
Beyond Fine-Tuning:
Transferring Behavior in Reinforcement Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Designing agents that acquire knowledge autonomously and use it to solve new1

tasks efficiently is an important challenge in reinforcement learning. Knowledge2

acquired during an unsupervised pre-training phase is often transferred by fine-3

tuning neural network weights once rewards are exposed, as is common practice4

in supervised domains. Given the nature of the reinforcement learning problem,5

we argue that standard fine-tuning strategies alone are not enough for efficient6

transfer in challenging domains. We introduce Behavior Transfer (BT), a technique7

that leverages pre-trained policies for exploration and that is complementary to8

transferring neural network weights. Our experiments show that, when combined9

with large-scale pre-training in the absence of rewards, existing intrinsic motivation10

objectives can lead to the emergence of complex behaviors. These pre-trained11

policies can then be leveraged by BT to discover better solutions than without12

pre-training, and combining BT with standard fine-tuning strategies results in13

additional benefits. The largest gains are generally observed in domains requiring14

structured exploration, including settings where the behavior of the pre-trained15

policies is misaligned with the downstream task.16

1 Introduction17

Transfer in deep learning is often performed through parameter initialization followed by fine-tuning,18

a technique that allows to leverage the power of deep networks in domains where labelled data19

is scarce [64, 16, 65, 22, 15]. This builds on the intuition that the pre-trained model will map20

inputs to a feature space where the downstream task is easy to perform. When combined with21

methods that can leverage massive amounts of unlabelled data for pre-training, this transfer strategy22

has led to unprecedented results in domains like computer vision [31, 30] and natural language23

processing [15, 54]. The success of these approaches has led to an ever-growing interest in developing24

techniques for pre-training large scale models on unlabelled data [9, 13, 24].25

In the reinforcement learning (RL) context, unsupervised methods that learn in the absence of reward26

have also garnered much research attention [23, 21, 49, 19, 29]. The benefits of unsupervised pre-27

training are typically evaluated by their ability to enable efficient transfer to previously unseen reward28

functions [28]. In spite of their different approaches to unsupervised RL, most of the top-performing29

methods in this setting transfer knowledge through neural network weights. Such approaches deal30

with the data inefficiency associated to training neural networks with gradient descent, similarly to31

what is done in supervised learning, e.g. by pre-training encoders that extract representations from32

observations [63]. However, RL introduces a challenge that is not present in supervised learning: the33

agent is responsible for collecting the right data to learn from. This introduces a second source of34

inefficiency from which transfer approaches can also suffer if they rely on unstructured exploration35

strategies after pre-training, as these can lead to exponentially larger data requirements in complex36

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

0 500 M 1 B 1.5 B 2 B
Environment frames

0

2.5 k

5 k

7.5 k

10 k

12.5 k
Montezuma's Revenge (sparse rewards)

0 500 M 1 B 1.5 B 2 B
Environment frames

0

100 k

200 k

300 k

400 k

500 k
Defender (dense rewards)

Without transfer
NGU (reward-free)

From scratch

With transfer
Fine-tuning NGU
BT(NGU)
BT(NGU) + NGU init

Figure 1: Comparison of transfer strategies on Montezuma’s Revenge and Defender after pre-training
a policy with NGU [52] in the absence of reward. The benefits of our proposed approach to leverage
pre-trained behavior for exploration, Behavior Transfer (BT), are complementary to the gains provided
by pre-trained weight initialization followed by fine-tuning.

downstream environments [48, 47]. To address this problem, one could consider fine-tuning policies37

that produce meaningful behavior [46, 56], but this approach quickly disregards the pre-trained38

behavior when learning in the downstream task due to catastrophic forgetting.39

In this work, we explicitly separate the transfer of behaviour and weights. We propose to make40

use of the pre-trained behaviour itself (i.e., the pre-trained policy mapping from observations to41

actions) in contrast to pre-trained neural network weights for further fine-tuning. While pre-trained42

behavior has been used before for exploitation [5, 60, 2, 3], our approach employs pre-trained policies43

to aid with exploration as well to collect experience that can be leveraged via off-policy learning.44

This strategy accelerates learning, as the agent is exposed to potentially useful experience earlier in45

training, without compromising the quality of the discovered solution when the pre-trained behavior46

is not aligned with the downstream task. We expose the pre-trained behaviour to the downstream47

agent in two ways: firstly, as an extra exploratory strategy that, when randomly activated, persists for48

a number of steps, and secondly as an additional pseudo-action for the learned value function where49

the agent may elect to defer action selection to the pre-trained policy instead of choosing itself. We50

call this approach Behavior Transfer (BT).51

Defining unsupervised RL objectives remains an open problem, and solutions are generally influenced52

by how the acquired knowledge will be used for solving downstream tasks. Instead of proposing yet53

another objective for unsupervised pre-training, we turn to existing techniques for training policies in54

the absence of reward and make our choice based on two general requirements. First, the objective55

should scale gracefully with increased compute and data. This has been key for the success of56

self-supervised approaches in other domains [9, 36], and we argue that it is an important property for57

unsupervised RL as well. Second, the pre-training stage should return a policy that produces complex58

behavior that may be leveraged in a subsequent transfer stage. The Never Give Up (NGU) [52]59

intrinsic reward meets both requirements, and our experiments show that large-scale pre-training with60

this objective leads to state of the art scores in the reward-free Atari benchmark.61

Figure 1 exemplifies our main findings. We pre-train behaviour using the intrinsic NGU reward during62

a long unsupervised phase without rewards. This gives rise to exploratory behaviors that seek to visit63

many different states throughout an episode, and we then compare different strategies for leveraging64

the acquired knowledge once rewards are reinstated. While fine-tuning the pre-trained weights65

enables faster learning, the exploratory behavior of the pre-trained policy is quickly disregarded as it66

is exposed to rewards. On the other hand, Behavior Transfer (BT) does not modify the pre-trained67

policy while learning in the new task and is able to achieve higher end scores thanks to better68

exploration. These two strategies are not mutually exclusive, and BT also benefits from the faster69

convergence provided by initializing neural networks with pre-trained weights when these encode70

useful information for solving the downstream task.71

Our contributions can be summarized as follows. (1) We propose Behavior Transfer (BT), a technique72

that leverages pre-trained policies for exploration by treating them as black boxes that are not modified73

during learning on the downstream task. BT uses the pre-trained policy to collect experience in74

two ways, namely randomly-triggered temporally-extended exploration and one-step calls based on75

value estimates. (2) Our experiments show that large-scale unsupervised pre-training with existing76

intrinsic rewards can produce meaningful behavior, achieving state of the art results in the reward-free77

Atari benchmark. These results suggest that scale is key for unsupervised RL, akin to what has been78

observed in supervised settings. (3) We provide extensive empirical evidence demonstrating the79

2

benefits of leveraging pre-trained behavior via BT. Our approach obtains the largest gains in hard80

exploration games, where it almost doubles the median human normalized score achieved by our81

strongest baseline. Furthermore, we show that BT is able to leverage a single task-agnostic policy82

to solve multiple tasks in the same environment and to achieve high performance even when the83

pre-trained policies are misaligned with the task being solved. (4) BT brings benefits to the table84

that are complementary to those provided by reusing pre-trained neural network weights, and we85

empirically show that combining these two strategies can result in larger gains.86

2 Preliminaries87

The interaction between the agent and the environment is modelled as a Markov Decission Pro-88

cess (MDP) [53]. An MDP is defined by the tuple (S,A, P, d0, R, γ) where S and A are the state89

and action spaces, P (s′|s, a) is the probability of transitioning from state s to s′ after taking action a,90

d0(s) is the probability distribution over initial states, R : S ×A× S −→ R is the reward function,91

and γ ∈ [0, 1) is the discount factor. The goal is to find a policy π(a|s) that maximizes the expected92

return, Gt =
∑∞
t=0 γ

tRt, where Rt = r(St, At, St+1). A principled way to address this problem93

is to use methods that compute action-value functions, Qπ(s, a) = Eπ [Gt|St = s,At = a], where94

Eπ[·] denotes expectation over transitions induced by π [53].95

We consider a setting where the agent is allowed to first learn within an MDP without rewards,96

MR = (S,A, P, d0), for a long period of time. The knowledge acquired during the reward-free97

stage is later leveraged when maximizing reward in new MDPs that share the same underlying98

dynamics but have different reward functions,Mi = (S,A, P, d0, Ri, γi). Interactions between the99

agent and the environment are often assumed to incur a cost, but we will consider this cost to be100

relevant only for transitions with reward [28]. Even if the cost of unsupervised pre-training becomes101

non-negligible, it can be amortized when the acquired task-agnostic knowledge is leveraged to solve102

multiple tasks efficiently [15, 9]. Indeed, we would expect this transfer setting to become more103

relevant as the community moves towards more complex environments, where one may want to104

train agents to maximize multiple reward functions under constant dynamics. In the limit, one could105

consider the real world: it has constant or slowly changing dynamics, and humans are able to leverage106

previously acquired skills to quickly master new tasks.107

3 Behavior Transfer108

Transfer in supervised domains often exploits the fact that related tasks might be solved using similar109

representations. This practice deals with the data inefficiency of training large neural networks110

with stochastic gradient descent. However, there is an additional source of data inefficiency when111

training RL agents: unstructured exploration. Fine-tuning a pre-trained exploratory policy arises as112

a potential strategy for overcoming this problem, as the agent will observe rich experience much113

earlier in training than when initializing the policy randomly, but this approach suffers from important114

limitations. Learning in the downstream task can lead to catastrophically forgetting the pre-trained115

policy, thus prematurely disregarding its exploratory behavior. Moreover, the same neural network116

architecture needs to be used for both the pre-trained and the downstream policies, which in practice117

also imposes a limitation on the type of RL methods that can be employed in the adaptation stage (for118

instance, if the pre-trained policy was trained using a policy-based method, it might not be possible119

to fine-tune it using a value-based approach).120

Let us assume that we have access to a pre-trained policy that exhibits exploratory behavior, and121

defer the discussion on how to train this policy to Section 4. Following such a policy might bring122

the agent to states that are unlikely to be visited with unstructured exploration techniques such as123

ε-greedy [59]. This property has the potential of accelerating learning even when the behavior of124

the pre-trained policy is not aligned with the downstream task, as it will effectively shorten the125

path between otherwise distant states [42]. Leveraging pre-trained policies for exploration differs126

from other approaches in the literature that use such policies directly for exploitation, e.g. via127

zero-shot transfer [19], methods that define a higher-level policy that alternates between the given128

policies [5, 60], or within the framework of generalized policy updates [4]. Exploring with pre-trained129

policies can accelerate convergence by providing useful experience to the agent, which is possible130

even when the pre-training and downstream tasks are misaligned. However, strategies that directly131

use the pre-trained policies for exploitation may result in sub-optimal solutions in such scenario [2].132

