
Published as a conference paper at ICLR 2025

CROSSMPT: CROSS-ATTENTION MESSAGE-PASSING
TRANSFORMER FOR ERROR CORRECTING CODES

Seong-Joon Park1,∗ Hee-Youl Kwak2,† Sang-Hyo Kim3 Yongjune Kim1,† Jong-Seon No4

1POSTECH, 2University of Ulsan, 3Sungkyunkwan University, 4Seoul National University
joonpark2247@gmail.com, ghy1228@gmail.com, iamshkim@skku.edu,
yongjune@postech.ac.kr, jsno@snu.ac.kr

ABSTRACT

Error correcting codes (ECCs) are indispensable for reliable transmission in com-
munication systems. Recent advancements in deep learning have catalyzed the ex-
ploration of ECC decoders based on neural networks. Among these, transformer-
based neural decoders have achieved state-of-the-art decoding performance. In
this paper, we propose a novel Cross-Attention Message-Passing Transformer
(CrossMPT), which shares key operational principles with conventional message-
passing decoders. While conventional transformer-based decoders employ a self-
attention mechanism without distinguishing between magnitude and syndrome
embeddings, CrossMPT updates these two types of embeddings separately and
iteratively via two masked cross-attention blocks. The mask matrices are deter-
mined by the code’s parity-check matrix, which explicitly captures and removes
irrelevant relationships between the magnitude and syndrome embeddings. Our
experimental results show that CrossMPT significantly outperforms existing neu-
ral network-based decoders for various code classes. Notably, CrossMPT achieves
this decoding performance improvement while significantly reducing memory us-
age, computational complexity, inference time, and training time.

1 INTRODUCTION

The fundamental objective of digital communication systems is to reliably transmit information
from source to destination through noisy channels. Error correcting codes (ECCs) are crucial for
ensuring the integrity of transmitted data in digital communication systems. The advancements in
deep learning across diverse tasks, such as natural language processing (NLP), image classification,
and object detection (Devlin et al., 2019; He et al., 2016; Girshick et al., 2014; Carion et al., 2020),
have motivated the application of deep learning techniques to ECC decoders. This has led to the
development of neural decoders (Kim et al., 2018; 2020; Nachmani et al., 2016; 2018; Dai et al.,
2021; Lugosch & Gross, 2017), which aims to improve decoding performance by overcoming limi-
tations of the conventional decoders such as belief propagation (BP) (Richardson & Urbanke, 2001)
and min-sum (MS) (Fossorier et al., 1999) decoders.

Among neural decoders, model-free neural decoders employ arbitrary neural network architec-
tures (e.g., deep neural networks (Gruber et al., 2017), recurrent neural networks (Bennatan et al.,
2018) and transformers (Choukroun & Wolf, 2022a; 2023; Park et al., 2025; Choukroun & Wolf,
2024a;b)) as the ECC decoder, without relying on prior knowledge of specific decoding algorithms.
Since model-free neural decoders are not based on specific decoding algorithms, their training is
susceptible to overfitting, largely due to the exponentially large number of possible codewords (Ben-
natan et al., 2018). To circumvent overfitting, these neural decoders incorporate a preprocessing step
where the magnitude and syndrome vectors from the received codewords are concatenated and used
as inputs. The preprocessing step is crucial for integrating an effective network architecture for the
ECC decoder without an overfitting issue (Bennatan et al., 2018). For instance, transformer-based
ECC decoders incorporating this preprocessing (Choukroun & Wolf, 2022a; 2023; Park et al., 2025;
Choukroun & Wolf, 2024a;b) achieve state-of-the-art decoding performance for short block codes.

∗The source code is available at https://github.com/iil-postech/crossmpt.
†Corresponding authors

1

https://github.com/iil-postech/crossmpt

Published as a conference paper at ICLR 2025

However, two key questions remain unaddressed: 1) how to effectively process the two distinct input
vectors (magnitude and syndrome), and 2) how to design a more efficient transformer-based decoder
architecture.

Conventional transformer-based ECC decoders, initially proposed as Error Correction Code Trans-
former (ECCT) (Choukroun & Wolf, 2022a; 2023; Park et al., 2025; Choukroun & Wolf, 2024a;b),
process the concatenated magnitude and syndrome vectors as a single input, applying self-attention
blocks without distinguishing between them. In contrast, our approach treats the magnitude and syn-
drome as multimodal data, recognizing their distinct informational characteristics. The real-valued
magnitude vector represents bit reliabilities, while the binary syndrome vector conveys the informa-
tion of erroneous bit positions. This deliberate separation necessitates the development of a novel
architecture, specifically designed to effectively update these separated magnitude and syndrome
vectors, thereby significantly improving decoding performance.

In this paper, we introduce a novel Cross-Attention Message-Passing Transformer (CrossMPT) for
ECC decoding. CrossMPT processes the magnitude and syndrome embeddings separately to lever-
age their distinct informational properties. It employs two cross-attention blocks to iteratively update
the magnitude and syndrome embeddings. Initially, the magnitude embedding is encoded into the
query, while the syndrome embedding is encoded into key and value. The first cross-attention block
utilizes this configuration in its attention mechanism to update the magnitude embedding. This
procedure is reciprocated for the syndrome embedding, which is encoded into the query, while the
updated magnitude embedding is encoded into the key and value. This configuration enables the
second cross-attention block to update the syndrome embedding. These two masked cross-attention
blocks iteratively collaborate to refine the magnitude and syndrome embeddings as in the message-
passing algorithm (Richardson & Urbanke, 2001).

To facilitate training, CrossMPT employs a mask matrix for each cross-attention block. The first
cross-attention block uses the transpose of the parity check matrix (PCM) HT as its mask matrix
with the magnitude embedding as the query. In the second cross-attention block, the PCM H itself is
applied as the mask matrix, with the syndrome embedding as the query. This strategy leverages the
PCM’s inherent representation of the ‘magnitude-syndrome’ relationship, aligning with the archi-
tecture’s objectives. Moreover, the combined size of the two attention maps of CrossMPT is at most
half that of conventional transformer-decoders, significantly reducing memory usage. This reduc-
tion allows CrossMPT to train and decode longer codes, which previous approaches (concatenating
magnitude and syndrome embeddings) are unable to achieve due to high memory usage and com-
putational complexity. To our knowledge, CrossMPT is the first architecture to integrate an iterative
message-passing framework with a cross-attention-based transformer decoder.

Experimental results show that CrossMPT consistently outperforms the original ECCT across vari-
ous code classes. Leveraging its shared operational principles with the message-passing algorithm,
CrossMPT demonstrates particularly improved decoding performance, especially for low-density
parity-check (LDPC) codes. Notably, we also demonstrate that CrossMPT closely approaches
the maximum likelihood decoding performance on short codes. Beyond its enhanced decoding
performance, CrossMPT significantly reduces computational costs, including floating point opera-
tions (FLOPs), training time, and inference time, compared to the original ECCT. Since the decoder
layer constitutes a substantial portion of the total computational cost, this reduction leads to a sig-
nificant decrease in overall computational complexity.

2 RELATED WORKS

In the field of neural network-based ECC decoders, there are two primary categories: the model-
based decoder and the model-free decoder. First, model-based decoders are constructed based on
the conventional decoding methods (e.g., BP decoder and MS decoder). They map the iterative
decoding process of the conventional decoding methods into neural networks and train the network
weights accordingly. To improve performance over the standard BP decoder, the recurrent neural
network was employed for the decoding of BCH codes (Nachmani et al., 2018). Several recent
studies showed that neural network-based BP and MS decoders outperform the conventional decod-
ing algorithms over various code types (Dai et al., 2021; Kwak et al., 2022; 2023; 2025; Lugosch
& Gross, 2017; Nachmani & Wolf, 2019; 2021; Buchberger et al., 2021). However, model-based

2

Published as a conference paper at ICLR 2025

1 0 1 1 1 0 0

0 1 0 1 1 1 0

0 0 1 0 1 1 1

Parity check matrix Mask matrix of ECCT

Mag-syn

(𝐻𝑇)

Syn-mag

(𝐻)

: Masked

: Unmasked

(a) Conventional ECCT (Choukroun & Wolf, 2022a)

1 0 1 1 1 0 0

0 1 0 1 1 1 0

0 0 1 0 1 1 1
𝐻

𝐻𝑇

Parity check matrix Mask matrix of CrossMPT

: Masked

: Unmasked

(b) CrossMPT

Figure 1: The PCMs and the mask matrices of ECCT and CrossMPT.

neural decoders may encounter performance limitations due to their restrictive model architectures,
which are closely tied to underlying decoding methods.

