is
drawn purely based on estimated uncertainty score 6 and observed sample number N f, ,,—1 up to
the current iteration, which is part of the history. As N, < NN is bounded, N ; is a stopping time.
Hence, we can apply Lemma[d] and obtain

2 2
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where the first inequality uses the fact that square term must be non-negative, and the second inequality
uses the fact that, for Bernoulli distribution with mean a, its variance is a(1 — a). Applying this in
inequality [B.4] we have
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where the last equation is by definition of N, ;. Now applying this in inequality we have
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where the second equation uses the fact that only E[N, ;] depends on ¢, k, the third equation uses the
fact that 37, S5 Ny = Nand thus 3p, S E[N;,] = N. Note that § = L' KN4,
we have
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Applying this back to inequality we have
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Note that the loss of the optimal allocation is simply £, = *1(22 kakO'g’k)z. The above
inequality is simply
Ly — Ly <O(N™ilogi N)
which completes the proof. O

C EXPERIMENTAL DETAILS

Experimental Setups. All experiments were run on a machine with 2 E5-2690 v4 CPUs, 160 GB
RAM and 500 GB disk with Ubuntu 18.04 LTS as the OS. Our code is implemented and tested in
python 3.7. All experimental results were averaged over 1500 runs, except the case study. Overall
the experiments took about two month, including debugging and evaluation on all datasets. Running
MASA once to draw a few thousand samples typically only takes a few seconds. Our implementation
is purely in Python for demonstration purposes, and more code optimization (e.g., using cython or
multi-thread) can generate a much faster implementation.
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Table 2: Dataset statistics.

Dataset H Size ‘ # Classes ‘ Dataset H Size ‘ # Classes H Tasks ‘
FER+ 6358 7 RAFDB (Lietal.) || 15339 7
EXPW 31510 7 AFFECTNET 87401 7 FER
YELP 20000 2 SHOP 62774 2
IMDB 25000 2 WAIMAI 11987 2 54
DIGIT 2000 10 AUDIOMNIST 30000 10

FLUENT || 30043 31 COMMAND 64727 31 ST

Table 3: ML services used for each task. Price unit: USD/10,000 queries. We consider three tasks,
sentiment analysis (SA), facial emotion recognition (FER), and spoken command recognition (SCR)

’ Tasks H ML service ‘ Price ‘ ML service ‘ Price ‘ ML service ‘ Price ‘
SA Google NLP (GoN) 2.5 AMZN Comp (Ama) | 0.75 Baidu NLP (Bai) 35
FER Google Vision (Goo, a)) 15 MS Face (Mic, |al) 10 Face++ (Fac) 5

SCR Google Speech (Goo: b) 60 MS Speech (Mic, b)) 41 IBM Speech (IBM) 25

ML APIs and Dataset Statistics. We focus on three common classification tasks, namely, senti-
ment analysis, facial emotion recognition, and spoken command recognition. For each of the tasks,
we evaluated three APIs’ performance in spring 2020 and spring 2021, respectively, for four datasets.
The details of datasets and ML APIs are summarized in Table 2] and Table [3|respectively. Now we
give more context of the datasets.

For sentiment analysis, we use four datasets, YELP, IMDB, SHOP, and WAIMAI. YELP and IMDB
are both English text datasets. YELP (Dat, |c) is generated by drawn twenty thousand samples from
the large YELP review challenge dataset. Each original review is labeled by rating in {1,2,3,4,5}.
We generate the binary label by transforming rating 1 and 2 into negative, and rating 4 and 5 into
positive. Ten thousand positive reviews and ten thousand negative reviews are then randomly drawn,
respectively. IMDB (Maas et al.) is a polarized sentiment analysis dataset with provided training
and testing partitions. We use its testing partition which has twenty-five thousand text paragraphs.
SHOP (Dat, [a) and WAIMALI (Dat, b) are two Chinese text datasets. SHOP contains polarized
labels for reviews for various purchases including fruits, hotels, computers. WAIMALI is a dataset
for polarized delivery reviews. Both SHOP and WAIMALI are publicly available without licence
requirements. There is a dataset user agreement for YELP dataset, which disallows commercial usage
of the datasets but encourages academic study. Same thing applies to the IMDB dataset.