3

We propose to leverage the behavior of pre-trained policies during transfer to aid with exploration. An133

explicit distinction between behavior and representation is made by considering pre-trained policies as134

black boxes that take observations and return actions. This strategy is agnostic to how the pre-trained135

behavior is encoded and is not restricted to learned policies. We rely on off-policy learning methods136

during transfer to leverage the behavior of a pre-trained policy πp(a|s). We keep πp fixed during137

transfer, which prevents catastrophic forgetting of the original behavior when it is parameterized by a138

neural network (i.e., we instantiate and train a new policy with its own set of parameters). We propose139

Behavior Transfer (BT), which leverages two complementary strategies to achieve this. Since BT140

is agnostic to the method used to pre-train policies, BT (πp) refers to behavior being transferred141

from policy πp. We formalize BT in the context of value-based Q-learning agents, although similar142

derivations are in principle possible for alternative off-policy learning methods. Pseudo-code for BT143

is provided in Algorithm 1.144

Temporally-extended exploration. We draw inspiration from Lévy flights [61], a class of ecological145

models for animal foraging, where a fixed direction is followed for a duration sampled from a146

heavy-tailed distribution. This principle was implemented in the context of exploration in RL by147

εz-greedy [14], which encodes the notion of direction in the environment via exploration options that148

repeat the same action throughout the entire flight. Since πp is more likely to encode a meaningful149

notion of direction in complex environments than action repeats, we propose a variant of εz-greedy150

where πp is used as the exploration option. An exploratory flight might be started at any step with151

some probability. The duration for the flight is sampled from a heavy-tailed distribution (Zeta with152

µ = 2 in all our experiments), and control is handed over to πp during the complete flight. When not153

in a flight, actions are sampled from the behavior policy obtained while maximizing the task reward154

(e.g. an ε-greedy derived from the estimated Q values).155

Extra action. The previous approach switches to πp during experience collection blindly, and we156

now consider an alternative strategy for triggering these switches based on value. This can be easily157

implemented through an extra action which samples an action from πp, which also allows the agent to158

use the pre-trained policy at test time if deemed beneficial. More formally, this amounts to training a159

policy over an expanded action setA+ = A∪{a+}, where a+ is resolved by sampling an action from160

πp, a′ ∼ πp(s) (with a′ ∈ A). The additional action can be seen as an option that can be initiated161

from any state and always terminates after a single step. Note that selecting the option will lead to162

the same outcome as if the agent had selected a′ as a primitive action, and we take advantage of this163

observation by using the return of following the option as target to fit both Q(s, πp(s)) and Q(s, a′).164

Intuitively, this approach induces a bias that favours actions selected by πp, accelerating the collection165

of rewarding transitions when the pre-trained policy is somewhat aligned with the downstream task.166

Otherwise, the agent can learn to ignore πp as training progresses by selecting other actions.167

Algorithm 1: Experience collection pseudo-code for BT
Input: Action set, A; additional action, a+; extended action set, A+ = A ∪ {a+}; pre-trained

policy, πp; Q-value estimate for the current policy, Qπ(s, a)∀a ∈ A+; probability of
taking an exploratory action, ε; probability of starting a flight, εlevy; flight length
distribution, D(N)

while True do
n←− 0 // flight length
while episode not ended do

Observe state s
if n == 0 and random() ≤ εlevy then n ∼ D(N) // sample flight length
if n > 0 then

n←− n− 1
a ∼ πp(s)

else
if random() ≤ ε then a ∼ Uniform(A+) else a←− argmaxa′∈A+ [Qπ(s, a′)]
if a == a+ then a ∼ πp(s)

end
Take action a

end
end

4

4 Reward-free pre-training168

It is a common practice to derive objectives for proxy tasks in order to drive learning in the absence169

of reward functions, and there exists a plethora of different approaches in the literature. Model-based170

approaches can learn world models from unsupervised interaction [26]. However, the diversity of171

the training data will impact the accuracy of the model [57] and deploying this type of approach172

in visually complex domains like Atari remains an open problem [27]. Unsupervised RL has also173

been explored through the lens of empowerment [55, 44], which studies agents that aim to discover174

intrinsic options [23, 19]. While these options can be leveraged by hierarchical agents [21] or175

integrated within the universal successor features framework [2, 3, 8, 28], their potential lack of176

coverage generally limits their applicability to complex downstream tasks [12]. An alternative177

objective is that of exploring the environment by finding policies that induce maximally entropic state178

distributions [29, 40], although this might become extremely inefficient in high-dimensional state179

spaces without proper priors [41, 63].180

Recall that our goal is to devise a pre-training objective that can help reduce the amount of interaction181

needed by the agent to collect relevant experience when learning in a downstream task. We argue that182

such objective needs to meet two requirements. First, as suggested by results in other domains [9, 36],183

it should scale gracefully as the amount of compute and experience used for pre-training are increased.184

This contrasts with the training regimes used in most unsupervised RL approaches, which use a185

relatively small amount of experience [28, 41, 63] when compared to distributed agents that do make186

use of rewards [33, 18, 37]. Second, it must encourage the emergence of complex behaviors such as187

navigation or manipulation skills. It has been argued that exploring the environment efficiently will188

serve as a proxy for developing such behaviors [38], and exploration bonuses have been shown to189

produce meaningful behavior in the absence of reward [49, 10]. However, many exploration bonuses190

vanish over the course of training and thus may not be well-suited for a long unsupervised pre-training191

phase. It can be shown that many intrinsic rewards aim at maximizing the entropy of all states visited192

during training, and so the final policy does not necessarily exhibit exploratory behavior [40].193

We propose to use Never Give Up (NGU) [52] as a means for training exploratory policies in an194

unsupervised setting. The NGU intrinsic reward proposes a curiosity-driven approach for training195

persistent exploratory policies which combines per-episode and life-long novelty. The per-episode196

novelty, repisodic
t , rapidly vanishes over the course of an episode, and it is designed to encourage self-197

avoiding trajectories. It is computed by comparing a representation of the current observation, f(st),198

to those of all the observations visited in the current episode, M = {f(s0), f(s1), . . . , f(st−1)},199

where f : S → Rp is an embedding function trained using a self-supervised inverse dynamics200

model [49]. Such a mapping concentrates on the controllable aspects of the environment, ignoring201

all the variability present in the observation that is not affected by the action taken by the agent.202

The life-long novelty, αt, slowly vanishes throughout training, and it is computed by using Random203

Network Distillation (RND) [11]. With this, the intrinsic reward rNGU
t is defined as follows:204

rNGU
t = repisodic

t ·min {max {αt, 1} , L} , with repisodic
t =

1√∑
f(si)∈Nk

K(f(st), f(si)) + c
(1)

where L is a fixed maximum reward scaling, Nk is the set containing the k-nearest neighbors of f(st)205

in M , c is a constant and K : Rp × Rp → R+ is a kernel function satisfying K(x, x) = 1 (which206

can be thought of as approximating pseudo-counts [52]). The episodic component of the reward207

in Equation 1 is reset by emptying M with each episode, thus the NGU reward does not vanish208

throughout the training process. This makes it suitable for driving learning in task-agnostic settings.209

Further details on NGU are reported in the supplementary material.210

5 Experiments211

Agents are evaluated in the Atari suite [7], a benchmark that presents a variety of challenges and that212

is a common test ground for RL agents with unsupervised pre-training [28, 41, 56]. Experiments are213

run using the distributed R2D2 agent [37] with 256 CPU actors and a single GPU learner. Policies214

use the same Q-Network architecture as Agent57 [51], which is composed by a convolutional torso215

followed by an LSTM [32] and a dueling head [62]. Hyperparameters and a detailed description of216

the full distributed setting are provided in the supplementary material. All reported results are the217

average over three random seeds.218

5

Reward-free learning. The amount of task reward collected by unsupervised policies is often219

used as a proxy to measure their quality [19]. While the actual utility of these policies will not220

be revealed until they are leveraged for transfer, this proxy lets us evaluate whether the discovered221

behavior changes as longer pre-training budgets are allowed. We compare unsupervised NGU policies222

against VISR [28] and APT [41], which utilize a small amount of supervised interaction to adapt223

the pre-trained policies. We also consider two additional unsupervised baselines: (i) a constant224

positive reward at each timestep that favours long episodes, which correlate with high scores in225

some games [10], and (ii) RND [11], which rewards life-long novelty. Note that the RND reward226

vanishes, but we include it in our analysis because it was previously used by Burda et al. [10] in227

this setting and implementation choices such as reward normalization may prevent it from fading228

in practice. Figure 2 (left) shows how the zero-shot transfer performance of unsupervised policies229

evolves during a long pre-training phase. NGU reaches the highest scores, but both NGU and RND230

eventually outperform VISR and APT even though these used supervised interaction. In Table 2 of231

Appendix C we show that unsupervised NGU policies largely outperform several other baselines232

using the standard pre-training and adaptation setting. These results highlight the importance of233

large-scale unsupervised pre-training in RL, similarly to the trend observed in supervised domains [9].234

0 2 B 4 B 6 B 8 B 10 B 12 B 14 B 16 B
Unsupervised environment frames

0

20

40

60

80

100

Hu
m

an
 n

or
m

al
ize

d
sc

or
e

Atari-57: Median

0

5k

10k

15k
Montezuma's Revenge

1.28 B 3.84 B 6.4 B 8.94 B
Unsupervised environment frames

21

0

21
Pong

Without transfer
NGU @0
RND @0
Pos Reward @0

With transfer
GPI VISR @400k
APT @400k
R2D2 + BT(NGU) @5B

Figure 2: Performance as a function of the pre-training budget. @N represents the number of frames
with reward utilized for transfer. (Left) Median human normalized score across the 57 games in the
Atari suite. We observe the emergence of useful behavior when optimizing an intrinsic reward during
a long unsupervised pre-training of 16B frames, which contrasts with the shorter pre-training of 1B
frames in previous works [28, 41]. (Right) Scores in the games of Montezuma’s Revenge (sparse
rewards) and Pong (dense reward), before and after transfer, as a function of the pre-training budget.
A longer pre-training benefits transfer in hard exploration games even if the zero-shot transfer score
of the unsupervised policies does not increase.