Unlike model-based decoders, which are constrained by the limitations of their underlying algo-
rithms (e.g., BP), model-free neural decoders use arbitrary architectures to learn decoding without
such restrictions. While early approaches (Gruber et al., 2017; Cammerer et al., 2017; Kim et al.,
2018) employed fully connected networks, they faced overfitting challenges during training. Sub-
sequently, the introduction of a preprocessing step utilizing the magnitude and syndrome vectors of
the received codeword to learn multiplicative noise has been pivotal in enabling model-free decoders
to address the overfitting issue (Bennatan et al., 2018). Then, ECCT (Choukroun & Wolf, 2022a)
first employed the transformer architecture using the same preprocessing step and demonstrated that
the transformer-based decoder outperforms existing neural decoders including model-based neural
decoders. Building on the ECCT framework, denoising diffusion error correction codes (Choukroun
& Wolf, 2023) interpreted the iterative decoding process as a diffusion process and incorporated a
diffusion model to train the original ECCT. Recently, multiple-masks ECCT (Park et al., 2025) uti-
lized different PCMs for the same linear code to capture the diverse multilateral relationships of
the magnitude and syndrome bits and improve the decoding performance. Notably, transformer-
based decoders outperform model-based neural decoders and serve as universal decoders capable of
decoding arbitrary code classes with a unified architecture.

Furthermore, employing cross-attention mechanisms in architecture has enhanced performance
across various domains. In NLP, the transformer decoder (Vaswani et al., 2017) adopted the cross-
attention modules. In vision, CrossViT (Chen et al., 2021) utilized cross-attention for improved im-
age classification. For text-based image generation, latent diffusion models (Rombach et al., 2022)
integrated cross-attention layers into the model architecture, enabling diffusion models to become
powerful and flexible generators. These works demonstrate the versatility of cross-attention, inspir-
ing its application to ECC decoding.

3 BACKGROUND

3.1 ERROR CORRECTING CODES

Let C be a linear block code, which is defined by a generator matrix G of size k × n and a parity
check matrix H of size (n− k)× n. They satisfy GH⊤ = 0 over {0, 1} with modulo 2 addition. A
codeword x ∈ C ⊂ {0, 1}n is encoded by multiplying message m with the generator matrix G (i.e.,
x = mG). Let xs be the binary phase shift keying (BPSK) modulated signal of x and let y be
the output of a noisy channel for input xs. We assume the additive white Gaussian noise (AWGN)
channel and the channel output can be represented by y = xs + z, where z ∼ N (0, σ2). The
objective of the decoder is to recover the transmitted codeword x by correcting errors. When y is
received, the decoder first determines whether the received signal is corrupted or not by checking
the syndrome s(y) = Hyb, where yb = bin(sign(y)) is the demodulated signal of y. Here, sign(a)
represents +1 if a ≥ 0 and −1 otherwise and bin(−1) = 1, bin(+1) = 0. If s(y) is a non-zero
vector, it is detected that y is corrupted during the transmission, and the decoder initiates the error
correction process.

3

Published as a conference paper at ICLR 2025

Output layer

𝑠(𝑦)𝑦

Embedding

𝑦

⊙ ⊙

Initial embedding layer

𝑛 × 𝑑 𝑛 − 𝑘 × 𝑑

Norm

Norm

FFNN

⨁

⨁

Norm

Norm

FFNN

⨁

Masked
cross-attention

⨁ 𝐻𝑇

𝐻

Decoder layer

× 𝑵

𝑊𝑄

𝑊𝐾

𝑊𝑉

𝑊𝐾

𝑊𝑉

𝑊𝑄

Masked
cross-attention

⋅ . ⋅

FC

FC

Norm

Ƹ𝑧𝑠

2𝑛 − 𝑘 × 𝑑

2𝑛 − 𝑘 × 1

𝑛 × 1

Figure 2: Architecture of CrossMPT.

3.2 ERROR CORRECTION CODE TRANSFORMER

ECCT is the first approach to present a model-free decoder with the transformer architecture. ECCT
outperforms other neural decoders by employing the masked self-attention mechanism, whose mask
matrix is determined by the code’s PCM (Choukroun & Wolf, 2022a). A primary challenge in train-
ing transformer-based decoders is the issue of overfitting. In (Bennatan et al., 2018), the overfitting
issue in model-free neural decoders is described as poor generalization to untrained codewords due
to the exponentially large number of possible codewords. However, it has been resolved by a pre-
processing technique that facilitates a syndrome-based decoding (Bennatan et al., 2018). It has been
theoretically proven that, with this preprocessing step, the decoder’s performance remains invariant
to the specific codewords used in the training set (Bennatan et al., 2018).

As in (Bennatan et al., 2018), the preprocessing step of ECCT utilizes the magnitude and syndrome
vectors to train multiplicative noise z̃s, which is defined by

y = xs + z = xsz̃s. (1)

ECCT aims to estimate the multiplicative noise in (1), i.e., f(y) = ẑs. Then, the estima-
tion of x is x̂ = bin(sign(yf(y))). If the multiplicative noise is correctly estimated such that
sign(z̃s) = sign(ẑs), then x̂ can be computed as:

x̂ = bin(sign(yf(y))) = bin(sign(xsz̃sẑs)) = bin(sign(xs)) = x.

ECCT employs a masked self-attention module to train the transformer architecture, where the input
embedding is constructed by concatenating the magnitude and syndrome embeddings. As shown in
Figure 1, the mask matrices of ECCT should clearly distinguish between necessary (unmasked) and
unnecessary (masked) pairwise relationships among magnitude-magnitude, magnitude-syndrome,
and syndrome-syndrome bit relations. In ECCT, the syndrome-syndrome part was only unmasked
for self-relations, while the magnitude-syndrome part was unmasked based on the connections de-
fined by the PCM. The magnitude-magnitude part, however, was unmasked for bit pairs connected
at depth 2 (see Algorithm 1 in Choukroun & Wolf (2022a)). While the masking of magnitude-
syndrome relations is intuitive, as it directly uses PCM, determining the relationships among mag-
nitude themselves is not directly derivable from the PCM. Therefore, the algorithm for masking
magnitude-magnitude part is neither straightforward nor unique. In Figure 1, the white areas indi-
cate unmasked positions that require attention calculations, whereas the blue areas represent masked
positions where attention calculations can be omitted. As the proportion of blue increases, the at-
tention matrix becomes sparser, enhancing computational efficiency.

4 CROSS-ATTENTION MESSAGE-PASSING TRANSFORMER

In this section, we present the operational mechanism and architecture of CrossMPT. CrossMPT
processes the magnitude and syndrome embeddings separately, applying a cross-attention mecha-
nism to effectively capture their distinct information. It shares core principles with message passing

4

Published as a conference paper at ICLR 2025

Masked

CA

Masked

CA

Magnitude SyndromeUpdate

Product

operation

Sum

operation

VN output

message

CN output

message

Message-passing algorithm
Cross-attention

message-passing algorithm

𝐻𝑇

𝐻

Q K, V

K, V Q

Figure 3: Conceptual comparison of the sum-product message-passing algorithm and the proposed
cross-attention (CA) message-passing algorithm.

algorithm for decoding linear codes, iteratively updating the magnitude and syndrome embeddings
of the received codewords. The overall architecture is depicted in Figure 2.

4.1 CROSS-ATTENTION MESSAGE-PASSING TRANSFORMER

One cross-attention block updates the magnitude embedding by using it as the query while gener-
ating the key and value from the syndrome embedding. Given this configuration, the attention map
has the size n× (n− k), effectively representing the ‘magnitude-syndrome’ relation. To reflect this
relationship, we employ the transpose of the PCM H⊤ as the mask matrix. This is because the n
rows of H⊤ correspond to the n bit positions, and its n − k columns are associated with the parity
check equations, directly linking to |y| and s(y), respectively. The other cross-attention block simi-
larly uses the syndrome embedding for the query, while the magnitude embedding generates the key
and value. For this operation, we utilize the PCM H as the mask matrix.

