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ABSTRACT
In this supplementary material, we present more details about
our proposed LReOrg framework, including the network structure,
methodology comparisons and more experimental results.

1 THE DETAILS OF CDFNET
In this part, we first introduce the details of our CDFNet which
consists of a forward process and a backward process. The two
processes share a same set of network structure and parameters.
For clarity, we introduce their network structure separately, where
the forward process is realized by stacking the conditional disen-
tanglement block (CDB) and the backward process is realized by
stacking the conditional fusion block (CFB).

1.1 The CDB and CFB Blocks
In Table 1, we present the details of the CDB block. In Table 2, we
present the details of the CFB block. The differences between CDB
and CFB lie in the fundamental operations of arithmetic in their
building blocks, such as the elementwise multiplication, division,
addition and substraction: ⊗, ⊘, ⊕, ⊖. Notice that both of them are
built based on the Linear Block and the Dense Block, which are
introduced in the next few subsections.

1.2 The Linear Block
The linear block is used to handle the conditions by taking a flow
feature ℎ and a condition feature 𝑐 as input and output a conditional
feature. As shown in Table 3, the linear block employs three fully
connected (FC) layers to adjust and fuse ℎ and 𝑐 , where the Tanh is
used as the activation function.

1.3 The Dense Block
The dense block is used to handle the feature disentanglement and
fusion. Our inspiration comes from HiNet [6] which focuses on
image steganography, where the dense block is built to process
2D image using 2D convolution (Conv2d). Differently, the dense
block used in this paper is extended to process 1D feature by using
1D convolution (Conv1d) to support feature disentanglement and
fusion. As shown in Table 4, the dense block employs five Conv1d
layers for feature transformation. where the Tanh is used as the
activation function and the output of all previous layers are con-
catenated by channel. During the forward process, dense block is
used to disentangle the key features from the input. During the
backward process, it is used for feature fusion.

2 METHODOLOGY COMPARISONS
In this part, we compare our method with the most related recent
anonymization methods. Even though they involve CLIP [12] or
identity disentanglement for anonymization, there are still distin-
guishing discrepancies between them and our method.

Table 1: The details of the CDB block. Top: the forward con-
dition block. Bottom: the disentanglement block.

Input Layers Output
ℎ2
𝑗−1, 𝑘

𝑓

𝑖
Linear Block (4928) 𝑜1

ℎ1
𝑗−1, 𝑜1 ⊕ (4928) ℎ̂1

𝑗

𝑜1, 𝑘
𝑓

𝑖
Linear Block (4928) 𝑜2

𝑜2 exp (4928) 𝑜3
ℎ2
𝑗−1, 𝑜3 ⊗ (4928) 𝑜4

ℎ̂1
𝑗
, 𝑘 𝑓

𝑖
Linear Block (4928) 𝑜5

𝑜4, 𝑜5 ⊕ (4928) ℎ̂2
𝑗

ℎ̂2
𝑗

Dense Block (4928) 𝑜6

ℎ̂1
𝑗
, 𝑜6 ⊕ (4928) ℎ1

𝑗

ℎ̂1
𝑗

Dense Block (4928) 𝑜7
𝑜7 exp (4928) 𝑜8
ℎ̂2
𝑗
, 𝑜7 ⊗ (4928) 𝑜9

ℎ1
𝑗

Dense Block (4928) 𝑜10
𝑜9, 𝑜10 ⊕ (4928) ℎ2

𝑗

Table 2: The details of the CFB block. Top: the fusion block.
Bottom: the backward condition block.

Input Layers Output
𝑔1
𝑗−1 Dense Block (4928) 𝑜1

𝑔2
𝑗−1, 𝑜1 ⊖ (4928) 𝑜2

𝑔1
𝑗−1 Dense Block (4928) 𝑜3

𝑜3 exp (4928) 𝑜4
𝑜2, 𝑜4 ⊘ (4928) 𝑔2

𝑗

𝑔2
𝑗

Dense Block (4928) 𝑜5

𝑔1
𝑗−1, 𝑜5 ⊖ (4928) 𝑔1

𝑗

𝑔1
𝑗
, 𝑘 𝑓

𝑖
Linear Block (4928) 𝑜6

𝑔2
𝑗
, 𝑜6 ⊖ (4928) 𝑜7

𝑔1
𝑗
, 𝑘 𝑓

𝑖
Linear Block (4928) 𝑜8

𝑜8 exp (4928) 𝑜9
𝑜7, 𝑜9 ⊘ (4928) 𝑔2

𝑗

𝑔2
𝑗
, 𝑘 𝑓

𝑖
Linear Block (4928) 𝑜10

𝑔1
𝑗
, 𝑜10 ⊖ (4928) 𝑔1

𝑗

Table 3: The details of the linear block.