Transfer setting. Transfer approaches are typically evaluated in the Atari benchmark with a budget235

of 100k RL interactions with reward (400k frames), but we propose to allow a longer adaptation236

phase. Randomly initialized networks tend to overfit in these very low data regimes without strong237

regularization [39], and we are interested in studying the impact of leveraging behavior both in238

isolation and combined with transfer via pre-trained weights. Moreover, since the pre-trained policies239

are already competent in the downstream tasks, 100k interactions are exhausted after few episodes240

and may be insufficient for improving performance. For these reasons, we provide results with up241

to 1.25B RL steps of supervised interaction (5B frames). This allows evaluating both convergence242

speed and asymptotic performance, while still being a relatively small budget for these distributed243

agents with hundreds of actors [51].244

Transfer via behavior. We start by studying the impact of leveraging behavior in isolation, i.e. with-245

out transferring pre-trained weights, when learning in downstream tasks. We compare BT against two246

baselines that do not use pre-trained behavior, namely the standard R2D2 agent [37] that uses ε-greedy247

policies for exploration [59], as well as a variant of R2D2 with εz-greedy exploration [14]. Figure 3248

shows that BT is superior to both baselines for any amount of environment interaction with rewards,249

converging faster early in training and also obtaining higher asymptotic performance. These results250

also demonstrate the generality of the proposed approach, as it is able to benefit from both RND251

and NGU policies. Note that BT performs particularly well in the set of six hard exploration games1252

defined by Bellemare et al. [6], which is aligned with our intuition that reusing behavior helps over-253

coming the inefficiency associated to unstructured exploration. Figure 2 (right) confirms that a long254

pre-training phase is especially important in hard exploration games such as Montezuma’s Revenge,255

even it they do not translate into higher zero-shot transfer scores, as it produces more exploratory be-256

havior. On the other hand, the performance after transfer is independent of the amount of pre-training257

in dense reward games like Pong, where unstructured exploration is enough to reach optimal scores.258

1gravitar, montezuma_revenge, pitfall, private_eye, solaris, venture

6

0 1 B 2 B 3 B 4 B 5 B
Environment frames

0

100

200

300

400

500

600

Hu
m

an
 n

or
m

al
ize

d
sc

or
e Atari-57: median

0 1 B 2 B 3 B 4 B 5 B
Environment frames

0
25
50
75

100
125
150
175
200

Hard exploration games: median
Without rewards

NGU
RND

With rewards
R2D2
R2D2 + z-greedy
R2D2 + BT(NGU)
R2D2 + BT(RND)

Figure 3: Median human normalized scores for R2D2-based agents trained from scratch. (Left) Full
Atari suite. (Right) Subset of hard exploration games.

0 1 B 2 B 3 B 4 B 5 B
Environment frames

0.0

0.2

0.4

0.6

0.8

1.0

Ex
tra

 a
ct

io
n

us
ag

e

asterix
ms_pacman
bank_heist
pong
montezuma_revenge

frostbite
gravitar
jamesbond
private_eye
space_invaders1 B 1.5 B 2 B 2.5 B 3 B 3.5 B 4 B 4.5 B 5 B

0.00

0.05

0.10

Figure 4: Usage of the extra action in BT(πNGU), computed as the fraction of steps within an episode
in which it is selected by the agent. The usage peaks early in training and slowly decreases afterwards
as the new policy becomes stronger at the task.

Ablation studies. In order to gain insight on each of the components in BT, we run experiments259

on a subset of 12 games2 requiring different amounts of exploration and featuring both dense and260

sparse rewards. BT(πNGU) achieves a median score of 368 in this subset, which compares favorably261

to the 196 median score of R2D2 with ε-greedy exploration. Removing either the extra action or262

the temporally-extended exploration reduces the median score of BT(πNGU) to 224. These results263

suggest that the gains provided by both strategies are complementary, and both are responsible for the264

strong performance of BT. To provide further insight about the benefits of BT, Figure 4 reports the265

fraction of steps per episode in which the extra action is selected by the greedy policy. It hints at the266

emergence of a schedule over the usage of the pre-trained policy, which increases early in training267

and decays afterwards. We hypothesize that this is due to the fact that the unsupervised policies268

obtain large episodic returns, but their behavior is suboptimal when maximizing discounted rewards.269

These policies take many exploratory actions in between rewards, and so the agent eventually figures270

out more efficient strategies for reaching rewarding states by using primitive actions.271

Transfer to multiple tasks. An appealing property of task-agnostic knowledge is that it can be272

leveraged to solve multiple tasks. In the RL setting, this can be evaluated by leveraging a single273

task-agnostic policy for solving multiple tasks (i.e. reward functions) in the same environment. We274

evaluate whether the unsupervised NGU policies can be useful beyond the standard Atari tasks by275

creating two alternative versions of Ms Pacman and Hero with different levels of difficulty. The276

goal in the modified version of Ms Pacman is to eat vulnerable ghosts, with pac-dots giving 0 (easy277

version) or −10 (hard version) points. In the modified version of Hero, saving miners gives a fixed278

return of 1000 points and dynamiting walls gives either 0 (easy version) or−300 (hard version) points.279

The rest of rewards are removed, e.g. eating fruit in Ms Pacman or the bonus for unused power units280

in Hero. Note that even in the easy version of the games exploration is harder than in their original281

counterparts, as there are no small rewards guiding the agent towards its goals. Exploration is even282

more challenging in the hard version of the games, as the intermediate rewards work as a deceptive283

signal that takes the agent away from its actual goal. In this case, finding rewarding behaviors requires284

a stronger commitment to an exploration strategy. Unsupervised NGU policies often achieve very low285

or even negative rewards in this setting, which contrasts with the strong performance they showed286

when evaluated under the standard game reward. Figure 5 shows that leveraging the behavior of287

pre-trained exploration policies provides important gains even in this adversarial scenario. These288

results suggest that the strong performance observed under the standard game rewards is not due to an289

2Obtained by combining games used to tune hyperparameters in [28] with games where εz-greedy pro-
vides clear gains over ε-greedy as per [14]: asterix, bank_heist, frostbite, gravitar, jamesbond,
montezuma_revenge, ms_pacman, pong, private_eye, space_invaders, tennis, up_n_down.

7

0

5 k

10 k

MsPacman

0

5 k

10 k
MsPacman: eating ghosts (easy)

0

5 k

10 k
MsPacman: eating ghosts (hard)

Without rewards
NGU (reward-free)

With rewards
R2D2
R2D2 + z-greedy
R2D2 + BT(NGU)

0 1 B 2 B 3 B 4 B 5 B
0

20 k

40 k

Hero

0 1 B 2 B 3 B 4 B 5 B
0

2 k

4 k

Hero: rescuing miners (easy)

0 1 B 2 B 3 B 4 B 5 B

0

2 k

4 k

Hero: rescuing miners (hard)

Figure 5: Scores in Atari games with modified reward functions. We train a single task-agnostic
policy per environment, and leverage it to solve three different tasks: the standard game reward, a
task with sparse rewards (easy), and a variant of the same task with deceptive rewards (hard).

alignment between the NGU reward and the game goals, but due to an efficient usage of pre-trained290

exploration policies.291

Combining pre-trained behavior and weights. Our last batch of experiments focuses on studying292

transfer via pre-trained weights and its compatibility with BT. Policies are composed of a convo-293

lutional torso, an LSTM, and a dueling head. We consider two initialization strategies: a partial294

initialization approach that loads the torso and the LSTM, but initializes the head randomly; and a295

full initialization scheme where all weights are loaded. The former can be understood as transferring296

learned representations [63], but deferring exploration to a random policy. On the other hand, the297

full initialization approach can be seen as directly transferring the policy and is usually referred to as298

fine-tuning the pre-trained policy [46, 41, 56]. Note that these approaches only change how weights299

are initialized before training. As in previous experiments, all parameters in the new policy are trained300

and πp is kept fixed when using BT. Figure 6 (top) compares agents with and without BT for different301

amounts of transfer via weights on the Atari benchmark. Loading pre-trained weights results in faster302

learning early in training, both with and without BT. The largest gains are observed in dense reward303

games, which translates into higher median scores across the full suite because most games belong304

to this category. Weights alone are not enough in hard exploration games, where leveraging the305

pre-trained policy via BT provides clear benefits. Perhaps surprisingly, we observe that transferring306

representations outperforms fine-tuning the pre-trained policy, and we hypothesize that the former307

is more robust to misalignments between the pre-trained policy and the downstream task. This308

intuition is further supported by the experiments on games with modified reward functions reported309

in Figure 6 (middle & bottom), where the faster learning provided by pre-trained weights often comes310

at the cost of lower end scores. On the other hand, BT is crucial in tasks with sparse and deceptive311

rewards and also benefits from pre-trained weights in tasks where positive transfer is observed.312

6 Related work313

Our work uses the experimental methodology presented by Hansen et al. [28]. Whereas that work only314

considered a fast, simplified adaptation process that limited the final performance on the downstream315

task, we focus on the more general case of using a previously trained policy to aid in solving the316

full RL problem. Hansen et al. [28] use successor features to identify which of the pre-trained tasks317

best matches the true reward structure, which has previously been shown to work well for multi-task318

transfer [3]. Bagot et al. [1] augments an agent with the ability to utilize another policy, which is319

learned in tandem based on an intrinsic reward function. This promising direction is complementary320

to our work, as it handles the case wherein there is no unsupervised pre-training phase.321

Gupta et al. [25] provides an alternative method to meta-learn a solver for reinforcement learning prob-322

lems from unsupervised reward functions. This method utilizes gradient-based meta-learning [20],323

which makes the adaptation process standard reinforcement learning updates. This means that even if324

the downstream reward is far outside of the training distribution, final performance would not neces-325

sarily be affected. However, these methods are hard to scale to the larger networks considered here,326

and followup work [34] changed to memory-based meta-learning [17] which relies on information327

about rewards staying in the recurrent state. This makes it unsuitable to the sort of hard exploration328

problem our method excels at. Recent work has shown success in transferring representations learned329

in an unsupervised setting to reinforcement learning tasks [58]. Our representation transfer experi-330

8

0 1 B 2 B 3 B 4 B 5 B
0

200

400

600

Atari-57: median HNS

0 1 B 2 B 3 B 4 B 5 B
0

100

200
Hard exploration games: median HNS

R2D2
From scratch
Partial NGU init
Full NGU init

R2D2 + BT(NGU)
From scratch
Partial NGU init
Full NGU init

0 1 B 2 B 3 B 4 B 5 B
0

5 k

10 k

15 k
MsPacman

0 1 B 2 B 3 B 4 B 5 B
0

5 k

10 k
MsPacman: eating ghosts (easy)

0 1 B 2 B 3 B 4 B 5 B
0

5 k

10 k
MsPacman: eating ghosts (hard)

0 1 B 2 B 3 B 4 B 5 B
Environment frames

0

20 k

40 k

Hero

0 1 B 2 B 3 B 4 B 5 B
Environment frames

0

2 k

4 k

Hero: rescuing miners (easy)

0 1 B 2 B 3 B 4 B 5 B
Environment frames

0

2 k

4 k

Hero: rescuing miners (hard)

Figure 6: Performance of R2D2-based agents with different amounts of transfer via weights. Policies
are composed of a CNN encoder followed by an LSTM and a dueling head. We compare training
from scratch, loading all weights (Full πNGU init) or all weights except those in the dueling head
(Partial πNGU init). (Top) Median human normalized scores (HNS) in the full Atari suite (left) and
the subset of hard exploration games (right). (Middle & Bottom) Games with modified reward
functions as in Figure 5.

