
Appendices1

A Task Setup2

A.1 Simulation Details3

We build the simulation environment using MuJoCo [1] simulation for learning robot contact-rich4

manipulation skills. In the simulation, we include the model of the FANUC LRMate 200iD robot,5

and each of the joints is controlled with motor torque command. We incorporated an F/T sensor6

asset on the robot’s wrist to measure the contact force. For the low-level controller, we employed7

computed torque control [2] to track the compliant trajectory xc and ẋc derived from the admittance8

controller. The simulation time step was set to 0.01 s. Further details regarding the assembly and9

pivoting setups are outlined below:10

Assembly: This task involves aligning a square-shaped peg with a hole. The edge length of the peg11

is 4 cm, and there is a clearance of 2mm between the peg and hole. The friction coefficient between12

the peg and hole is configured as 0.3.13

Pivoting: In this task, the objective is to reorient a rectangular object against a rigid wall. The14

simulated object has dimensions of 10 × 10 × 2.6 cm3. A friction coefficient of 0.7 is assigned to15

all objects in the simulation.16

A.2 Real Robot Experiment Setup17

The real robot setup is visualized in Fig. 1. We utilized FANUC LRMate 200iD industrial robot18

as the test bed for our real-world experiments. The end-effector pose, and velocity are obtained19

from the joint encoders. The end-effector pose, and velocity are obtained from forward kinematics.20

The contact force is measured by an ATI Mini45 Force/Torque sensor mounted on the robot’s wrist.21

The low-level position/velocity controller is achieved via a Positional-Integral (PI) control law with22

feed-forward terms to cancel gravity and friction. The controller is implemented in Matlab Simulink23

Real-Time and runs on 1KHz. The admittance controller we use takes in the desired robot motion24

xd and optimized admittance control parameters P and outputs the command robot motion xc to the25

low-level position/velocity controller. The robot motion xd is directly sent from an Ubuntu computer26

with a User Datagram Protocol(UDP) in 125Hz. Similarly, the initial control parameters P are sent27

from the Ubuntu computer and optimized in MATLAB with a built-in SQP solver.28
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Figure 1: Real robot experiment setup.
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B Simulation Training Details29

B.1 Domain Randomization Details for Contact-rich Tasks30

In both the assembly and pivoting tasks, we introduced Gaussian noise with a mean of zero and31

a standard deviation of 0.2 N to the FT sensor readings as measurement noise. Additionally, we32

applied a clipping operation to the collected contact force, limiting it to the range of ±10 N for33

regulation purposes. To enhance the robustness of the learned skills, we incorporated randomization34

into the robot’s initial pose.35

For the assembly task, the robot’s initial pose was uniformly sampled from a range of36

[±30 mm,±30 mm, 30 ± 5 mm] along the X , Y , and Z axes, respectively. As for the pivot-37

ing task, the range for the initial pose was set to [150± 30mm, 5± 5mm] along the X and Z axes38

relative to the rigid wall.39

B.2 RL Training Details40

We use the Soft Actor Critic [3] with implementation in RLkit [4] to learn robot manipulation skills41

in simulation. The hyperparameter selections are summarized in Table. 1.42

Hyperparameters Assembly Pivoting
Learning rate - Policy 1e-3 1e-4

Learning rate - Q function 1e-4 3e-4
Networks [128,128] MLP [128,128] MLP
Batch size 4096 4096

Soft target update (τ ) 5e-3 5e-3
Discount factor (γ) 0.95 0.9
Replay buffer size 1e6 1e6
max path length 20 40

eval steps per epoch 100 400
expl steps per epoch 500 2000

Table 1: Hyperparameters for RL training

C Discussion on Proposed Approach43

C.1 Discussion on the Necessity of Learning the Compliance Control Parameters44

We consider the manipulation policy for contact-rich manipulation tasks to contain a manipulation45

trajectory and the corresponding compliance control parameters.46

The main difference between ‘contact-rich’ manipulation and regular manipulation tasks is how47

much force the robot exerts on the environment. The more force the robot applies, the more force it48

has to withstand. For contact-rich manipulation, the robot desired trajectory often has to penetrate49

the object with its end-effector to generate enough force for the task. For example, to wipe a table,50

the robot has to push its end-effector below the table surface. Since the robot is a rigid object, it51

needs a compliance controller to regulate its behavior and prevent potential damage. Compared to52

a position/velocity controller that might not need to tune the PID gains frequently, a compliance53

control is very sensitive [5] to the change of environment or task goals. It thus requires careful54

tuning of the parameters for each task. Therefore, for contact-rich manipulation, a suitable policy55

should be matched with the appropriate compliance control parameters to achieve the task smoothly.56