This configuration of separately processing two distinct informational properties resembles the
message-passing decoding algorithm for decoding linear codes. Message-passing algorithms
such as the sum-product algorithm (Richardson & Urbanke, 2001) are widely used for decoding
LDPC codes. The message-passing algorithm operates by exchanging messages between variable
nodes (VNs) and check nodes (CNs) over a Tanner (bipartite) graph (Richardson & Urbanke, 2001).
In the Tanner graph, VNs convey information about the reliability of the received codeword, while
CNs indicate the parity check equations. The edges between VNs and CNs represent the connec-
tions (relationships) between them. The message-passing decoder operates by exchanging messages
between VNs and CNs via these edges. The output messages of VNs and CNs are updated in an
iterative manner.

Similar to the principles of message-passing algorithms, CrossMPT iteratively updates the mag-
nitude and syndrome embeddings. First, the magnitude embedding is updated using the masked
cross-attention block, where the magnitude embedding for the query and syndrome embedding for
the key and value. The syndrome embedding is updated in the subsequent masked cross-attention
block, utilizing the previously updated magnitude embedding. In this block, the syndrome embed-
ding is used for the query, while the updated magnitude embedding generates the key and value. The
resulting output from this cross-attention block is the updated syndrome embedding. CrossMPT it-
eratively updates both the magnitude and syndrome embeddings to estimate the multiplicative noise
accurately.

As a representative of the message-passing algorithm, Figure 3 depicts the sum-product algorithm
and the cross-attention message-passing algorithm. In the sum-product algorithm, the VN output
and CN output messages are iteratively updated using the sum and product operations. Similar to
the sum-product algorithm, the magnitude and syndrome embeddings are iteratively updated using
the masked cross-attention (Masked CA in the figure) blocks in CrossMPT. Note that H and H⊤

serve as the mask matrices for these cross-attention blocks, while Q, K, and V denote the query,
key, and value of the cross-attention mechanism.

5

Published as a conference paper at ICLR 2025

4.2 MODEL ARCHITECTURE

In the initial embedding layer, we generate |y| = (|y1|, . . . , |yn|) and s(y) = (s(y)1, . . . , s(y)n−k)
from the received codeword, and project each element yi and s(y)i into d dimension embedding row
vectors Mi and Si, respectively, as follows:

Mi = |yi|Wi, for i = 1, . . . , n,

Si = s(y)iWi+n, for i = 1, . . . , n− k,

where Wi ∈ R1×d for i = 1, . . . , 2n− k denotes the trainable positional encoding vector.

These magnitude and syndrome embeddings are processed as separate inputs in the subsequent N
decoding layers. Each decoding layer contains two cross-attention blocks, each consisting of a
cross-attention module, a feed-forward neural network (FFNN), and a normalization layer.

In the first cross-attention module, the attention module updates the ‘magnitude’ embedding by
using the syndrome embedding. The query Q1, key K1, and value V1 are assigned as follows:

Q1 = MWQ,K1 = SWK , V1 = SWV ,

where M = [M1; · · · ;Mn] ∈ Rn×d and S = [S1; · · · ;Sn−k] ∈ R(n−k)×d denote the magnitude
and syndrome embeddings, respectively. Here, WQ,WK ,WV denote the weight matrices for the
query, key, and value, respectively. This architecture is referred to as the cross-attention message-
passing transformer since the query corresponds to the magnitude embedding, while the key and
value correspond to the syndrome embedding. Then, we employ the following scaled dot-product
attention:

Attention(Q1,K1, V1) = softmax

(
Q1K

⊤
1 + g(H⊤)√

d

)
V1,

where g(H⊤) is the mask matrix, and the function g is defined as

g(A)i,j =

{
0 if Ai,j = 1,

−∞ if Ai,j = 0.
(2)

This configuration results in an attention map of size n × (n − k), representing the ‘magnitude-
syndrome’ relationship. Therefore, we use the transpose of the PCM H⊤ as the mask matrix. Here,
the n rows of H⊤ correspond to the n bit positions and the n − k columns of H⊤ to the parity
check equations, which are closely related to |y| and s(y), respectively. Finally, the output of this
cross-attention module yields the updated magnitude embedding M ′.

In the second cross-attention module, we update the ‘syndrome’ embedding using the updated mag-
nitude embedding M ′. In other words, the syndrome embedding serves as the query input, while
M ′ is used for both the key and value inputs. We use the shared weight matrices WQ,WK ,WV

from the first cross-attention module, and query Q2, key K2, and value V2 are defined as follows:

Q2 = SWQ,K2 = M ′WK , V2 = M ′WV .

Here, the syndrome and magnitude embeddings correspond the rows and columns of the attention
map, respectively. Thus, we employ the mask matrix g(H), whose masking positions are zeros in
H . Then, we apply the scaled dot-product attention and the resulting output provides the updated
syndrome embedding S′. This updated syndrome embedding is utilized to further refine the magni-
tude embedding in the subsequent decoder layer, and this process is iteratively repeated across the
N decoder layers.

Finally, the updated magnitude and syndrome embeddings from the last decoder layer are concate-
nated and passed through a normalization layer and two fully connected (FC) layers. The first FC
layer reduces the (2n − k) × d dimension embedding to a one-dimensional 2n − k vector, and the
second FC layer further reduces the dimension from 2n − k into n. The final output provides an
estimation of z̃s. Since two cross-attention blocks of CrossMPT share the same weight matrices
WQ,WK ,WV and all other layers, CrossMPT has the same number of parameters as the original
ECCT.

The objective of the proposed decoder is to learn the multiplicative noise z̃s in (1) and reconstruct the
original transmitted signal x. We can obtain the multiplicative noise by z̃s = z̃sx

2
s = yxs. Then, the

6

Published as a conference paper at ICLR 2025

Table 1: Comparison of decoding performance at three different Eb/N0 (4 dB, 5 dB, 6 dB) for BP
decoder, Hyper BP decoder (Nachmani & Wolf, 2019), AR BP decoder (Nachmani & Wolf, 2021),
ECCT (Choukroun & Wolf, 2022a), and the proposed CrossMPT. The results are measured by the
negative natural logarithm of BER. The best results are highlighted in bold. Higher is better.

Architecture BP-based decoders Model-free decoders

Codes Parameter BP Hyp BP AR BP ECCT CrossMPT

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

BCH
(31,16) 4.63 5.88 7.60 5.05 6.64 8.80 5.48 7.37 9.60 6.39 8.29 10.66 6.98 9.25 12.48
(63,36) 4.03 5.42 7.26 4.29 5.91 8.01 4.57 6.39 8.92 4.86 6.65 9.10 5.03 6.91 9.37
(63,45) 4.36 5.55 7.26 4.64 6.27 8.51 4.97 6.90 9.41 5.60 7.79 10.93 5.90 8.20 11.62
(63,51) 4.5 5.82 7.42 4.8 6.44 8.58 5.17 7.16 9.53 5.66 7.89 11.01 5.78 8.08 11.41

Polar

(64,32) 4.26 5.38 6.50 4.59 6.10 7.69 5.57 7.43 9.82 6.99 9.44 12.32 7.50 9.97 13.31
(64,48) 4.74 5.94 7.42 4.92 6.44 8.39 5.41 7.19 9.30 6.36 8.46 11.09 6.51 8.70 11.31

(128,64) 4.1 5.11 6.15 4.52 6.12 8.25 4.84 6.78 9.3 5.92 8.64 12.18 7.52 11.21 14.76
(128,86) 4.49 5.65 6.97 4.95 6.84 9.28 5.39 7.37 10.13 6.31 9.01 12.45 7.51 10.83 15.24
(128,96) 4.61 5.79 7.08 4.94 6.76 9.09 5.27 7.44 10.2 6.31 9.12 12.47 7.15 10.15 13.13