Input Layers Output
𝑧 FC1&Tanh (1024) 𝑜𝑧

𝑐 FC2&Tanh (1024) 𝑜𝑐

𝑜𝑧 , 𝑜𝑐 FC3&Tanh (4928) 𝑜𝑐𝑧

Table 4: The details of the dense block.

Input Layers Output
𝑧 Conv1d&Tanh (32, 4928) 𝑜1𝑧
Concat(𝑧, 𝑜1𝑧 ) Conv1d&Tanh (32, 4928) 𝑜2𝑧
Concat(𝑧, 𝑜1𝑧 , 𝑜2𝑧 ) Conv1d&Tanh (32, 4928) 𝑜3𝑧
Concat(𝑧, 𝑜1𝑧 , 𝑜2𝑧 , 𝑜3𝑧 ) Conv1d&Tanh (32, 4928) 𝑜4𝑧
Concat(𝑧, 𝑜1𝑧 , 𝑜2𝑧 , 𝑜3𝑧 , 𝑜4𝑧 ) Conv1d (1, 4928) 𝑜5𝑧
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Figure 1: Differences between existing CLIP-based
anonymization method, e.g., CLIP2Protect (left), and ours
CDFNet (right). 𝐺 denotes the generator of CLIP2Protect.

CLIP for Anonymization. The pretrained CLIP model is used
in both CLIP2Protect [13] and our LReOrg framework, but their
focuses are different. As illustrated in Figure 1, the CLIP model
is used to manipulate the latent code in the StyleGAN [8] space
by using a textual loss to hide the adversarial perturbations into
the makeup effect. However, in our framework, CLIP is mainly
used to generate the cross-modal conditions of our CDFNet to
supervise the disentanglement or fusion of the desired identity or
attribute information in the latent space. Besides, CLIP2Protect is
time consuming for inference by finetuning the StyleGAN generator
for each input image, which also has limited protection ability
because the generated anonymous faces can be easily re-identified
by face recogntion models (i.e. low PSR rates). Our experimental
resuts in the submitted manuscript have already verified this.

Disentanglement for Anonymization. Previously, the disen-
tanglement (e.g. IdentityDP [16]) is employed to obtain two kinds
of information by using identity encoder (e.g. pretrained ArcFace
[1]) and attribute encoder. The identity encoder is used to extract
identity feature and anonymize it with a modified one (e.g. by
adding Laplace noise [2, 14, 16]). The attribute encoder is used to
extract feature of the other information or facial attributes to be
preserved. Instead of only obtaining two kinds of information, as
shown in Figure 2, our proposed CDFNet is designed to disentangle
fine-grained information (e.g. identity, gender, age, expresssion and
makeup) based on the cross-modal keyword conditions so that it
can support more effective and flexible anonymization by letting
users to determine which information (identity or attributes) to be
anonymized or preserved according to the practical requirements.
Compared to one closely related work IdentityDP, our resuts in the
submitted manuscript show better privacy protection ability and
privacy-utility tradeoff.

3 MORE EXPERIMENTAL RESULTS
In this part, we provide more qualitative and quantitative results
in terms of feature representation, controllability and comparison
with state-of-the-art (SOTA) methods on privacy-utility tradeoff.

3.1 Feature Representation
To verify the disentanglement ability of our CDFNet in the latent
space, we plot the T-SNE [15] embedding results of the disentangled
identity features in Figure 3. According to the plot, it is obvious
that the feature points exhibit clustering properties and the faces in
each cluster share more similarities than the faces from the other

𝑘 =

′𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦′

′𝐺𝑒𝑛𝑑𝑒𝑟′

′𝐴𝑔𝑒′

···

𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦

𝐺𝑒𝑛𝑑𝑒𝑟

𝐴𝑔𝑒
…

E
𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦

𝑜𝑡ℎ𝑒𝑟𝑠
E

𝑜𝑡ℎ𝑒𝑟𝑠

Figure 2: Differences between existing disentanglement
method for anonymization (left) and our solution (right).
𝐸 denotes the disentanglement network.

Figure 3: The T-SNE embedding results of the disentangled
identity features extracted by using our CDFNet.

clusters. This suggests that the disentangled features correspond to
identity representation of the faces.

3.2 Controllability
In addtion to directly control the anonymization and recovery of
the facial attributes, we show more controllability results of the
proposed approach.

In our formulation, the identity is regarded as a special case
of ’attribute’. With the help of our anonymizer, we can obtain an
anonymized feature 𝑓𝑎 for the CDFNet feature 𝑓𝑎 of each attribute.
To visually show the anonymization process, we propose to manip-
ulate the anonymized feature 𝑓𝑎 in a linear manner by using

𝑓𝑚 = 𝜉 · (𝑓𝑎 − 𝑓𝑎) + 𝑓𝑎 (1)

as the intermediate value, where 𝜉 ∈ [0, 1] is a coefficient.
In Figure 4, we demonstrate some representative linear manipu-

lation results by gradually varying 𝑓𝑚 from 𝑓𝑎 to 𝑓𝑎 . It is obvious
that we can achieve some direct control of the results by using dif-
ferent 𝜉 with salient changes on the corresponding attributes. Thus,
our LReOrg can enable an interactive anonymization by regarding
𝜉 as a notable parameter to adjust the privacy protection level as
well as the ability of attribute preservation.