C.2 Discussion on Approaches for Modeling Contact Force57

A key component in our online admittance learning is the dynamics constraint, as shown below:58

ẋ =

[
ė
ë

]
= f(x, Fext, u) =

[
ė

−M−1Dė−M−1Ke+M−1Fext

]
(1)
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where we want to regulate the future robot behavior based on the current robot state and the external59

force Fext. In optimization, when we change the admittance parameter M , K, and D, the robot60

motion will change, and the external force that the environment gives to the robot will change as61

well. Thus, a robust way to model the external force Fext is crucial in our online admittance learning.62

To estimate or approximate the contact force in real time, we compare four approaches:63

• record & replay: We record the force/torque from the most recent measurements within a64

time window and directly use the pre-recorded data as Fext in the optimization.65

• hybrid impulse dynamics: We use Eq. 1 with Fext = 0 when there is no contact. For the66

contact, we model it implicitly as Mẋ− = γMẋ+, where ẋ− and ẋ+ are the robot end-67

effector velocities before and after the contact. By online fitting the γ, we can optimize68

these hybrid dynamics to calculate the optimal parameters.69

• analytical contact model with online parameter fitting: We model the contact explicitly70

using analytical models and fit the necessary parameters using online data, following [6, 7].71

• contact force fitting: We fit a contact force model using online force sensor measurements.72

However, the hybrid impulse dynamics approach is not suitable for our requirements. As shown73

in Fig. 2, the contact force profile in contact-rich manipulation indicates that the robot maintains74

contact with the environment for most of the time. Therefore, neglecting the entire contact process75

and modeling it implicitly is not appropriate for our applications.76

Similarly, analytical contact model with online parameter fitting does not fit our scenarios either.77

Although it has been successful in some pivoting tasks, it relies on the quasi-static assumption that78

does not hold in our scenario. One of the main challenges of transferring the admittance parameters79

is to avoid the robot bouncing on the object. Moreover, the analytical model assumes point or sliding80

contact modes, which may be hard to generalize to different tasks, such as assembly.81

Figure 2: Performance of online force fitting (in z axis). In every time window, we collect the
force/torque measurements and use the least square to fit the force model Fext(x, ẋ) = a(t)x(t) +
b(t)ẋ(t) + c(t). On the left, it shows the linear model can fit the force profile locally. However, it
can be extremely challenging to generalize to the next time window, as shown on the right.

Finally, for contact force fitting, we assume a linear (spring-damping) contact force model: Fext =82

a(t)x(t) + b(t)ẋ(t) + c(t) within a short time window. We use the least square to estimate the83

parameters a, b, and c in real time. Fig. 2 shows an example of fitting results. It can fit the force84

profile well in a short time window. However, as we need to apply the model learned in the previous85

time window to the next step, the generalization ability is poor as it is hard to capture the peak of86

the force profile. Experiment videos comparing the performance of contact force fitting and record87

& replay are available on our website. We can observe that the contact force fitting method cannot88

stabilize the robot during contact.89
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D Baseline Results90

D.1 Sim-to-real Transfer91

Figure 3: Snapshots of baseline approaches for the sim-to-real experiment. The control parameters
learned in the simulation will result in a large contact force and makes the robot bounce on the
surface, which will, in turn, result in failures of the tasks.

Here we provide snapshots of the baseline methods: Direct Transfer and Manual Tune. As intro-92

duced in the paper, Direct Transfer baseline utilizes the offline learned policy and directly applies it93

to the real robot without fine-tuning as [8] did. We hope the domain randomization on object posi-94

tion and force information can provide good generalizability and make it robust and transferable to95

real robots.96

However, as shown in Fig. 3, direct applying the learned policy cannot achieve both tasks success-97

fully. The main problem comes from the learned admittance control parameters. Where in the98

simulation, applying such parameters to the robot will not result in the robot bouncing on the object.99

In contrast, it can enable the robot to finish the task very efficiently. However, in the real world, such100

control parameters will result in large contact force and oscillation behaviors of the robot, which in101

turn, let the robot fails to establish stable contact with the object and finish the task.102

For the Manual Tune baseline, we carefully tune the admittance parameters for each task in order103

to make the robot achieve smooth behavior during the contact. Table. 2 summarizes the parameters.104

As shown in Fig. 3, the manually tuned baseline can successfully achieve the task. However, since105

it requires human tuning, it is not time-consuming and task-dependent. A practical problem of106

manually tuning the control parameters is the need of trying various combinations of parameters.107

During this process, it is dangerous to let the robot interact with the environment and may cause108

damage to both the object and the robot.