ments suggest that this might handicap final performance, but the possibility also exists that different331

unsupervised objectives should be used for representation transfer and policy transfer.332

7 Discussion333

We studied the problem of transferring pre-trained behavior for exploration in reinforcement learning,334

an approach that is complementary to the common practice of transferring neural network weights.335

Our proposed approach, Behavior Transfer (BT), relies on the pre-trained policy for collecting336

experience in two different ways: (i) through temporally-extended exploration, which can be triggered337

with some probability at any step, and (ii) via one-step calls to the pre-trained policy based on value338

estimates. BT results in strong transfer performance when combined with exploratory policies pre-339

trained in the absence of reward, with the most important gains being observed in hard exploration340

tasks. These benefits are not due to an alignment between our pre-training and downstream tasks,341

as we also observed positive transfer in games where the pre-trained policy obtained low scores.342

In order to provide further evidence for this claim, we designed alternative tasks for Atari games343

involving hard exploration and deceptive rewards. Our transfer strategy outperformed all considered344

baselines in these settings, even when the pre-trained policy obtained very low or even negative scores,345

demonstrating the generality of the method. Besides disambiguating the role of the alignment between346

pre-training and downstream tasks, these experiments demonstrate the utility of a single task-agnostic347

policy for solving multiple tasks in the same environment. Finally, we also demonstrated that BT can348

be combined with transfer via neural network weights to provide further gains.349

Our experimental results highlight the importance of scale when training RL agents in reward-free350

settings, which is one of the key factors behind the recent success of unsupervised approaches in other351

domains. This contrasts with the small budgets considered for reward-free RL in previous works and352

motivates further research in unsupervised RL approaches that scale with increased data and compute.353

We argue that scale is one of the missing components in reward-free RL, and it will be a necessary354

condition to unfold its full potential. Beyond improving the unsupervised learning phase, we are also355

excited about the possibilities unlocked by BT and that are not possible when transferring knowledge356

through weights, such as leveraging multiple pre-trained policies and deploying BT in continual357

learning scenarios where the agent never stops learning and keeps accumulating knowledge and skills.358

Future work should also study improved mechanisms for handing over control to pre-trained policies,359

as well as prioritizing the usage of certain behaviors over others when multiple such policies are360

available to the agent. This could overcome one of the current limitations of BT, which assumes that361

flights can be started from any state and still produce meaningful behavior.362

9

References363

[1] Louis Bagot, Kevin Mets, and Steven Latré. Learning intrinsically motivated options to stimulate364

policy exploration. In ICML Workshop on LifeLong Learning, 2020.365

[2] André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,366

and David Silver. Successor features for transfer in reinforcement learning. In NeurIPS, 2017.367

[3] Andre Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel368

Mankowitz, Augustin Zidek, and Remi Munos. Transfer in deep reinforcement learning using369

successor features and generalised policy improvement. In ICML, 2018.370

[4] André Barreto, Shaobo Hou, Diana Borsa, David Silver, and Doina Precup. Fast reinforcement371

learning with generalized policy updates. Proceedings of the National Academy of Sciences,372

2020.373

[5] Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement374

learning. Discrete event dynamic systems, 2003.375

[6] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi376

Munos. Unifying count-based exploration and intrinsic motivation. In NeurIPS, 2016.377

[7] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning378

environment: An evaluation platform for general agents. Journal of Artificial Intelligence379

Research, 2013.380

[8] Diana Borsa, André Barreto, John Quan, Daniel Mankowitz, Rémi Munos, Hado van Hasselt,381

David Silver, and Tom Schaul. Universal successor features approximators. In ICLR, 2019.382

[9] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,383

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are384

few-shot learners. arXiv preprint arXiv:2005.14165, 2020.385

[10] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.386

Large-scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018.387

[11] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random388

network distillation. arXiv preprint arXiv:1810.12894, 2018.389

[12] Víctor Campos, Alexander Trott, Caiming Xiong, Richard Socher, Xavier Giro-i Nieto, and390

Jordi Torres. Explore, discover and learn: Unsupervised discovery of state-covering skills. In391

ICML, 2020.392

[13] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework393

for contrastive learning of visual representations. In ICML, 2020.394

[14] Will Dabney, Georg Ostrovski, and André Barreto. Temporally-extended ε-greedy exploration.395

In ICLR, 2021.396

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of397

deep bidirectional transformers for language understanding. In NAACL, 2019.398

[16] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor399

Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In ICML,400

2014.401

[17] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RL2:402

Fast reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779,403

2016.404

[18] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward,405

Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. IMPALA: Scalable distributed406

deep-RL with importance weighted actor-learner architectures. In ICML, 2018.407

10

[19] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you408

need: Learning skills without a reward function. In ICLR, 2019.409

[20] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-410

tion of deep networks. arXiv preprint arXiv:1703.03400, 2017.411

[21] Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hierarchical412

reinforcement learning. In ICLR, 2017.413

[22] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for414

accurate object detection and semantic segmentation. In CVPR, 2014.415

[23] Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv416

preprint arXiv:1611.07507, 2016.417

[24] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena418

Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi419

Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. arXiv420

preprint arXiv:2006.07733, 2020.421

[25] Abhishek Gupta, Benjamin Eysenbach, Chelsea Finn, and Sergey Levine. Unsupervised422

meta-learning for reinforcement learning. arXiv preprint arXiv:1806.04640, 2018.423

[26] David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In424

NeurIPS, 2018.425

[27] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:426

Learning behaviors by latent imagination. In ICLR, 2019.427

[28] Steven Hansen, Will Dabney, Andre Barreto, Tom Van de Wiele, David Warde-Farley, and428

Volodymyr Mnih. Fast task inference with variational intrinsic successor features. In ICLR,429

2020.430

[29] Elad Hazan, Sham M Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum431

entropy exploration. In ICML, 2019.432

[30] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for433

unsupervised visual representation learning. arXiv preprint arXiv:1911.05722, 2019.434

[31] Olivier J Hénaff, Ali Razavi, Carl Doersch, SM Eslami, and Aaron van den Oord. Data-efficient435

image recognition with contrastive predictive coding. arXiv preprint arXiv:1905.09272, 2019.436

[32] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,437

1997.438

[33] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado439

Van Hasselt, and David Silver. Distributed prioritized experience replay. arXiv preprint440

arXiv:1803.00933, 2018.441

[34] Allan Jabri, Kyle Hsu, Abhishek Gupta, Ben Eysenbach, Sergey Levine, and Chelsea Finn. Un-442

supervised curricula for visual meta-reinforcement learning. In Advances in Neural Information443

Processing Systems, pages 10519–10531, 2019.444

[35] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad445

Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-446

based reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.447

[36] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,448

Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language449

models. arXiv preprint arXiv:2001.08361, 2020.450

[37] Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent451

experience replay in distributed reinforcement learning. In ICLR, 2019.452

11

[38] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time.453

Machine learning, 2002.454

[39] Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing455

deep reinforcement learning from pixels. In ICLR, 2021.456

[40] Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and Rus-457

lan Salakhutdinov. Efficient exploration via state marginal matching. arXiv preprint458

arXiv:1906.05274, 2019.459

[41] Hao Liu and Pieter Abbeel. Behavior from the void: Unsupervised active pre-training. arXiv460

preprint arXiv:2103.04551, 2021.461

[42] Yao Liu and Emma Brunskill. When simple exploration is sample efficient: Identifying sufficient462

conditions for random exploration to yield pac rl algorithms. arXiv preprint arXiv:1805.09045,463

2018.464

[43] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G465

Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.466

Human-level control through deep reinforcement learning. Nature, 2015.467

[44] Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximisation for468

intrinsically motivated reinforcement learning. In NeurIPS, 2015.469

[45] Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient470

off-policy reinforcement learning. In NeurIPS, 2016.471

[46] Mirco Mutti, Lorenzo Pratissoli, and Marcello Restelli. Task-agnostic exploration via policy472

gradient of a non-parametric state entropy estimate. In AAAI, 2021.473

[47] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via474

bootstrapped dqn. arXiv preprint arXiv:1602.04621, 2016.475

[48] Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized476

value functions. In ICML, 2016.477

[49] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration478

by self-supervised prediction. In ICML, 2017.479

[50] Jing Peng and Ronald J Williams. Incremental multi-step q-learning. In Machine Learning480

Proceedings 1994. Elsevier, 1994.481

[51] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,482

Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark. In483

ICML, 2020.484

[52] Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven485

Kapturowski, Olivier Tieleman, Martín Arjovsky, Alexander Pritzel, Andew Bolt, et al. Never486

give up: Learning directed exploration strategies. In ICLR, 2020.487

[53] Martin L Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.488

John Wiley & Sons, Inc., 1994.489

[54] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.490

Language models are unsupervised multitask learners. OpenAI Blog, 2019.491

[55] Christoph Salge, Cornelius Glackin, and Daniel Polani. Empowerment – an introduction. In492

Guided Self-Organization: Inception. Springer, 2014.493

[56] Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin,494

R Devon Hjelm, Philip Bachman, and Aaron Courville. Pretraining reward-free representations495

for data-efficient reinforcement learning. In Self-Supervision for Reinforcement Learning496

Workshop - ICLR 2021, 2021. URL https://openreview.net/forum?id=o5z9Le5drua.497

12

https://openreview.net/forum?id=o5z9Le5drua

[57] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak498

Pathak. Planning to explore via self-supervised world models. In ICML, 2020.499

[58] Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation500

learning from reinforcement learning. arXiv preprint arXiv:2009.08319, 2020.501

[59] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,502

2018.503

[60] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A504

framework for temporal abstraction in reinforcement learning. Artificial intelligence, 1999.505

[61] Gandhimohan M Viswanathan, V Afanasyev, SV Buldyrev, EJ Murphy, PA Prince, and H Eu-506

gene Stanley. Lévy flight search patterns of wandering albatrosses. Nature, 1996.507

[62] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas.508

Dueling network architectures for deep reinforcement learning. In ICML, 2016.509

[63] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning with510

prototypical representations. In ICML, 2021.511

[64] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in512

deep neural networks? arXiv preprint arXiv:1411.1792, 2014.513

[65] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In514

ECCV, 2014.515

Checklist516

The checklist follows the references. Please read the checklist guidelines carefully for information on517

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or518

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing519

the appropriate section of your paper or providing a brief inline description. For example:520

• Did you include the license to the code and datasets? [No] The code and the data are521

proprietary.522

Please do not modify the questions and only use the provided macros for your answers. Note that the523

Checklist section does not count towards the page limit. In your paper, please delete this instructions524

block and only keep the Checklist section heading above along with the questions/answers below.525

1. For all authors...526

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s527

contributions and scope? [Yes]528

(b) Did you describe the limitations of your work? [Yes]529

(c) Did you discuss any potential negative societal impacts of your work? [N/A]530

(d) Have you read the ethics review guidelines and ensured that your paper conforms to531

them? [Yes]532

2. If you are including theoretical results...533

(a) Did you state the full set of assumptions of all theoretical results? [N/A]534