For facial emotion recognition, we use four datasets: FER+, RAFDB, EXPW, and AFNET. All
the datasets are annotated by the standard seven basic emotions, i.e., {anger, disgust, fear, happy,
sad, surprise, neutral}. The images in FER+ (Goodfellow et al.| [2015) are from the ICML 2013
Workshop on Challenges in Representation. We use the provided testing portion in FER+. RAFDB
(L1 et al.) and AFFECTNET (Mollahosseini et al., 2019) were annotated with both basic emotions
and fine-grained labels. In this paper, we only use basic emotions since commercial APIs cannot
work for compound emotions. EXPW (Zhang et al.) contains raw images and bound boxes pointing
out the face locations. Here we use the true bounding box associated with the dataset to create aligned
faces first, and only pick the images that are faces with confidence larger than 0.6. We cotnacted the
creators of RAFDB and AFNET to obtain the data access for academic purposes. FER+ and EXPW
are both publicly available online without consent or licence requirements.

For spoken command recognition, we use DIGIT, AMNIST, CMD, and FLUENT. DIGIT (Dat, |d)
and AMNIST (Becker et al.,|2018]) are spoken digit datasets, where the label is is a spoken digit (i.e.,
0-9). The sampling rate is 8 kHz for DIGIT and 48 kHz for AMNIST. Each sample in CMD (Warden,
2018)) is a spoken command such as “go”, “left”, “right”, “up”, and “down”, with a sampling rate of
16 kHz. In total, there are 30 commands and a few white noise utterances. FLUENT (Lugosch et al.)

is another recently developed dataset for speech command. The commands in FLUENT are typically
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Figure 6: Confusion matrices of a few APIs in spring 2020/2021, along with their APT shifts.

a phrase (e.g., “turn on the light” or “turn down the music”). There are in total 248 possible phrases,
which are mapped to 31 unique labels. The sampling rate is also 16 kHz. All those datasets are freely
available online for academic purposes.

Some of the datasets may contain personal information. For example, the human faces contained in
the facial emotion recognition dataset may be deemed as personal information. On the other hand, our
study focuses on whether there is a performance change on the dataset, and does not use or disclose
any personal information.

For sentiment analysis, we use the Google NLP API (GoN)), Amazon Comprehend API (Ama), and
the Baidu NLP API (Bai). For facial emotion recognition, we use Google Vision API la),
Microsoft Face API ), and the Face++ API (Fac). For spoken command recognition, we adopt
Google speech API b), Microsoft Speech API [b), and IBM speech API (IBM).

Details of observed ML API Shifts. Now we present a few more observed ML API shifts, as
shown in Figure[6] One observation is that individual entry’s change in the API shift can be larger
than the overall accuracy’s. For example, as shown in Figure[6](c), the overall accuracy change is
about -1.1% for Amazon on IDMB, but the performance drop for positive texts is as large as 5%. This
indicates the importance of using fine-grained confusion matrix difference to measure API shifts. In
addition, when the overall accuracy increases, it is possible that the accuracy for each label has been
improved. This can be easily verified by Figure[6] (d-f). On the other hand, as shown in Figure [6] (g-i),
Google API’s large accuracy improvement (24%) is mostly because it is able to correctly predict
many samples that were previously deemed as empty. One possible explanation is that Google API
internally uses a higher threshold to generate a recognition. When the number of label increases, it
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Figure 7: Effects of partition parameter K. The total number of partitions is LK, and thus Larger K
implies more partitions. Generally, across 12 cases where API shifts are identified, larger number of
partitions usually leads to smaller estimation error for large samples. In practice, we observe that
K = 3 is enough to reach good error rate.

might become hard to manually check the API shifts. For those cases, an anomaly detector can be
applied to quickly identify the most surprising components in the API shifts.