LDPC

(49,24) 6.23 8.19 11.72 6.23 8.54 11.95 6.58 9.39 12.39 6.13 8.71 12.10 6.68 9.52 13.19
(121,60) 4.82 7.21 10.87 5.22 8.29 13.00 5.22 8.31 13.07 5.17 8.31 13.30 5.74 9.26 14.78
(121,70) 5.88 8.76 13.04 6.39 9.81 14.04 6.45 10.01 14.77 6.40 10.21 16.11 7.06 11.39 17.52
(121,80) 6.66 9.82 13.98 6.95 10.68 15.80 7.22 11.03 15.90 7.41 11.51 16.44 7.99 12.75 18.15

MacKay (96,48) 6.84 9.40 12.57 7.19 10.02 13.16 7.43 10.65 14.65 7.38 10.72 14.83 7.97 11.77 15.52

CCSDS (128,64) 6.55 9.65 13.78 6.99 10.57 15.27 7.25 10.99 16.36 6.88 10.90 15.90 7.68 11.88 17.50

Turbo (132,40) N/A N/A N/A N/A N/A N/A N/A N/A N/A 4.74 6.54 9.06 5.55 7.92 10.94

B
E

R

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

1
SNR (𝐸𝑏/𝑁0)

BP

Hyp BP

AR BP

ECCT

CrossMPT

2 3 4 5 6 7

(a) (31, 16) BCH code

B
E

R

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9
1

SNR (𝐸𝑏/𝑁0)

BP

Hyp BP

AR BP

ECCT

CrossMPT

2 3 4 5 6 7

(b) (128, 86) polar code

B
E

R

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

SNR (𝐸𝑏/𝑁0)

BP

Hyp BP

AR BP

ECCT

CrossMPT

2 3 4 5 62.5 3.5 4.5 5.5

(c) (128, 64) CCSDS

Figure 4: The BER performance of various decoders (BP, Hyp BP, AR BP, ECCT) and CrossMPT.

target multiplicative noise for binary cross-entropy loss function is defined by z̃ = bin(sign(yxs)).
Finally, the cross-entropy loss function for a received codeword y is defined by

L = −
n∑

i=1

{z̃i log(1− σ(f(y)i)) + (1− z̃i) log(σ(f(y)i))}.

To ensure a fair comparison between CrossMPT and ECCT, we adopt the same training setup used
in the previous work (Choukroun & Wolf, 2022a). We use the Adam optimizer (Kingma & Ba,
2015) and conduct 1000 epochs. Each epoch consists of 1000 minibatches, where each minibatch
is composed of 128 samples. All simulations were conducted using NVIDIA GeForce RTX 3090
GPU and AMD Ryzen 9 5950X 16-Core Processor CPU. The training sample y is generated by y =
xs + z, where xs is the modulated signal corresponding to the all-zero codeword, and z represents
the AWGN channel noise, sampled from an normalized signal-to-noise ratio (Eb/N0) range of 3 dB
to 7 dB. The learning rate is initially set to 10−4 and gradually reduced to 5 × 10−7 following a
cosine decay scheduler.

5 EXPERIMENTAL RESULTS

In this section, we compare the proposed CrossMPT with the original ECCT across various code
classes. Our experimental results do not include a comparison with the works of (Choukroun &
Wolf, 2024a;b), as they have different objectives, such as generalizing the decoder to unseen codes
(Choukroun & Wolf, 2024a) or jointly training the encoder and decoder (Choukroun & Wolf, 2024b).
It is worth mentioning that our cross-attention architecture and the schemes of (Choukroun & Wolf,

7

Published as a conference paper at ICLR 2025

ECCT CrossMPT

Figure 5: The average attention scores of all N = 6 layers for ECCT and CrossMPT.

2024a;b) are orthogonal methods, and combining them could present a promising direction for future
research.

To verify the efficacy of CrossMPT, we train it for BCH codes, polar codes, turbo codes, and LDPC
codes (including MacKay and CCSDS codes) and evaluate the bit error rate (BER) performance. All
PCMs are taken from (Helmling et al., 2019). The implementation of the original ECCT is obtained
from (Choukroun & Wolf, 2022b). For the testing, we collect at least 500 frame errors at each
Eb/N0 with random codewords. Table 1 compares the decoding performance of CrossMPT with
the BP decoder, BP-based neural decoders (Nachmani & Wolf, 2019; 2021), and ECCT (Choukroun
& Wolf, 2022a). The results of the BP-based decoders in Table 1 are obtained for 50 iterations. The
results for both the proposed CrossMPT and ECCT, which are model-free decoders, are obtained
with N = 6 and d = 128. For all types of codes, CrossMPT outperforms the conventional ECCT
and all the other BP-based neural decoders. This improvement of CrossMPT is particularly notable
in the case of LDPC codes. To provide more visual information, we plot the BER graphs for several
codes in Figure 4.

An important aspect of our research is CrossMPT’s capability to decode long codes (Appendix A),
which remain beyond the reach of ECCT due to its high memory requirements, resulting from
large attention maps. These results demonstrate the practical significance and architectural advan-
tages of CrossMPT, proving its value in scenarios where ECCT encounters limitations. Especially,
it achieves superior decoding performance for LDPC codes, outperforming the BP decoder with
the maximum iteration of 100 (provided in Appendix B). Additionally, for short codes, CrossMPT
closely approaches the optimal maximum likelihood (ML) decoding performance (provided in Ap-
pendix C). Additional experimental results for block error rate (BLER), comparison with successive
cancellation list polar decoder, denoising diffusion ECCT (DDECCT), and the decoding perfor-
mance for the Rayleigh channel, are provided in Appendices D, E, F, and G, respectively.

6 ABLATION STUDIES AND ANALYSIS

6.1 ANALYSIS OF ATTENTION MECHANISMS IN ECCT AND CROSSMPT

We provide an analysis of the attention scores in ECCT and CrossMPT. Figure 5 shows the aver-
age attention scores across N = 6 layers for both ECCT and CrossMPT on the (32, 16) LDPC
code (Abu-Surra et al., 2010). As shown in Figure 5, the attention map of ECCT reveals different
importance among the relationships: Magnitude-magnitude, syndrome-syndrome, and magnitude-
syndrome. One key observation is that the magnitude-magnitude and syndrome-syndrome relations
exhibit relatively low attention scores compared to the magnitude-syndrome relation, which sug-
gests that the magnitude-syndrome relationship is more significant than the others. Appendix H, in
which we mask the magnitude-magnitude and syndrome-syndrome relationships, reveal no signif-
icant performance difference compared to when these relationships are not masked. This demon-
strates that the conventional ECCT could be enhanced by focusing on the more critical relationships,
as CrossMPT achieves this by eliminating the two relations with low attention scores and concen-
trating solely on the magnitude-syndrome relation. Therefore, we can claim that CrossMPT more
efficiently focuses on the crucial aspect (i.e., magnitude-syndrome relation) compared to ECCT.

8

Published as a conference paper at ICLR 2025

(a) Attention scores with a single bit error
0

1

2

3 Error position

(b) Summation of attention
scores with a single bit error

(c) Attention scores without an error
0

0.5

1

1.5

(d) Summation of attention
scores without an error

Figure 6: The attention scores (a), (c) with a single bit error in the first bit position and without an
error. The attention scores (b), (d) is carried out in the vertical direction.

6.2 VISUALIZATION OF CROSS-ATTENTION MAP

To further examine how CrossMPT operates, we intentionally corrupt a pre-determined bit of the
(32, 16) LDPC code and analyze the resulting attention maps. Figure 6 shows the attention scores
for the first two layers and the summation of their attention scores when the first bit is corrupted.
The summation is carried out vertically to demonstrate the attention score for each bit. As shown in
Figure 6(b), the attention score of the first bit (or first column) is relatively higher than the others.
However, once the error is corrected, CrossMPT no longer assigns high attention scores to that
position (see Figure 12 in Appendix I). Figures 6(c) and 6(d) depict the attention scores and the
summation of attention scores when no errors are present. Compared to the previous case, the
attention scores are more uniformly distributed across all bit positions.

6.3 COMPLEXITY ANALYSIS

Two cross-attention blocks of CrossMPT share the same parameters for all decoder layers. They use
the same weight matrices WQ,WK ,WV for two cross-attention modules since the performance
remains nearly identical even when the parameters are trained separately. Also, they share the
parameters for the normalization layers and the FFNN layers. Thus, CrossMPT maintains the same
number of parameters as the original ECCT.