Tuned Admittance Parameters Assembly Pivoting
End-effector Mass M (kg) [3, 3, 3] [4, 4, 4]

End-effector Inertia I (kgm2) [2, 2, 2] [2, 2, 2]
Position Stiffness K (N/m) [200, 200, 200] [300, 300, 300]

Orientation Stiffness K (Nm/rad) [200, 200, 200] [200, 200, 200]
Position Damping D (Ns/m) [300, 300, 300] [300, 300, 300]

Orientation Damping D (Nms/rad) [250, 250, 250] [250, 250, 250]
Table 2: Manually tuned admittance control parameters for the experiments.

109

D.2 Generalization to Different Task Settings110

In order to evaluate the generalization performance to different tasks, we conducted tests on various111

variations of tasks as depicted in Fig. 4. For assembly, these tasks included polygon-shaped peg112

holes, such as triangular peg-holes with an edge size of 51.4mm and a clearance of 1.4mm, as well113

as pentagon peg-holes with an edge size of 57.8 mm and a clearance of 1.3 mm. Additionally, we114

performed experiments on standard electric connectors, such as Ethernet and waterproof connectors,115

for further assessment.116
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Figure 4: Real-world manipulation tasks

Figure 5: Snapshots of directly using the learned policy to generalize to various task settings. The
snapshots and videos of the baseline methods are available on our website.

Regarding the pivoting task, we expanded the test set to include different objects. These objects117

consisted of an adapter with dimensions of 8.8 ∗ 4.1 ∗ 2.6 cm3 and a weight of 69 g, an eraser118

with dimensions of 12.2 ∗ 4.8 ∗ 3.0 cm3 and a weight of 36 g, and a pocky with dimensions of119

14.8 ∗ 7.9 ∗ 2.3 cm3 and a weight of 76 g.120

The snapshots of the Direct Transfer and Manual Tune baselines can be seen in Fig.5 and 6, respec-121

tively. As observed in the sim-to-real experiments, the Direct Transfer baseline struggles to achieve122

stability during manipulation, resulting in failures when attempting to assemble or pivot objects of123

different shapes. On the other hand, the Manual Tune baseline demonstrates high success rates when124

dealing with polygon-shaped peg-holes and when pivoting the eraser. This success can be attributed125

to the similarity in geometric or dynamic properties between the learned object and these specific126

test objects. However, the Manual Tune baseline fails to generalize its performance to objects with127

significant differences, as illustrated in Fig.6(c) and (d).128

E Current Limitations and Future Improvements129

As we discussed in the paper, our current framework has three main limitations:130

It assumes that the task settings in geometry are similar from training to testing. It uses a simple131

strategy for estimating the contact force. It has a relatively low update frequency and may not be132

suitable for manipulating fragile objects.133

To address the first limitation, we plan to use meta-learning to learn the manipulation trajectory134

that can generalize well to different task settings. Meta-learning has been shown to be effective135

in generalizing the learned trajectory to various scenarios, and we believe that combining meta-136
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Figure 6: Snapshots of directly using learned trajectory and the manually tuned admittance control
parameters to generalize to various task settings. The snapshots and videos of the baseline methods
are available on our website.

learning and our proposed online residual admittance learning can bridge the sim-to-real gap for137

many contact-rich manipulation tasks.138

For the second limitation, we are interested in exploring and experimenting with the analytical con-139

tact model approach as discussed in the Appendix. Using an analytical model and estimating the140

key parameters online may improve the performance. However, finding a general contact model or141

a method that can switch between different models will be the focus of our future work.142

The last limitation is related to the time window size for online force/torque sensor data collection.143

We will try different time window sizes and increase the update frequency to enhance the adaptation144

performance in our future work.145
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