(b) Did you include complete proofs of all theoretical results? [N/A]535

3. If you ran experiments...536

(a) Did you include the code, data, and instructions needed to reproduce the main exper-537

imental results (either in the supplemental material or as a URL)? [No] We did not538

include source code because it relies on non-public libraries that are specific to our539

distributed hardware setting. However, we include all the details needed to replicate540

our experiments.541

13

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they542

were chosen)? [Yes]543

(c) Did you report error bars (e.g., with respect to the random seed after running experi-544

ments multiple times)? [Yes] All our experiments were run with three different random545

seeds. Plots report mean, min and max results. Tables report mean and standard546

deviation.547

(d) Did you include the total amount of compute and the type of resources used (e.g., type548

of GPUs, internal cluster, or cloud provider)? [Yes]549

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...550

(a) If your work uses existing assets, did you cite the creators? [N/A]551

(b) Did you mention the license of the assets? [N/A]552

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]553

554

(d) Did you discuss whether and how consent was obtained from people whose data you’re555

using/curating? [N/A]556

(e) Did you discuss whether the data you are using/curating contains personally identifiable557

information or offensive content? [N/A]558

5. If you used crowdsourcing or conducted research with human subjects...559

(a) Did you include the full text of instructions given to participants and screenshots, if560

applicable? [N/A]561

(b) Did you describe any potential participant risks, with links to Institutional Review562

Board (IRB) approvals, if applicable? [N/A]563

(c) Did you include the estimated hourly wage paid to participants and the total amount564

spent on participant compensation? [N/A]565

14

A Pseudo-code566

Algorithm 2 provides pseudo-code for the flight logic that controls how the pre-trained policy is567

used for temporally-extended exploration. At each step, a flight is started with probability εlevy.568

The duration of the flight is sampled from a heavy-tailed distribution, D(N), similarly to εz-greedy569

(c.f. Appendix B for more details). When not in a flight, the exploitative policy that maximizes the570

extrinsic reward is derived from the estimated Q-values using the ε-greedy operator. This ensures that571

all state-action pairs will be visited given enough time, as exploring only with πp does not guarantee572

such property.573

Algorithm 3 provides pseudo-code for the actor logic when using the augmented action set, A+ =574

A ∪ {πp(s)}. It derives an ε-greedy policy over |A| + 1 actions, where the (|A| + 1)-th action is575

resolved by sampling from πp(s).576

15

Algorithm 2: Experience collection pseudo-code for BT with temporally-extended exploration
Input: Action set A
Input: Q-value estimate for the current policy, Qπ(s, a)∀a ∈ A
Input: Pre-trained policy, πp
Input: Probability of starting a flight, εlevy
Input: Flight length distribution, D(N)
while True do

n←− 0 // flight length
while episode not ended do

Observe state s
if n == 0 and random() ≤ εlevy then

n ∼ D(N) // sample from distribution over lengths
end
if n > 0 then

n←− n− 1
a ∼ πp(s)

else
a ∼ ε-greedy[Qπ(s, a)]

end
Take action a

end
end

Algorithm 3: Experience collection pseudo-code for BT with an extra action
Input: Action set A
Input: Additional action, a+
Input: Extended action set, A+ = A ∪ {a+}
Input: Pre-trained policy, πp
Input: Q-value estimate for the current policy, Qπ(s, a)∀a ∈ A+

Input: Probability of taking an exploratory action, ε
while True do

while episode not ended do
Observe state s
if random() ≤ ε then

a ∼ Uniform(A+)
else

a←− argmaxa′∈A+ [Qπ(s, a′)]
end
if a == a+ then

a ∼ πp(s)
end
Take action a

end
end

16

B Hyperparameters577

All policies use the same Q-Network architecture as Agent57 [51], which is composed by a convolu-578

tional torso followed by an LSTM [32] and a dueling head [62]. When leveraging the behavior of579

the pre-trained policy to solve new tasks, we instantiate a new network with independent weights580

(c.f. Figure 7). One can initialize some of the components of the new network using pre-trained581

weights without tying their values (as in common fine-tuning approaches).582

CNNi

LSTMeLSTMi

HeadeHeadi

Qe(s,a)Qi(s,a)

CNNe

Pre-trained policy New policy

Trainable

Frozen

Figure 7: Q-Network architecture for the reinforcement learning stage. The networks use independent
sets of parameters, and the weights of the pre-trained policy are kept fixed to preserve the learned
behavior.

Table 1 summarizes the main hyperparameters of our method. The pre-trained policies were optimized583

using Retrace [45]. Learning with rewards was performed with Peng’s Q(λ) [50] instead, which we584

found to be much more data efficient in our experiments. The reason for this difference is that the585

benefits of Q(λ) were observed once unsupervised policies had been trained on all Atari games.586

Table 1: Hyperparameter values used in R2D2-based agents. The rest of hyperparameters use the
values reported by Kapturowski et al. [37].

Hyperparameter Value
Number of actors 256

Actor parameter update interval 400 environment steps

Sequence length 160 (without burn-in)
Replay buffer size 12.5× 104 part-overlapping sequences
Priority exponent 0.9

Importance sampling exponent 0

Learning rule (downstream tasks) Q(λ), λ = 0.7
Learning rule (NGU pre-training) Retrace(λ), λ = 0.95

Discount (downstream tasks) 0.99
Discount (NGU pre-training) 0.99

Minibatch size 64
Optimizer Adam

Optimizer settings ε = 10−4, β1 = 0.9, β2 = 0.999
Learning rate 2× 10−4

Target network update interval 1500 updates

εlevy distribution Log-Uniform[0, 0.1]
Flight length distribution Zeta with µ = 2

17

It should be noted that our εz-greedy baseline under-performs relative to Dabney et al. [14]. This587

is due to our hyper-parameters and setting being derived from Puigdomènech Badia et al. [52],588

which adopts the standard Atari pre-processing (e.g. gray scale images and frame stacking). In589

contrast, Dabney et al. [14] use color images, no frame stacking, a larger neural network and different590

hyper-parameters (e.g. smaller replay buffer). Studying if the performance of NGU, RND and BT591

is preserved in this setting is an important direction for future work. We suspect that improving the592

performance of our εz-greedy ablation will also improve our method, since exploration flights are593

central to both.594

18

C Extended Unsupervised RL Results595

We compare the results of our unsupervised pre-training stage against other unsupervised approaches,596

standard RL algorithms in the low-data regime and methods that perform unsupervised pre-training597

followed by an adaptation stage. Since the considered intrinsic rewards are non-negative, we consider598

a baseline where the agent obtains a constant positive reward at each step in order to measure the599

performance of policies that seek to stay alive for as long as possible. Results for this baseline600

were already considered by Hansen et al. [28] (Pos Reward NSQ), but we run our own version of601

this baseline using the distributed setting and longer pre-training of 16B frames considered in our602

experiments (Pos Reward R2D2). Table 2 shows that unsupervised RND and NGU outperform all603

baselines by a large margin, confirming the intuition that exploration is a good pre-training objective604

for the Atari benchmark. These results suggest that there is a strong correlation between exploration605

and the goals established by game designers [10]. In spite of the strong results, it is worth noting606

that unsupervised RND and NGU achieve lower scores than random policies in some games, and607

can be quite inefficient at collecting rewards in some environments (e.g. they needs long episodes to608

obtain high scores). These observations motivate the development of techniques to leverage these609

pre-trained policies without compromising performance even when there exists a misalignment610

between objectives.611

Table 2: Atari Suite comparisons, adapted from Hansen et al. [28] and Liu and Abbeel [41]. @N
represents the amount of RL interaction with reward utilized, with four frames observed at each
iteration. Mdn and M are median and mean human normalized scores, respectively; > 0 is the number
of games with better than random performance; and > H is the number of games with human-level
performance as defined in Mnih et al. [43]. Top: unsupervised learning only. Mid: data-limited RL.
Bottom: RL with unsupervised pre-training.

26 Game Subset 47 Game Subset Full 57 Games
Kaiser et al. [35] Burda et al. [10] Mnih et al. [43]

Algorithm Mdn M >0 >H Mdn M >0 >H Mdn M >0 >H

IDF Curiosity @0 – – – – 8.46 24.51 34 5 – – – –
RF Curiosity @0 – – – – 7.32 29.03 36 6 – – – –
Pos Reward NSQ @0 2.18 50.33 14 5 0.69 57.65 26 8 0.29 41.19 28 8
Pos Reward R2D2 @0 9.44 59.55 21 4 14.16 57.53 39 5 3.46 45.23 46 5
Q-DIAYN-5 @0 0.17 −3.60 13 0 0.33 −1.23 25 2 0.34 −2.18 30 2
Q-DIAYN-50 @0 −1.65 −21.77 4 0 −1.69 −16.26 8 0 −3.16 −20.31 9 0
VISR @0 5.60 81.65 19 5 4.04 58.47 35 7 3.77 49.66 40 7
RND@0 48.35 334.65 23 8 41.28 259.43 40 14 40.86 243.01 47 16
NGU @0 80.92 494.54 25 12 96.10 310.27 45 23 81.72 320.06 52 27

SimPLe @100k 9.79 36.20 26 4 – – – – – – – –
DQN @10M 27.80 52.95 25 7 9.91 28.07 41 7 8.61 27.55 48 7
DQN @200M 100.76 267.51 26 13 – – – – 80.81 239.29 46 20
Rainbow @100k 2.23 10.12 25 1 – – – – – – – –
PPO @500k 20.93 43.74 25 7 – – – – – – – –
NSQ @10M 8.20 33.80 22 3 7.29 29.47 37 4 6.80 28.51 43 5
SPR @100k 41.50 70.40 – 7 – – – – – – – –
CURL @100k 17.50 38.10 – 2 – – – – – – – –
DrQ @100k 28.42 35.70 – 2 – – – – – – – –

Q-DIAYN-5 @100k 0.01 16.94 13 2 1.31 19.64 28 6 1.55 16.65 33 6
Q-DIAYN-50 @100k −1.64 −27.88 3 0 −1.66 −16.74 8 0 −2.53 −24.13 9 0
RF VISR @100k 7.24 58.23 20 6 3.81 42.60 33 9 2.16 35.29 39 9
VISR @100k 9.50 128.07 21 7 9.42 121.08 35 11 6.81 102.31 40 11
GPI RF VISR @100k 5.55 58.77 20 5 4.24 48.38 34 9 3.60 40.01 40 10
GPI VISR @100k 6.59 111.23 22 7 11.70 129.76 38 12 8.99 109.16 44 12
MEPOL @100k 0.34 17.94 – 2 – – – – – – – –
APT @100k 47.50 69.55 – 7 – – – – 33.41 47.73 – 12

19

D Extended Atari-57 Results612

Table 3: Atari Suite comparisons for R2D2-based agents. @N represents the amount of frames with
reward utilized, with four frames observed per RL interaction. Mdn, M and CM are median, mean
and mean capped human normalized scores, respectively.