Figure 1 illustrates the mask matrices of ECCT and CrossMPT. In the original ECCT, Figure 1(a)
shows that a significant portion of the upper n×n submatrix is depicted in white, indicating that the
most positions are unmasked. This n × n submatrix represents depth-2 connections in the Tanner
graph (Choukroun & Wolf, 2022a), which results in an increase in the number of unmasked posi-
tions, thereby leading to a higher computational required. On the other hand, the lower (n− k)× n
submatrix and the right (n− k)× n submatrix, which serve as the masking matrices for CrossMPT,
are predominantly shown in blue, indicating that their attention matrices are sparser. Figure 7 com-
pares the mask matrix density of CrossMPT and ECCT. For all codes, the mask matrix of CrossMPT
is sparser than ECCT, which implies that CrossMPT can achieve lower computational complexity
compared to the original ECCT.

The complexity of the self-attention mechanism of ECCT, without considering masking is,
O(N(d2(2n − k) + (2n − k)2d)). When masking is taken into account, the complexity can be
reduced to O(N(d2(2n− k) + hd)) (Choukroun & Wolf, 2022a), where h = ρ1(2n− k)2 denotes
the fixed number of computations of the self-attention module and ρ1 denotes the density of the
mask matrix in ECCT. Similarly, the complexity of the two cross-attention modules of CrossMPT,
without considering the masking, is O(N(d2(2n− k) + 2n(n− k)d)). When masking is taken into
account, the complexity can be reduced to O(N(d2(2n − k) + (2h̃)d)), where h̃ = ρ2n(n − k)
denotes the number of computations of a single cross-attention module and ρ2 denotes the density

9

Published as a conference paper at ICLR 2025

0

20

40

60

80

100

BCH

(31,16)

BCH

(63,36)

BCH

(63,45)

BCH

(63,51)

Polar

(64,32)

Polar

(64,48)

Polar

(128,64)

Polar

(128,86)

Polar

(128,96)

LDPC

(49,24)

LDPC

(121,60)

LDPC

(121,70)

LDPC

(121,80)

Mackay

(96,48)

CCSDS

(128,64)

Turbo

(132,40)

ECCT (𝜌1)

CrossMPT (𝜌2)

Figure 7: Comparison of the mask matrix density between ECCT and CrossMPT.

Table 2: Comparison of FLOPs, inference time, and training time between ECCT and CrossMPT
for various codes. Inference time is measured for decoding a single codeword and training time is
measured for a single epoch.

Codes Parameter FLOPs Inference (codeword) Training (epoch) Mask density Memory usage

CrossMPT ECCT CrossMPT ECCT CrossMPT ECCT CrossMPT ECCT CrossMPT ECCT

BCH (63,45) 99.8 M 106.4 M 326 µs 328 µs 29 s 29 s 32.45% 53.09% 962 MiB 1828 MiB

LDPC (121,70) 229.7 M 256.8 M 400 µs 450 µs 58 s 80 s 9.09% 24.01% 1980 MiB 3926 MiB
(121,80) 212.5 M 238.0 M 391 µs 436 µs 53 s 76 s 9.09% 21.94% 1936 MiB 3602 MiB

Turbo (132,40) 303.6 M 343.4 M 459 µs 511 µs 83 s 110 s 11.43% 14.25% 2362 MiB 5580 MiB

BCH (255,223) 28.2 M 53.5 M 747 µs 859 µs 56 s 145 s 48.63% 78.21% 1036 MiB 7318 MiB

WRAN (384,320) 53.1 M 111.3 M 1295 µs 1638 µs 104 s 305 s 5.21% 13.25% 3270 MiB 18192 MiB

of the mask matrix in CrossMPT. Furthermore, since ρ1 > ρ2 as shown in Figure 7, we conclude
that h > 2h̃, which indicates that CrossMPT achieves a reduction in computational complexity
compared the original ECCT.

Table 2 compares the total FLOPs, inference time, training time, and memory usage between ECCT
and CrossMPT. The inference time refers to the duration required to decode a single codeword and
the training time measures the duration to complete one epoch of training. All results are obtained
for N = 6 and d = 128, except for (255,223) BCH code and (384,320) WRAN LDPC code, which
are obtained for N = 6 and d = 32. For all three metrics, CrossMPT outperforms ECCT. Since
inference and training times are closely related to the FLOPs, a reduction in FLOPs directly leads
to shorter inference and training times. Notably, CrossMPT significantly reduces memory usage
compared to ECCT, especially for long codes. This improvement arises from the reduced size of
the attention map; 2n(n − k) for CrossMPT and (2n − k)2 for ECCT. The results in Tables 1
and 2 demonstrate that the proposed CrossMPT not only improves the decoding performance but
also significantly reduces FLOPs, inference time, training time, and memory usage compared to the
original ECCT. Additional analysis of the training time required to achieve the target loss is provided
in Appendix J.

CrossMPT’s sequential decoding approach may limit its throughput in certain scenarios. How-
ever, pipelining (Li et al., 2021b; Rowshan et al., 2024) enables CrossMPT to effectively increase
its throughput when decoding multiple codewords (see Appendix K).

7 CONCLUSION

We developed a novel transformer architecture for ECC decoding called CrossMPT, which improves
both decoding performance and computational efficiency. CrossMPT achieves this by adopting a
more effective architecture that processes magnitude and syndrome embeddings through the cross-
attention mechanism. This approach leverages the structured representation of codeword bit rela-
tionships in the PCM, enabling the model to accurately learn these relationships while significantly
reducing memory usage, FLOPs, inference time, and training time. Most existing transformer-based
decoders have been limited to short codes due to challenges in training long codes, primarily caused
by high memory usage and computational complexity. However, CrossMPT effectively addresses
these challenges, improving the viability of transformer-based decoders for long codes.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work was supported by Institute of Information & Communications Technology Planning &
Evaluation (IITP) grant funded by the Korean Government (MSIT) (RS-2024-00398449, Network
Research Center: Advanced Channel Coding and Channel Estimation Technologies for Wireless
Communication Evolution) and the National Research Foundation of Korea (NRF) grant funded by
the Korean Government (MSIT) (No. RS-2023-00212103).

REFERENCES

A. Abu-Surra, D. DeClercq, D. Divsalar, and W. E. Ryan. Trapping set enumerators for specific
LDPC codes. In Information Theory and Applications (ITA) Workshop, 2010.

S. K. Ankireddy and H. Kim. Interpreting neural min-sum decoders. In IEEE International Confer-
ence on Communications (ICC), 2023.

J. H. Bae, A. Abotabl, H. P. Lin, KB. Song, and J. Lee. An overview of channel coding for 5G NR
cellular communications. APSIPA Transactions on Signal and Information Processing, 8(1):e17,
2019.

A. Bennatan, Y. Choukroun, and P. Kisilev. Deep learning for decoding of linear codes-a syndrome-
based approach. In IEEE International Symposium on Information Theory (ISIT), pp. 1595–1599,
2018.

A. Buchberger, C. Hager, H. D. Pfister, L. Schmalen, and A. G. I. Amat. Pruning and quantizing
neural belief propagation decoders. IEEE Journal on Selected Areas in Communications, 39(7):
1957–1966, 2021.

S. Cammerer, T. Gruber, J. Hoydis, and S. ten Brink. Scaling deep learning-based decoding of polar
codes via partitioning. In IEEE Global Communications Conference (GLOBECOM), 2017.

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End-to-end object
detection with transformers. In European Conference on Computer Vision (ECCV), 2020.

C.-F. Chen, Q. Fan, and R. Panda. CrossViT: Cross-attention multi-scale vision transformer for
image classification. In IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

Y. Choukroun and L. Wolf. Error correction code transformer. In Advances in Neural Information
Processing Systems (NeurIPS), 2022a.

Y. Choukroun and L. Wolf. Error correction code transformer. https://github.com/
yoniLc/ECCT, 2022b. Accessed: 2023-05-22.

Y. Choukroun and L. Wolf. Denoising diffusion error correction codes. In International Conference
on Learning Representations (ICLR), 2023.