In a separate folder (’Manipulation’) of this supplementary mate-
rial, we also show some gif figures to illustrate the linear manipula-
tion process of our approach: Original->Anonymization->Recovery.
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Figure 4: The sequential face images generated by performing linear manipulation towards different kinds of attributes.
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Figure 5: The PSR and APR curves of the different recovery
cases of the non-sensitive attributes.

3.3 Impact of Attribute Recovery Orders
In this part, we explore the influences of the recovery orders of
non-sensitive attributes with respect to the performance of privacy
protection in the Recovery Reorganization module of LReOrg. In
Table 5, we present 24 recovery cases of the four example attributes
(i.e. Gender, Age, Expression, Makeup) by exchanging their per-
mutations. In Figure 5, we report the PSR and APR curves of the
generated face images under different cases. It is easy to observe
that each group of the PSR and APR data almost follow a straight
line with limited variances, which indicates that the recovery or-
der have non-salient influences on privacy protection and utility
preservation. Therefore, users do not need to care too much about
the order of non-sensitive attribute recovery for using LReOrg.
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Table 5: Ablation study settings of the attribute recovery
orders of our recovery reorganization module.

Case Recovery Order
case0 (’Gender’, ’Age’, ’Expression’, ’Makeup’)
case1 (’Gender’, ’Age’, ’Makeup’, ’Expression’)
case2 (’Gender’, ’Expression’, ’Age’, ’Makeup’)
case3 (’Gender’, ’Expression’, ’Makeup’, ’Age’)
case4 (’Gender’, ’Makeup’, ’Age’, ’Expression’)
case5 (’Gender’, ’Makeup’, ’Expression’, ’Age’)
case6 (’Age’, ’Gender’, ’Expression’, ’Makeup’)
case7 (’Age’, ’Gender’, ’Makeup’, ’Expression’)
case8 (’Age’, ’Expression’, ’Gender’, ’Makeup’)
case9 (’Age’, ’Expression’, ’Makeup’, ’Gender’)
case10 (’Age’, ’Makeup’, ’Gender’, ’Expression’)
case11 (’Age’, ’Makeup’, ’Expression’, ’Gender’)
case12 (’Expression’, ’Gender’, ’Age’, ’Makeup’)
case13 (’Expression’, ’Gender’, ’Makeup’, ’Age’)
case14 (’Expression’, ’Age’, ’Gender’, ’Makeup’)
case15 (’Expression’, ’Age’, ’Makeup’, ’Gender’)
case16 (’Expression’, ’Makeup’, ’Gender’, ’Age’)
case17 (’Expression’, ’Makeup’, ’Age’, ’Gender’)
case18 (’Makeup’, ’Gender’, ’Age’, ’Expression’)
case19 (’Makeup’, ’Gender’, ’Expression’, ’Age’)
case20 (’Makeup’, ’Age’, ’Gender’, ’Expression’)
case21 (’Makeup’, ’Age’, ’Expression’, ’Gender’)
case22 (’Makeup’, ’Expression’, ’Gender’, ’Age’)
case23 (’Makeup’, ’Expression’, ’Age’, ’Gender’)

3.4 Comparison of Embedding Distance
In order to better show the face anonymization ability of our
method, we visualize the histograms of the embedding distances
of face recognition models by following [10]. Figure 6 and Figure
7 present the metrics of Arcface [1] and Adaface [9] in histogram,
respectively. In both evaluations, we use cosine similarity as the
measurement of distance. This means that a distribution of smaller
mean and variance indicates better anonymization performance.
Obviously, our method is show the smallest mean and variance
compared with the SOTA methods LDFA [10], IdentityDP [16] and
CLIP2Protect [13], which indicates a more effective performance
in face privacy protection.

3.5 More Visual Results
In Figure 8, we present more visual comparison results between our
pre-trained LReOrg model and the representative and SOTA meth-
ods on another popular FFHQ dataset [7]: DP1 [3], DP2 [4], CIAGAN
[11], IdentityDP [16], DartBlur [5], LDFA [10] and CLIP2Protect
[13]. The face images generated by DP1 and CLIP2Protect may
share some visual similarities with the original input faces. The
results of CIAGAN, IdentityDP, DP2 and LDFA may have notice-
able artifacts, while DartBlur can not generate visually pleasing
images. In contrast, LReOrg(Ours) exhibits more acceptable results
for anonymization.
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