Full 57 Games Hard Exploration

Algorithm Mdn M CM Mdn M CM

R2D2 @1B 229.75 864.69 84.56 31.07 39.40 34.75
R2D2 + εz-greedy @1B 204.52 578.73 85.11 42.55 53.90 46.21
R2D2 + BT(πNGU) @1B 273.49 1517.13 86.38 100.89 94.20 63.95
R2D2 + BT(πRND) @1B 280.04 1396.78 87.43 93.52 86.75 67.40

R2D2 @5B 490.12 1742.92 90.37 32.49 67.41 44.74
R2D2 + εz-greedy @5B 418.41 1275.86 92.49 103.62 95.46 67.85
R2D2 + BT(πNGU) @5B 538.50 2262.21 93.31 193.15 160.02 76.92
R2D2 + BT(πRND) @5B 571.57 2304.19 92.03 144.78 123.38 76.93

Table 4: Atari Suite comparisons with rewards for R2D2-based agents with different amounts of
transfer via weights at 5B training frames. Policies are composed of a CNN encoder followed by
an LSTM and a dueling head. We compare training from scratch, loading all weights (Full πNGU

init) or all weights except those in the dueling head (Partial πNGU init). Mdn, M and CM are median,
mean and mean capped human normalized scores, respectively. (Top) Without BT. (Bottom) With
BT(πNGU).

Full 57 Games Hard Exploration

Algorithm Mdn M CM Mdn M CM

R2D2, from scratch 490.12 1742.92 90.37 32.49 67.41 44.74
R2D2, partial πNGU init 668.80 2020.81 93.00 109.33 123.40 67.18
R2D2, full πNGU init 507.58 2359.25 89.91 104.98 101.52 66.20

R2D2 + BT(πNGU), from scratch 538.50 2262.21 93.31 193.15 160.02 76.92
R2D2 + BT(πNGU), partial πNGU init 626.34 1966.83 94.07 200.32 164.54 76.93
R2D2 + BT(πNGU), full πNGU init 529.78 2467.02 92.79 168.18 137.65 76.93

Table 5: Human normalized scores after 5B frames with rewards for R2D2-based agents at different
percentiles. Note that the 50th percentile corresponds to the median score across the 57 games. We
compare training from scratch, loading all weights (Full πNGU init) or all weights except those in the
dueling head (Partial πNGU init).

Percentile

Method 50th 40th 20th 10th 5th

R2D2, from scratch 490.12 220.97 132.77 92.31 25.57
R2D2 + BT(πNGU), from scratch 538.50 316.30 163.20 104.41 65.17
R2D2 + BT(πRND), from scratch 571.57 279.97 133.61 87.05 54.27

R2D2, partial πNGU init 668.80 434.02 164.62 105.08 53.59
R2D2 + BT(πNGU), partial πNGU init 626.34 489.14 171.69 113.92 93.52

R2D2, full πNGU init 507.58 293.54 137.79 59.72 41.06
R2D2 + BT(πNGU), full πNGU init 529.78 384.39 163.55 123.56 51.98

20

0 20 M 40 M 60 M 80 M 100 M
Environment frames

0

20

40

60

80

100

120

140

Hu
m

an
 n

or
m

al
ize

d
sc

or
e Atari-57: median

0 20 M 40 M 60 M 80 M 100 M
Environment frames

0
5

10
15
20
25
30
35
40

Hard exploration games: median
R2D2

From scratch
Partial NGU init
Full NGU init

R2D2 + BT(NGU)
From scratch
Partial NGU init
Full NGU init

Figure 8: Median human normalized scores for R2D2-based agents with different amounts of transfer
via weights during the first 100M frames of training. Policies are composed of a CNN encoder
followed by an LSTM and a dueling head. We compare training from scratch, loading the CNN and
the LSTM (Partial πNGU init), and loading all weights including the dueling head (Full πNGU init).
(Left) Full Atari suite. (Right) Subset of hard exploration games.

E Alternative Reward Functions613

MsPacman: eating ghosts614

• Pac-dots: 0 points (easy) or -10 points (hard)615

• Eating vulnerable ghosts:616

– #1 in succession: 200 points617

– #2 in succession: 400 points618

– #3 in succession: 800 points619

– #4 in succession: 1600 points620

• Other actions: 0 points621

Hero: rescuing miners622

• Dynamiting walls: 0 points (easy) or -300 points (hard)623

• Rescuing a miner: 1000 points624

• Other actions: 0 points625

F Distributed setting626

All experiments are run using a distributed setting. The evaluation we do is also identical to the627

one done in R2D2 [37]: parallel evaluation workers, which share weights with actors and learners,628

run the Q-network against the environment. This worker and all the actor workers are the two629

types of workers that draw samples from the environment. For Atari, we apply the standard DQN630

pre-processing, as used in R2D2. The next subsections describe how actors, evaluators, and learner631

are run in each stage.632

F.1 Unsupervised stage633

The computation of the intrinsic NGU reward, rNGU
t , follows the method described in Puig-634

domènech Badia et al. [52, Appendix A.1]. In particular, we use the version that combines episodic635

intrinsic rewards with the intrinsic reward from Random Network Distillation (RND) [11].636

We now describe the distributed setup used for NGU, which is largely the same as the one used for637

RND. Note that RND can be recovered by removing the components needed for the episodic reward.638

Learner639

• Sample from the replay buffer a sequence of intrinsic rewards rNGU
t , observations x and640

actions a.641

• Use Q-network to learn from (rNGU
t , x, a) with Retrace [45] using the same procedure as in642

R2D2.643

21

• Use last 5 frames of the sampled sequences to train the action prediction network in NGU.644

This means that, for every batch of sequences, all time steps are used to train the RL loss,645

whereas only 5 time steps per sequence are used to optimize the action prediction loss.646

• Use last 5 frames of the sampled sequences to train the predictor of RND.647

Actor648

• Obtain xt and rNGU
t−1 .649

• With these inputs, compute forward pass of R2D2 to obtain at.650

• With xt, compute rNGU
t using the embedding network in NGU.651

• Insert xt, at and rNGU
t in the replay buffer.652

• Step on the environment with at.653

Evaluator654

• Obtain xt and rNGU
t−1 .655

• With these inputs, compute forward pass of R2D2 to obtain at.656

• With xt, compute rNGU
t using the embedding network in NGU.657

• Step on the environment with at.658

Distributed training659

As in R2D2, we train the agent with a single GPU-based learner and a fixed discount factor γ. All660

actors collect experience using the same policy, but with a different value of ε. This differs from the661

original NGU agent, where each actor runs a policy with a different degree of exploratory behavior662

and discount factor.663

In the replay buffer, we store fixed-length sequences of (x, a, r) tuples. These sequences never cross664

episode boundaries. Given a single batch of trajectories we unroll both online and target networks on665

the same sequence of states to generate value estimates. We use prioritized experience replay with666

the same prioritization scheme proposed in [37].667

F.2 Transfer with BT668

Learner669

• Sample from the replay buffer a sequence of extrinsic rewards rt, observations x and actions670

a.671

• (expanded action set) Duplicate transitions collected with πp and relabel the duplicates with672

the primitive action taken by πp when acting.673

• Use Q-network to learn from (rt, x, a) with Peng’s Q(λ) [50] using the same procedure as674

in R2D2.675

Actor676

• (once per episode) Sample εlevy.677

• Obtain xt.678

• If not on a flight, start one with probability εlevy.679

• If on a flight, compute forward pass with πp to obtain at. Otherwise, compute forward pass680

of R2D2 to obtain at. If at = |A|+ 1, at ← πp(x).681

• Insert xt, at and rt in the replay buffer.682

• Step on the environment with at.683

22

Evaluator684

• Obtain xt.685

• Compute forward pass of R2D2 to obtain at. If at = |A|+ 1, at ← πp(x).686

• Step on the environment with at.687

Distributed training688

As in R2D2, we train the agent with a single GPU-based learner and a fixed discount factor γ. All689

actors collect experience using the same policy, but with a different value of ε.690

In the replay buffer, we store fixed-length sequences of (x, a, r) tuples. These sequences never cross691

episode boundaries. Given a single batch of trajectories we unroll both online and target networks on692

the same sequence of states to generate value estimates. We use prioritized experience replay with693

the same prioritization scheme proposed in [37].694

G Intrinsic Rewards695

G.1 Random Network Distillation696

The RND [11] intrinsic reward is computed by introducing a random, untrained convolutional network697

g : S → Rd, and training a network ĝ : S → Rd to predict the outputs of g on all the observations698

that are seen during training by minimizing the prediction error errRND(st) = ||ĝ(st; θ) − g(st)||2699

with respect to θ. The intuition is that the prediction error will be large on states that have been visited700

less frequently by the agent. The dimensionality of the random embedding, d, is a hyperparameter of701

the algorithm.702

The RND intrinsic reward is obtained by normalising the prediction error. In this work, we use a703

slightly different normalization from that reported in [11]. The RND reward at time t is given by704

rRND
t =

errRND(st)

σe
(2)

where σe is the running standard deviation of errRND(st).705

G.2 Never Give Up706

The NGU intrinsic reward modulates an episodic intrinsic reward, repisodic
t , with a life long signal αt:707

rNGU
t = repisodic

t ·min {max {αt, 1} , L} , (3)

where L is a fixed maximum reward scaling. The life-long novelty signal is computed using RND708

with the normalisation:709

αt =
errRND(st)− µe

σe
(4)

where errRND(xt) is the prediction error described in Appendix G.1, and µe and σe are its running710

mean and standard deviation, respectively. The episodic intrinsic reward at time t is computed711

according to formula:712

repisodic
t =

1√∑
f(si)∈Nk

K(f(st), f(si)) + c
(5)

where Nk is the set containing the k-nearest neighbors of f(st) in M , c is a constant and K :713

Rp×Rp → R+ is a kernel function satisfyingK(x, x) = 1 (which can be thought of as approximating714

pseudo-counts [52]). Algorithm 4 shows a detailed description of how the episodic intrinsic reward is715

computed. Below we describe the different components used in Algorithm 4:716

• M : episodic memory containing at time t the previous embeddings717

{f(s0), f(s1), . . . , f(st−1)}. This memory starts empty at each episode718

• k: number of nearest neighbours719

23

• Nk = {f(si)}ki=1: set of k-nearest neighbours of f(st) in the memory M ; we call Nk[i] =720

f(si) ∈ Nk for ease of notation721

• K: kernel defined as K(x, y) = ε
d2(x,y)

d2m
+ε

where ε is a small constant, d is the Euclidean722

distance and d2m is a running average of the squared Euclidean distance of the k-nearest723

neighbors724

• c: pseudo-counts constant725

• ξ: cluster distance726

• sm: maximum similarity727

Algorithm 4: Computation of the episodic intrinsic reward at time t: repisodic
t .