Y. Choukroun and L. Wolf. A foundation model for error correction codes. In International Con-
ference on Learning Representations (ICLR), 2024a.

Y. Choukroun and L. Wolf. Learning linear block error correction codes. In International Conference
on Machine Learning (ICML), 2024b.

J. Dai, K. Tan, Z. Si, K. Niu, M. Chen, H. V. Poor, and S. Cui. Learning to decode protograph LDPC
codes. IEEE Journal on Selected Areas in Communications, 39(7):1983–1999, 2021.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In North American Chapter of the Association for Compu-
tational Linguistics (NAACL), 2019.

M. P. C. Fossorier, M. Mihaljevic, and H. Imai. Reduced complexity iterative decoding of low-
density parity check codes based on belief propagation. IEEE Transactions on Communications,
47(5):673–680, 1999.

11

https://github.com/yoniLc/ECCT
https://github.com/yoniLc/ECCT

Published as a conference paper at ICLR 2025

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object
detection and semantic segmentation. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2014.

T. Gruber, S. Cammerer, J. Hoydis, and T. Brink. On deep learning-based channel decoding. In 51st
Annual Conference on Information Sciences and Systems (CISS), pp. 1–6, 2017.

P. Hailes, L. Xu, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo. A survey of FPGA-based LDPC
decoders. IEEE Communications Surveys & Tutorials, 18(2):1098–1122, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

M. Helmling, S. Scholl, F. Gensheimer, T. Dietz, D. Kraft, S. Ruzika, and N. Wehn. Database of
Channel Codes and ML Simulation Results. In https://rptu.de/en/channel-codes,
2019.

H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, and P. Viswanath. Communication algorithms via
deep learning. In International Conference on Learning Representations (ICLR), 2018.

H. Kim, S. Oh, and P. Viswanath. Physical layer communication via deep learning. IEEE Journal
on Selected Areas in Information Theory, 1(1):5–18, 2020.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations (ICLR), 2015.

H.-Y. Kwak, J.-W. Kim, Y. Kim, S.-H. Kim, and J.-S. No. Neural min-sum decoding for generalized
LDPC codes. IEEE Communications Letters, 26(12):2841–2845, 2022.

H.-Y. Kwak, D.-Y. Yun, Y. Kim, S.-H. Kim, and J.-S. No. Boosting learning for LDPC codes
to improve the error-floor performance. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2023.

H.-Y. Kwak, D.-Y. Yun, Y. Kim, S.-H. Kim, and J.-S. No. Boosted neural decoders: Achieving
extreme reliability of LDPC codes for 6G networks. IEEE Journal on Selected Areas in Commu-
nications, 2025.

F. Li, C. Zhang, K. Peng, A. E. Krylov, A. A. Katyushnyj, A. V. Rashich, D. A. Tkachenko, S. B.
Makarov, and J. Song. Review on 5G NR LDPC code: Recommendations for DTTB system.
IEEE Access, 9:155413–155424, 2021a.

M. Li, V. Derudder, K. Bertrand, C. Desset, and A. Bourdoux. High-speed LDPC decoders towards
1 Tb/s. IEEE Transactions on Circuits and Systems I: Regular Papers, 68(5):2224–2233, 2021b.

L. Lugosch and W. J. Gross. Neural offset min-sum decoding. In IEEE International Symposium on
Information Theory (ISIT), pp. 1316–1365, 2017.

E. Nachmani and L. Wolf. Hyper-graph-network decoders for block codes. In Advances in Neural
Information Processing Systems (NeurIPS), pp. 2326–2336, 2019.

E. Nachmani and L. Wolf. Autoregressive belief propagation for decoding block codes. arXiv
preprint arXiv:2103.11780, 2021.

E. Nachmani, Y. Beery, and D. Burshtein. Learning to decode linear codes using deep learning.
In 54th Annual Allerton Conference on Communications, Control, and Computing, pp. 341–346,
2016.

E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and Y. Beery. Deep learning
methods for improved decoding of linear codes. IEEE Journal of Selected Topics in Signal Pro-
cessing, 12(1):119–131, 2018.

S.-J. Park, H.-Y. Kwak, S.-H. Kim, S. Kim, Y. Kim, and J.-S. No. Multiple-masks error correction
code transformer for short block codes. IEEE Journal on Selected Areas in Communications,
2025.

12

https://rptu.de/en/channel-codes

Published as a conference paper at ICLR 2025

T. Richardson and R. Urbanke. The capacity of low-density parity check codes under message-
passing decoding. IEEE Transactions on Information Theory, 47(2):599–618, 2001.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis
with latent diffusion models. In IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2022.

M. Rowshan, M. Qiu, Y. Xie, X. Gu, and J. Yuan. Channel coding toward 6G: Technical overview
and outlook. IEEE Open Journal of the Communications Society, 5:2585–2685, 2024.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2017.

L. Wang, S. Chen, J. Nguyen, D. Dariush, and R. Wesel. Neural-network-optimized degree-specific
weights for LDPC minsum decoding. In IEEE International Symposium on Topics in Cod-
ing (ISTC), 2021.

A PERFORMANCE ON LONGER CODES

We present the BER performance for three longer codes in Figures 8(a), 8(b), and 8(c) for ECCT and
CrossMPT N = 6, d = 32. For all three codes ((a) (529,440) LDPC code, (b) (384,320) wireless
regional area network (WRAN) LDPC code, (c) (512,384) polar code), the proposed CrossMPT
outperforms the original ECCT. Despite its reduced complexity, CrossMPT significantly enhances
the decoding performance compared to ECCT, not only for short-length codes but also for longer
codes. Also, Figures 8(d) and 8(e) show the decoding performance of CrossMPT for much longer
codes. The BER performances of the (648,540) IEEE 802.11n LDPC code (N = 10, d = 128) and
(1056,880) WiMAX LDPC code (N = 6, d = 32) demonstrate that CrossMPT efficiently trains
how to decode the codeword even for large N and d and performs well for longer codes. Again,
we emphasize CrossMPT’s capability to decode long codes where ECCT struggles due to high
memory allocation (large attention map). The structure of CrossMPT demonstrates its efficiency
in learning long codes, surpassing the limitations of short or moderate codelengths of transformer-
based decoders.

B
E

R

10−1

10−2

10−3

10−4

10−5

10−6

10−7

1
SNR (𝐸𝑏/𝑁0)

ECCT

CrossMPT

2 3 4 5 6 7

(a) (529,440) LDPC code

B
E

R

SNR (𝐸𝑏/𝑁0)

ECCT

CrossMPT

2 3 4 5 62.5 3.5 4.5 5.5

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

(b) (384,320) WRAN LDPC code

B
E

R

10−1

10−2

10−3

10−4

10−5

1
SNR (𝐸𝑏/𝑁0)

ECCT

CrossMPT

2 3 4 5 6 7

(c) (512,384) polar code

B
E

R

SNR (𝐸𝑏/𝑁0)

CrossMPT

3 3.5 4 5 53.25 3.75 4.25 4.75

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

(d) (648,540) IEEE 802.11n

B
E

R

SNR (𝐸𝑏/𝑁0)

CrossMPT

3 3.5 4 4.5 53.25 3.75 4.25 4.75

10−1

10−2

10−3

10−4

10−5

10−6

10−7

(e) (1056,880) WiMAX

Figure 8: The decoding performance of long codes.

13

Published as a conference paper at ICLR 2025

B COMPARISON WITH THE BP DECODER

Figure 9 shows the decoding performance between the traditional BP decoder with a maximum num-
ber of iterations of 20, 50, and 100 and CrossMPT for both short and long LDPC codes. Figures 9(a)
and 9(b) compare the BER performance for (121,80) LDPC codes (N = 6, d = 128) and (648,540)
IEEE 802.11n LDPC code (N = 10, d = 128), respectively. Notably, the proposed CrossMPT
can outperform the BP decoder for both short and long LDPC codes. These results highlight that
CrossMPT efficiently trains how to decode the codeword across a wide range of code lengths.