Partition size’s effects on MASA. Now we study how the partition number affects the perfor-
mance of MASA, as shown in Figure m Across all API shifts we estimated, we note that larger
number of partitions leads to a smaller overall Frobenious norm in general. This is expected, as larger
K effectively introduces more parameters to estimate and thus is more powerful. The trade-off is that
the computational cost increases, and more samples are needed for initial estimation. Interestingly, as
K becomes large, the relative error reduction improvement becomes small. This is probably because
there is no strong uncertainty difference within small partitions. In practice, we found that K = 3
already gives a small enough error reduction.

Comparison with baselines for case study on YELP. To further understand MASA’s perfor-
mance, We compared the performance of MAS A with two baselines: random sampling and standard
stratified sampling (proportionate allocation). We drawed 2000 samples for all methods, and repeated
the experiments 1000 times to obtain an average of the Frobenius norm error. MAS A outperforms
both baselines significantly: the observed error is 0.015 for random sampling, 0.009 for stratified
sampling, and 0.006 for MASA.

Understanding uncertainty score. MASA is developed based on the notion of uncertainty scores,
and thus it is worthy understanding how uncertainty scores of different partitions for an ML API
are computed. Here, we provide an illustrative example, as shown in Figure[§] The dataset contains
three partitions and each partition includes six data points. We use a small ball to represent each data
point, its interior color to denote its true label, and its edge color to denote the predicted label of an
evaluated ML API. For example, on partition 1 and partition 3, all edge colors match interior colors,
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Partition 1 Partition 2 Partition 3

Accuracy: 1.0 Accuracy: 0.5 Accuracy: 1.0
Uncertainty: 0.50  Uncertainty: 0.00  Uncertainty: 0.67

Figure 8: Illustrative examples of uncertainty scores. The dataset contains three partitions, each of
which includes six data points. Here we use a ball to represent a data point, its interior color to denote
its true label, and its edge color to indicate an ML API’s predicted label. For example, as shown in
the left panel, three points are labeled as red and the other three are labeled as blue. All points are
predicted correctly, and thus the accuracy is 1.0. As the ML API predicts half of the points as red and
half as blue, the uncertainty score is 1 — 0.5 x 0.5 — 0.5 x 0.5 = 0.5. Note that high accuracy does
not necessarily imply low uncertainty. For example, accuracy on partition 1 (1.0) is higher than that
on partition 2(0.5), but its uncertainty score is actually larger than the latter. Yet, high diversity in
the predicted labels does imply higher uncertainty. For example, while accuracy on partition 1 and
partition 3 are both perfect, partition 3 incurs a higher uncertainty. This is because while only two
unique predicted labels exist in partition 1, three occur in partition 3.

and thus the accuracy is 1.0. On partition 2, interior and edge colors match only on half of the points,
and thus the accuracy is only 0.5.

To understand the calculation of the uncertainty score, let us take partition 1 as an example. The
ML API predicts the label red for half of the partition and blue for the other half. Thus, the
uncertainty score is 1 subtracting the sum of the square of likelihood of each predicted label, i.e.,
1—-0.5x0.5—0.5x 0.5 = 0.5. Similarly, on partition 2, the ML. API always predicts the label
blue, and thus the uncertainty is simply 1 — 1 = 0. On partition 3, the ML API evenly predicts three

: : 11 _ 11 _ 1,11,
unique labels, and thus the uncertainty score becomes 1 — 3 X 3 — 3 X 3 — 3 X 3 = 3 =~ 0.67.

Two observations are worthy mentioning about uncertainty scores, in addition to their non-negativity
and upper bound of 1. First, higher accuracy on a partition does not imply lower uncertainty. To
see this, note that the accuracy on partition 1 (1.0) is higher than that on partition 2 (0.5), but its
uncertainty score is actually larger than that of partition 2. In fact, an API’s accuracy on a partition
is orthogonal to its uncertainty, as uncertainty score only depends on the predicted labels and is
independent of the true labels. Second, diversity of the predicted labels is correlated to the uncertainty
score. For example, the accuracy is same on partition 1 and 3, but the uncertainty score is higher on
partition 3, mainly because there are three unique labels (red, blue, and green) in partition 3. This is
expected, as uncertainty scores are designed to capture how diverse an ML API’s prediction can be.
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