Input :M ; k; f(st); c; ε; ξ; sm; d2m
Output :repisodic

t

Compute the k-nearest neighbours of f(st) in M and store them in a list Nk
Create a list of floats dk of size k
/* The list dk will contain the distances between the embedding f(st) and

its neighbours Nk. */
for i ∈ {1, . . . , k} do

dk[i]← d2(f(st), Nk[i])
end
Update the moving average d2m with the list of distances dk
/* Normalize the distances dk with the updated moving average d2m. */
dn ← dk

d2m
/* Cluster the normalized distances dn i.e. they become 0 if too small

and 0k is a list of k zeros. */
dn ← max(dn − ξ, 0k)
/* Compute the Kernel values between the embedding f(st) and its

neighbours Nk. */
Kv ← ε

dn+ε

/* Compute the similarity between the embedding f(st) and its neighbours
Nk. */

s←
√∑k

i=1Kv[i] + c

/* Compute the episodic intrinsic reward at time t: rit. */
if s > sm then

repisodic
t ← 0

else
repisodic
t ← 1/s

24

H Scores per game728

Table 6: Results per game for R2D2-based agents at 5B training frames.

Game R2D2 R2D2 + εz-greedy R2D2 + BT(πNGU) R2D2 + BT(πRND)
alien 10831.17± 2114.29 14634.02± 1109.15 15657.57± 1717.96 12844.24± 1447.72
amidar 11761.67± 1560.86 6784.28± 718.05 10394.96± 891.60 7730.43± 670.76
assault 15940.72± 3531.69 9177.28± 2170.26 15060.31± 740.63 11533.24± 809.49
asterix 472812.21± 222663.81 374966.62± 135810.51 630663.91± 82753.46 468724.08± 120822.86
asteroids 45716.28± 3642.38 147005.85± 44313.45 31957.42± 15540.09 37455.64± 9263.04
atlantis 1514724.43± 10941.36 1132188.04± 43551.36 1491384.23± 5978.05 1545954.35± 9001.60
bank heist 965.63± 133.72 1058.75± 135.46 13913.32± 3529.15 82132.27± 101709.64
battle zone 292553.41± 18196.77 312367.76± 43554.18 258533.57± 22865.64 285925.87± 44912.86
beam rider 18472.45± 1977.78 22403.95± 1596.92 16301.02± 1853.73 15619.99± 2048.77
berzerk 12343.83± 3331.54 3846.56± 1723.24 8359.80± 201.10 14687.68± 401.76
bowling 141.64± 4.52 156.32± 8.11 174.27± 0.10 196.01± 57.42
boxing 99.96± 0.03 99.94± 0.06 100.00± 0.00 99.98± 0.03
breakout 432.65± 27.35 393.19± 35.12 441.21± 15.08 429.38± 15.52
centipede 189502.66± 31388.08 358841.20± 73578.20 178635.17± 17227.15 196880.46± 24278.18
chopper command 611393.11± 65206.69 697655.53± 215090.74 573055.88± 75343.57 797052.58± 52012.04
crazy climber 229992.57± 17738.33 212001.76± 1853.07 226821.26± 3608.19 198736.17± 7631.83
defender 547238.15± 2579.38 516521.06± 11969.59 540124.74± 4488.40 524003.44± 1316.59
demon attack 143662.42± 88.16 141352.18± 3848.73 143762.91± 106.75 143578.47± 25.05
double dunk 23.99± 0.02 23.88± 0.06 23.85± 0.15 23.93± 0.05
enduro 2358.37± 3.32 2359.08± 1.03 2361.56± 1.03 2350.39± 8.42
fishing derby 12.80± 77.79 64.74± 0.59 52.58± 0.32 62.11± 5.59
freeway 33.87± 0.08 33.77± 0.03 33.79± 0.08 33.79± 0.07
frostbite 9287.24± 167.11 8504.41± 940.72 17692.42± 2871.83 9419.45± 188.92
gopher 117398.58± 2485.82 84140.40± 12919.83 113716.78± 3966.91 94670.35± 2285.63
gravitar 6123.08± 103.19 5798.68± 735.59 8373.70± 1260.75 7428.57± 2459.91
hero 46048.07± 6970.26 39700.22± 4379.84 40825.09± 3736.25 42959.86± 7950.56
ice hockey 32.43± 30.64 30.65± 28.17 60.36± 4.94 57.96± 0.90
jamesbond 6056.14± 1643.52 3843.92± 118.35 1484.87± 489.66 2870.03± 907.76
kangaroo 14672.37± 187.16 14730.99± 114.20 15965.79± 36.61 15128.66± 188.17
krull 10081.04± 594.10 10171.52± 399.81 406596.00± 55547.76 316960.78± 217091.10
kung fu master 200721.64± 2265.35 171591.29± 8516.87 196638.89± 456.09 610699.23± 60053.99
montezuma revenge 1478.38± 1114.20 1467.77± 1104.72 12086.71± 1217.76 6266.67± 471.40
ms pacman 11212.85± 103.23 7511.39± 406.77 10996.90± 262.74 10656.00± 356.46
name this game 32138.12± 2156.95 37343.04± 1917.73 30252.11± 884.84 28746.14± 1798.77
phoenix 712101.72± 62738.09 80611.18± 25316.56 553429.34± 24278.55 283686.99± 172323.63
pitfall −0.19± 0.15 −12.34± 4.20 −0.39± 0.39 −0.03± 0.04
pong 20.93± 0.01 20.49± 0.10 20.90± 0.01 20.94± 0.01
private eye 23592.22± 11876.55 50770.82± 14984.92 40435.54± 51.04 40480.67± 38.23
qbert 24343.75± 1904.89 16975.13± 1332.44 16057.31± 318.87 10990.08± 7241.50
riverraid 32325.07± 1185.15 30582.53± 638.47 28550.32± 2298.03 30566.86± 1764.50
road runner 423191.07± 53071.15 88890.04± 24971.18 251261.09± 31741.38 248661.22± 19416.63
robotank 97.23± 1.22 108.92± 4.79 98.45± 2.85 100.57± 6.32
seaquest 188771.84± 20759.57 175745.09± 120718.82 86605.86± 55065.85 38185.98± 22949.18
skiing −29854.11± 85.79 −30060.81± 142.32 −30121.95± 70.62 −29589.38± 69.40
solaris 17741.02± 5340.46 16127.73± 2975.20 24366.59± 4868.05 18727.45± 4806.17
space invaders 3621.76± 5.81 3547.78± 35.31 30609.21± 7141.11 46704.49± 7017.79
star gunner 223536.63± 48548.34 179698.69± 12194.36 171294.31± 23185.79 156691.39± 16704.19
surround 8.24± 0.48 1.48± 8.12 5.86± 1.44 −3.62± 4.79
tennis 7.99± 22.56 7.98± 22.51 23.96± 0.01 7.97± 22.56
time pilot 139931.67± 70521.78 71768.84± 2933.22 44936.87± 137.49 77711.97± 4735.53
tutankham 324.02± 4.26 311.65± 8.62 420.36± 30.13 357.26± 14.22
up n down 529363.05± 16813.20 394984.70± 34313.42 562739.02± 8527.59 585355.01± 4718.67
venture 0.00± 0.00 1833.85± 43.73 2110.64± 55.39 1910.15± 13.98
video pinball 454023.46± 377076.03 107071.98± 67142.18 463141.28± 426927.92 646671.78± 403584.41
wizard of wor 40833.65± 4776.81 38275.31± 4177.41 30453.12± 2470.20 30399.63± 2345.83
yars revenge 279765.86± 27370.20 250483.70± 54593.32 280333.48± 69704.31 200850.59± 72885.67
zaxxon 56059.14± 3217.77 66099.28± 8520.19 67611.78± 6226.04 59926.08± 5834.47

25

Table 7: Results per game for R2D2 agents with different amounts of transfer via weights at 5B
training frames. Policies are composed of a CNN encoder followed by an LSTM and a dueling head.
We compare training from scratch, loading all weights (Full πNGU init) or all weights except those in
the dueling head (Partial πNGU init).

Game From scratch Partial πNGU init Full πNGU init
alien 10831.17± 2114.29 27299.78± 5730.57 18027.35± 6731.75
amidar 11761.67± 1560.86 13647.09± 3380.90 3518.30± 2353.96
assault 15940.72± 3531.69 14653.32± 2047.43 12533.61± 1001.68
asterix 472812.21± 222663.81 789344.47± 80638.00 676662.54± 8536.94
asteroids 45716.28± 3642.38 73298.12± 22688.38 23127.43± 5425.84
atlantis 1514724.43± 10941.36 1537659.81± 7693.86 1556234.51± 9709.74
bank heist 965.63± 133.72 1841.77± 52.75 5816.24± 3137.60
battle zone 292553.41± 18196.77 301715.60± 12875.97 248939.89± 31788.00
beam rider 18472.45± 1977.78 16179.19± 4179.36 11040.66± 799.77
berzerk 12343.83± 3331.54 16888.63± 2330.72 25465.10± 9886.89
bowling 141.64± 4.52 170.36± 16.55 180.78± 2.94
boxing 99.96± 0.03 99.97± 0.05 99.94± 0.07
breakout 432.65± 27.35 520.19± 64.65 487.51± 49.14
centipede 189502.66± 31388.08 528000.27± 10403.62 500534.38± 9267.05
chopper command 611393.11± 65206.69 937637.69± 57836.24 764150.71± 44756.44
crazy climber 229992.57± 17738.33 275735.70± 15244.51 246498.24± 12319.58
defender 547238.15± 2579.38 534656.86± 2880.53 523660.11± 2604.26
demon attack 143662.42± 88.16 143592.16± 77.27 143574.75± 69.35
double dunk 23.99± 0.02 23.99± 0.02 23.83± 0.06
enduro 2358.37± 3.32 2359.39± 8.12 2353.16± 1.30
fishing derby 12.80± 77.79 68.70± 2.46 59.22± 2.55
freeway 33.87± 0.08 33.83± 0.06 33.79± 0.04
frostbite 9287.24± 167.11 161595.33± 32917.44 10307.96± 1087.09
gopher 117398.58± 2485.82 113094.41± 4837.16 102781.75± 9613.77
gravitar 6123.08± 103.19 7090.19± 1359.52 5174.90± 544.76
hero 46048.07± 6970.26 43982.29± 4124.79 40628.07± 4008.99
ice hockey 32.43± 30.64 69.57± 1.18 47.67± 10.59
jamesbond 6056.14± 1643.52 6109.60± 1643.75 3979.12± 1233.92
kangaroo 14672.37± 187.16 14863.32± 259.85 15192.97± 832.48
krull 10081.04± 594.10 11806.49± 580.05 372307.71± 161921.43
kung fu master 200721.64± 2265.35 200305.15± 5711.26 207401.69± 1755.69
montezuma revenge 1478.38± 1114.20 2666.30± 235.18 2500.00± 0.00
ms pacman 11212.85± 103.23 11795.03± 640.73 11509.67± 563.98
name this game 32138.12± 2156.95 33811.87± 2091.30 29242.89± 1113.73
phoenix 712101.72± 62738.09 812093.31± 42328.98 801952.54± 33211.40
pitfall −0.19± 0.15 −1.43± 1.17 −0.61± 0.60
pong 20.93± 0.01 20.96± 0.01 20.79± 0.13
private eye 23592.22± 11876.55 30345.57± 10971.52 28653.02± 9512.72
qbert 24343.75± 1904.89 40943.28± 16722.72 62018.46± 34865.08
riverraid 32325.07± 1185.15 35995.19± 825.70 35845.18± 3486.49
road runner 423191.07± 53071.15 311557.84± 59675.36 279988.24± 58503.61
robotank 97.23± 1.22 111.78± 4.63 91.93± 2.09
seaquest 188771.84± 20759.57 629817.31± 145648.54 31735.24± 31257.98
skiing −29854.11± 85.79 −29550.10± 495.22 −29981.62± 564.13
solaris 17741.02± 5340.46 29751.08± 2076.41 22269.53± 6584.51
space invaders 3621.76± 5.81 41357.74± 8968.52 42695.22± 7148.08
star gunner 223536.63± 48548.34 212821.27± 19723.78 129058.91± 11260.80
surround 8.24± 0.48 6.86± 0.27 −3.29± 8.36
tennis 7.99± 22.56 23.93± 0.02 23.74± 0.16
time pilot 139931.67± 70521.78 65101.20± 7622.18 49957.68± 602.83
tutankham 324.02± 4.26 333.37± 10.62 312.19± 4.32
up n down 529363.05± 16813.20 572472.73± 4512.30 595047.70± 1976.45
venture 0.00± 0.00 1930.36± 32.97 1958.13± 48.98
video pinball 454023.46± 377076.03 113036.77± 3633.15 108849.58± 4753.59
wizard of wor 40833.65± 4776.81 46931.25± 1708.52 19100.00± 1930.29
yars revenge 279765.86± 27370.20 284565.01± 29764.09 294877.82± 52551.36
zaxxon 56059.14± 3217.77 77649.92± 15901.03 75850.01± 10805.13