BP, 50

BP, 100

ECCT

CrossMPT

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

B
E

R

𝐸𝑏/𝑁0
1 3 52 4 6

BP, 20

(a) (121,80) LDPC code

BP, 20

BP, 50

BP, 100

CrossMPT

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

B
E

R

𝐸𝑏/𝑁0
3 3.5 4 4.5 53.25 3.75 4.25 4.75

(b) (648,540) IEEE 802.11n

Figure 9: Performance comparison between BP decoder (iteration 20, 50, and 100) and CrossMPT.

C COMPARISON WITH THE ML DECODER

We compare ECCT and CrossMPT with the ML decoder for short BCH codes. Figure 10 demon-
strates the BER performance of (31, 16) BCH code and (31, 21) BCH code. Especially, these results
show that CrossMPT closely approaches the optimal ML performance for short codes.

B
E

R

100

10−1

10−2

10−3

10−4

10−5

10−6

𝐸𝑏/𝑁0

ML decoding

ECCT

CrossMPT

1 2 3 4 5 6

(a) (31,16) BCH code

B
E

R

100

10−1

10−2

10−3

10−4

10−5

10−6

𝐸𝑏/𝑁0

ML decoding

ECCT

CrossMPT

1 2 3 4 5 6

(b) (31,21) BCH code

Figure 10: The decoding performance comparison between ML decoder, ECCT, and CrossMPT.

D BLOCK ERROR RATE PERFORMANCE

Table 3 demonstrates BLER results for various code classes (N = 6, d = 128). Also, Fig-
ure 11 shows the BLER performance of (31,16) BCH code, (63,51) BCH code, and (648,540) IEEE
802.11n LDPC code. For BCH codes, we compare the decoding performance of CrossMPT with
the traditional Berlekamp-Massey (BM) decoder, maximum likelihood (ML) decoding algorithm,
ECCT. For LDPC codes, we compare the decoding performance of CrossMPT with the traditional

14

Published as a conference paper at ICLR 2025

BP decoder with a maximum number of iterations of 20, 50, and 100. As shown in the table,
CrossMPT outperforms ECCT in the BLER performance and also has a comparable BLER results
compared to the traditional decoding algorithms.

In addition, the traditional decoders are code-specific decoders, tailored to each class of codes. For
example, LDPC codes are effectively decoded by the BP decoder, BCH codes by the BM decoder,
and polar codes by the SCL decoder. However, unlike the traditional decoders, a key advantage
of CrossMPT is its versatility. While conventional decoders are good and valid only for respective
code classes, CrossMPT performs effectively across a wide range of code classes. This universality
highlights the broader applicability and potential of CrossMPT in various decoding scenarios and
future communication paradigm such and semantic communication.

The complexity of transformer-based decoders is relatively high compared to code-specific de-
coders. Reducing their computational requirements will be an important focus for future work.

Table 3: The BLER results for ECCT and CrossMPT. The results are measured by the negative
natural logarithm of BLER.

Method ECCT CrossMPT

Eb/N0 4 5 6 4 5 6

(31,16) BCH 4.19 5.98 8.16 5.12 7.24 10.31
(63,36) BCH 2.43 4.10 6.40 2.50 4.23 6.61
(63,45) BCH 2.75 4.75 7.67 3.18 5.33 8.66
(63,51) BCH 2.72 4.85 7.82 2.94 5.16 8.36
(64,32) Polar 4.18 6.47 9.07 4.83 7.26 10.41
(64,48) Polar 3.08 5.06 7.60 3.56 5.68 8.35
(49,24) LDPC 3.62 5.89 9.39 4.47 7.20 10.68

(121,70) LDPC 3.21 6.69 11.91 4.28 8.42 13.35

B
L

E
R

100

10−1

10−2

10−3

10−4

10−5

𝐸𝑏/𝑁0

BM decoder

ECCT

CrossMPT

1 2 3 4 5 6

ML decoding

(a) (31,16) BCH code

B
L

E
R

100

10−1

10−2

10−3

10−4

10−5

𝐸𝑏/𝑁0

BM decoder

ECCT

CrossMPT

1 2 3 4 5 6

ML decoding

(b) (63,51) BCH code

BP, 20

BP, 50

BP, 100

CrossMPT

100

10−1

10−2

10−3

10−4

10−7

10−6

B
L

E
R

𝐸𝑏/𝑁0
3 3.5 4 4.5 53.25 3.75 4.25 4.75

(c) (648,540) IEEE 802.11n

Figure 11: The BLER performance comparison between the traditional decoders and CrossMPT.

E COMPARISON WITH SUCCESSIVE CANCELLATION LIST POLAR DECODER

We compare the BER performance of the SCL decoder, ECCT, and CrossMPT in Table 4. The
performance of the SCL decoder is from (Choukroun & Wolf, 2022a). Although the contribution
of L is significant in long codes, the SCL decoder achieves a great performance with small L, such
as L = 4. As reported in (Choukroun & Wolf, 2022a; 2023), the SCL decoder outperforms ECCT.
This is because the SCL decoder is a decoder specialized for Polar codes and is a state-of-the-
art algorithm that has undergone extensive development over a long period. CrossMPT has made
significant improvements from ECCT and even outperforms the SCL decoder for (64,48) polar code.

F COMPARISON WITH DDECCT

For a fair comparison with DDECCT, we also apply the denoising diffusion training technique
to CrossMPT. Table 5 compares the BER performance of ECCT (Choukroun & Wolf, 2022a),
CrossMPT, DDECCT, and CrossMPT applying the denoising diffusion model. All four decoders
are model-free decoders using the transformer architecture, and simulations are taken for N = 6,

15

Published as a conference paper at ICLR 2025

Table 4: Comparison of decoding performance at three different Eb/N0 (4 dB, 5 dB, 6 dB) for SCL
decoder, ECCT, and CrossMPT. The results are measured by the negative natural logarithm of BER.
The best results are highlighted in bold and the second best is underlined. Higher is better.

Method SCL (L = 1) SCL (L = 4) ECCT CrossMPT

Parameter 4 5 6 4 5 6 4 5 6 4 5 6

(64,32) 7.30 9.67 13.18 8.11 10.70 14.04 6.99 9.44 12.32 7.50 9.97 13.31
(64,48) 6.19 8.41 10.97 6.69 8.63 11.24 6.36 8.46 11.09 6.51 8.70 11.31
(128,64) 8.37 11.69 13.70 9.60 13.16 17.42 5.92 8.64 12.18 7.52 11.21 14.76
(128,86) 7.54 10.74 15.14 9.26 13.04 17.13 6.31 9.01 12.45 7.86 11.45 15.47
(128,96) 6.74 9.53 13.53 8.02 11.60 18.16 6.31 9.12 12.47 7.15 10.15 13.13

d = 128. We conduct simulations for codes where DDECC performs better than CrossMPT. For the
rest of the codes, CrossMPT outperforms DDECC. The proposed CrossMPT shows superior decod-
ing performance compared to the original ECCT. Compared to DDECC, CrossMPT demonstrates
similar BER performance for polar codes, but it even outperforms DDECC for BCH and LDPC
codes. When the denoising diffusion technique is applied to CrossMPT, it achieves the best perfor-
mance among others, where DDECC, CrossMPT, and ECCT follow. This proves that the CrossMPT
architecture provides separate gain from the denoising diffusion algorithm for transformer-based de-
coders.

Table 5: Comparison of decoding performance at three different Eb/N0 (4 dB, 5 dB, 6 dB) for
ECCT (Choukroun & Wolf, 2022a), CrossMPT, and DDECC (Choukroun & Wolf, 2023). The
results are measured by the negative natural logarithm of BER. The best results are highlighted in
bold and the second best is underlined. Higher is better.

Architecture Without denoising diffusion With denoising diffusion

Codes Parameter ECCT CrossMPT ECCT CrossMPT

4 5 6 4 5 6 4 5 6 4 5 6

BCH (63,36) 4.86 6.65 9.10 5.03 6.91 9.37 5.11 7.09 9.82 5.23 7.20 10.01

Polar
(128,64) 5.92 8.64 12.18 7.52 11.21 14.76 9.11 12.9 16.30 10.21 13.63 17.28
(128,86) 6.31 9.01 12.45 7.51 10.83 15.24 7.60 10.81 15.17 8.56 12.04 15.37
(128,96) 6.31 9.12 12.47 7.15 10.15 13.13 7.16 10.3 13.19 7.57 10.61 13.33

MacKay (96,48) 7.38 10.72 14.83 7.97 11.77 15.52 8.12 11.88 15.93 8.85 12.58 17.69

G DECODING PERFORMANCE FOR RAYLEIGH FADING CHANNEL

The original ECCT architecture shows robustness to non-Gaussian channels (e.g., Rayleigh fading
channel) (Choukroun & Wolf, 2022a, Supplementary). We also measured the decoding performance
of CrossMPT in Rayleigh fading channels. To compare with ECCT, we use the same fading channel
as in (Choukroun & Wolf, 2022a). The received codeword is given as y = hx + z, where h is an
n-dimensional i.i.d. Rayleigh distributed vector with a scale parameter α = 1 and z ∼ N(0, σ2).
The following table demonstrates the BER performance of ECCT and CrossMPT in Rayleigh fading
channel and CrossMPT still outperforms the original ECCT architecture for all types of codes.

Codes (31,16) BCH (64,32) Polar (128,64) Polar (128,86) Polar (121,70) LDPC (128,64) CCSDS

Methods 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

ECCT 5.18 6.04 6.92 5.53 6.62 7.80 4.31 5.37 6.63 4.02 4.81 5.70 3.91 4.97 6.31 2.46 3.97 5.79
CrossMPT 5.53 6.55 7.61 5.91 7.17 8.48 4.70 5.93 7.34 4.41 5.38 6.46 4.25 5.53 7.11 5.25 6.94 8.92

16

Published as a conference paper at ICLR 2025

H ABLATION STUDY WITH ADDITIONAL MASKING

To understand the impact of magnitude-magnitude and syndrome-syndrome relationships, we ex-
ammine the decoding performance of ECCT with additional masking applied to all positions cor-
responding to these relationships. Table 6 compares the decoding performance of ECCT with this
additional masking, standard ECCT, and CrossMPT. The results show no significant performance
degradation with the additional masking, indicating that the magnitude-magnitude and syndrome-
syndrome relationships are not critical to decoding performance.

Table 6: Comparison of decoding performance at three different Eb/N0 (4 dB, 5 dB, 6 dB) for
ECCT with additional masking, standard ECCT, and CrossMPT. The results are measured by the
negative natural logarithm of BER. The best results are highlighted in bold. Higher is better.

Method ECCT + Masking ECCT CrossMPT

Parameter 4 5 6 4 5 6 4 5 6

(31, 16) BCH 6.52 8.55 11.42 6.39 8.29 10.66 6.98 9.25 12.48
(63, 45) BCH 5.53 7.74 10.88 5.60 7.79 10.93 5.90 8.20 11.62
(64, 48) Polar 6.25 8.26 10.93 6.36 8.46 11.09 6.51 8.70 11.31
(121, 60) LDPC 4.98 7.91 12.61 5.17 8.31 13.30 5.74 9.26 14.78

I VISUALIZATION OF CROSS-ATTENTION MAP

Figure 12 illustrates the attention scores for all N = 6 layers with a single bit error (bit error in the
first position). The first three layers have relatively high attention score at the error position (first
bit). Then, when the error is corrected, the attention score becomes lower at the last three layers.

For model-based neural decoders, interpretation and analysis in terms of graphs are feasible be-
cause their structural architecture is inherently based on conventional graph-based decoding al-
gorithms (Wang et al., 2021; Ankireddy & Kim, 2023). However, in the case of model-free ap-
proaches, it remains challenging to determine how attention scores or weights are assigned to spe-
cific nodes and how these assignments are influenced by graph properties such as node degree.

Although we analyzed how the attention scores change depending on where the error occurs in
Figure 12, we have not yet achieved a rigorous analysis beyond this level. This remains a critical
issue in model-free approaches and represents a problem that needs to be addressed in future work.

Figure 12: Attention scores of N = 6 layers with a single bit error.

J TRAINING TIME TO ACHIEVE THE TARGET LOSS

In Table 7, we compare the training time required for ECCT and CrossMPT to achieve the target
loss. The target loss is set as a minimum loss of ECCT during the training. For (128, 86) polar code,
the minimum loss of ECCT during the 1000 epochs is 2.28×10−2. To achieve the loss 2.28×10−2,
CrossMPT takes 6912 s, while ECCT requires 72917 s. Similarly, for (128, 64) CCSDS code,

17

Published as a conference paper at ICLR 2025

the minimum loss of ECCT is 2.79 × 10−2 and CrossMPT requires 2356 s, while ECCT requires
85770 s. These results demonstrate that CrossMPT achieves the target loss significantly faster than
ECCT, highlighting its efficiency in terms of training time.

Table 7: Comparison of training time to achieve the target loss for ECCT and CrossMPT.

Codes Methods Target loss Time

(128,86) Polar ECCT 2.28× 10−2 72917 s
CrossMPT 2.28× 10−2 6912 s

(128,64) CCSDS ECCT 2.79× 10−2 86770 s
CrossMPT 2.79× 10−2 2356 s

K THROUGHPUT ANALYSIS

Table 2 demonstrates that CrossMPT outperforms ECCT in terms of inference time. However, while
a fully parallel processor can accelerate ECCT, the sequential decoding architecture of CrossMPT
limits its potential for throughput improvement. To address this, a pipelining approach–commonly
employed in various ECC decoders (Li et al., 2021b; Rowshan et al., 2024)–can be applied to max-
imize CrossMPT’s decoding throughput (see Figure 3 in (Li et al., 2021b)). By unrolling two
cross-attention blocks, CrossMPT can simultaneously process two consecutive codewords across
two cross-attention blocks within the same layer. This means that while the second cross-attention
block processes the first codeword, the first cross-attention block concurrently decodes the subse-
quent codeword. This pipelining strategy ensures that CrossMPT maintains speed advantages over
ECCT, in fully parallel scenarios. Figure 13 provides an example of decoding multiple codewords
in CrossMPT with N = 2.

In wireless communications, the decoder’s throughput is often a more critical concern than latency.
This is because the latency from communication protocols and signal processing in preceding re-
ceiver blocks would be longer than the latency introduced by the channel decoder. Throughput
becomes especially important when supporting very high data rates in wireless communication as
the channel decoder can be a bottleneck.

Furthermore, in wireless communication scenarios, a sequential algorithm may be preferred for its
enhanced performance or reduced complexity. The layered decoding algorithm for LDPC codes has
been widely adopted as a de facto standard (Bae et al., 2019; Hailes et al., 2015; Li et al., 2021a),
despite its sequential nature and limitation on parallelism, exemplifying the preference for sequen-
tial algorithms. The layered decoding algorithm is favored for its superior decoding performance
compared to fully parallel sum-product decoding at equivalent computational complexities.

18

Published as a conference paper at ICLR 2025

Cross-attention

Block 1

Cross-attention

Block 2

Cross-attention

Block 1

Cross-attention

Block 2

First

decoder layer

Second

decoder layer

𝑁 = 2

𝑐𝑖+2

𝑐𝑖+3

𝑐𝐿…

𝑐𝑖−1

𝑐𝑖

𝑐𝑖+1

𝑐𝑖+4

𝑐𝑖−2…𝑐0Decoded codewords:

Figure 13: Example of decoding multiple codewords in CrossMPT with N = 2.

19

	Introduction
	Related Works
	Background
	Error Correcting Codes
	Error Correction Code Transformer

	Cross-Attention Message-Passing Transformer
	Cross-Attention Message-Passing Transformer
	Model Architecture

	Experimental Results
	Ablation Studies and Analysis
	Analysis of Attention Mechanisms in ECCT and CrossMPT
	Visualization of Cross-Attention Map
	Complexity Analysis

	Conclusion
	Performance on Longer Codes
	Comparison with the BP decoder
	Comparison with the ML decoder
	Block Error Rate Performance
	Comparison with Successive Cancellation List Polar Decoder
	Comparison with DDECCT
	Decoding Performance for Rayleigh Fading Channel
	Ablation Study with Additional Masking
	Visualization of Cross-Attention Map
	Training Time to Achieve the Target Loss
	Throughput Analysis