26

Table 8: Results per game for R2D2+BT(πNGU) agents with different amounts of transfer via weights
at 5B training frames. Policies are composed of a CNN encoder followed by an LSTM and a dueling
head. We compare training from scratch, loading all weights (Full πNGU init) or all weights except
those in the dueling head (Partial πNGU init).

Game From scratch Partial πNGU init Full πNGU init
alien 15657.57± 1717.96 35441.47± 3848.23 32822.74± 3181.51
amidar 10394.96± 891.60 11564.75± 1726.50 8185.74± 346.35
assault 15060.31± 740.63 12617.35± 3267.80 12992.70± 2783.13
asterix 630663.91± 82753.46 731452.01± 71621.96 815753.95± 91022.04
asteroids 31957.42± 15540.09 53916.46± 12925.49 77368.55± 17900.09
atlantis 1491384.23± 5978.05 1512404.85± 10047.26 1544673.15± 5590.54
bank heist 13913.32± 3529.15 11674.48± 1694.59 8565.69± 4070.27
battle zone 258533.57± 22865.64 321572.13± 32083.18 206177.95± 27251.07
beam rider 16301.02± 1853.73 17465.26± 4954.96 21680.37± 5991.66
berzerk 8359.80± 201.10 15824.26± 5556.26 16161.60± 2848.82
bowling 174.27± 0.10 229.04± 6.36 201.86± 25.21
boxing 100.00± 0.00 99.99± 0.01 99.83± 0.12
breakout 441.21± 15.08 469.52± 31.70 474.30± 37.00
centipede 178635.17± 17227.15 362169.27± 43577.84 525652.45± 19649.69
chopper command 573055.88± 75343.57 766193.62± 109233.61 860939.78± 116076.87
crazy climber 226821.26± 3608.19 224084.35± 7322.03 256189.16± 21605.50
defender 540124.74± 4488.40 525077.01± 6084.08 503190.45± 32182.12
demon attack 143762.91± 106.75 143537.16± 139.44 143554.33± 63.61
double dunk 23.85± 0.15 23.90± 0.07 23.81± 0.11
enduro 2361.56± 1.03 2352.77± 4.01 2353.81± 3.50
fishing derby 52.58± 0.32 64.20± 2.52 52.53± 1.24
freeway 33.79± 0.08 33.69± 0.13 33.57± 0.09
frostbite 17692.42± 2871.83 20847.02± 15492.47 19716.28± 13424.59
gopher 113716.78± 3966.91 105370.92± 12883.78 101383.00± 7891.20
gravitar 8373.70± 1260.75 8358.32± 1022.94 6104.39± 1215.73
hero 40825.09± 3736.25 45837.71± 194.61 43076.13± 4119.55
ice hockey 60.36± 4.94 66.97± 0.72 30.15± 4.43
jamesbond 1484.87± 489.66 1137.12± 89.95 4119.56± 490.29
kangaroo 15965.79± 36.61 15862.51± 234.05 15855.24± 224.30
krull 406596.00± 55547.76 154118.68± 179080.83 350784.05± 205164.12
kung fu master 196638.89± 456.09 193105.00± 5378.00 195990.25± 4969.60
montezuma revenge 12086.71± 1217.76 12714.19± 824.60 11472.65± 629.87
ms pacman 10996.90± 262.74 11337.68± 1176.17 10770.08± 1005.72
name this game 30252.11± 884.84 30656.34± 373.97 28103.24± 2023.96
phoenix 553429.34± 24278.55 510548.66± 236677.91 805269.57± 37169.21
pitfall −0.39± 0.39 −0.44± 0.32 −0.01± 0.02
pong 20.90± 0.01 20.93± 0.02 20.19± 0.93
private eye 40435.54± 51.04 40472.03± 39.10 40448.67± 40.02
qbert 16057.31± 318.87 15983.72± 888.74 17954.73± 302.05
riverraid 28550.32± 2298.03 34591.91± 831.68 34268.13± 149.84
road runner 251261.09± 31741.38 307342.61± 41017.79 308258.62± 84372.17
robotank 98.45± 2.85 103.82± 2.98 90.17± 8.09
seaquest 86605.86± 55065.85 259408.14± 144362.40 88376.19± 105086.08
skiing −30121.95± 70.62 −29786.38± 401.06 −29878.47± 289.38
solaris 24366.59± 4868.05 24111.78± 2745.89 19355.27± 4102.09
space invaders 30609.21± 7141.11 43675.67± 6763.52 51318.54± 4277.08
star gunner 171294.31± 23185.79 138390.23± 6320.24 135606.16± 8098.51
surround 5.86± 1.44 6.89± 1.03 −5.48± 0.88
tennis 23.96± 0.01 23.97± 0.01 23.86± 0.06
time pilot 44936.87± 137.49 65721.81± 3213.79 53053.12± 4275.77
tutankham 420.36± 30.13 385.05± 5.02 342.17± 4.79
up n down 562739.02± 8527.59 581518.52± 5198.05 582923.55± 2849.01
venture 2110.64± 55.39 2308.26± 14.97 2054.24± 65.41
video pinball 463141.28± 426927.92 133315.36± 70576.86 640269.38± 330619.65
wizard of wor 30453.12± 2470.20 34648.51± 4182.32 26076.64± 2060.62
yars revenge 280333.48± 69704.31 320777.97± 64750.83 267861.48± 81193.44
zaxxon 67611.78± 6226.04 75165.80± 4030.42 82868.90± 10160.99

27

Table 9: Final scores per game in our ablation study after 5B frames. We consider versions of
BT(πNGU) where the pre-trained policy is used for temporally-extended exploitation (flights), as an
extra action (action), or both.

Game R2D2 R2D2 + BT(πNGU) (flights) R2D2 + BT(πNGU) (action) R2D2 + BT(πNGU)
asterix 472812.21± 222663.81 630663.91± 82753.46 512869.97± 109039.77 618352.67± 103940.46
bank heist 965.63± 133.72 13913.32± 3529.15 11052.82± 6848.39 12424.39± 1443.95
frostbite 9287.24± 167.11 9114.77± 511.31 10506.15± 3653.44 17692.42± 2871.83
gravitar 6123.08± 103.19 6308.62± 78.84 7228.15± 1842.07 8373.70± 1260.75
jamesbond 6056.14± 1643.52 1615.21± 602.84 3962.10± 798.68 1484.87± 489.66
montezuma revenge 1478.38± 1114.20 11152.10± 664.82 6433.33± 372.68 13265.91± 372.02
ms pacman 11212.85± 103.23 10996.90± 262.74 10648.85± 796.10 10839.60± 445.00
pong 20.93± 0.01 20.90± 0.01 20.94± 0.04 20.88± 0.02
private eye 23592.22± 11876.55 40492.85± 27.35 37029.10± 2437.54 40435.54± 51.04
space invaders 3621.76± 5.81 30671.58± 4418.89 3597.41± 21.06 30609.21± 7141.11
tennis 7.99± 22.56 8.00± 22.54 −7.15± 22.00 23.96± 0.01
up n down 529363.05± 16813.20 562739.02± 8527.59 550665.39± 1852.05 566938.61± 2428.52

Table 10: Final scores per task in Atari games with modified reward functions. We report training
results for the standard game reward, a variant with sparse rewards (easy), and a task with deceptive
rewards (hard). Despite the pre-trained policy might obtain low or even negative scores in some of
the tasks, committing to its exploratory behavior eventually lets the agent discover strategies that lead
to high returns.

Game R2D2 R2D2 + εz-greedy Fine-tuning πNGU πNGU R2D2 + BT(πNGU)
Ms Pacman: original 11407± 122 8099± 868 8359± 2117 1360 10984± 665
Ms Pacman: ghosts (easy) 8375± 577 4322± 932 8356± 551 146 8789± 651
Ms Pacman: ghosts (hard) 2836± 26 4018± 1025 1891± 1342 −898 7868± 1085

Hero: original 43762± 4918 39018± 3262 46848± 1199 9298 42675± 3905
Hero: miners (easy) 3000± 0 3000± 0 3000± 0 1351 4665± 470
Hero: miners (hard) 2677± 23 2155± 95 700± 0 −1473 3547± 122

28

I Learning curves729

Figure 9: Training curves in all 57 Atari games for R2D2-based agents. Shading shows maximum
and minimum over 3 runs, while dark lines indicate the mean.

29

Figure 10: Training curves in all 57 Atari games for R2D2-based agents with different amounts of
transfer via weights. Policies are composed of a CNN encoder followed by an LSTM and a dueling
head. We compare training from scratch, loading all weights (Full πNGU init) or all weights except
those in the dueling head (Partial πNGU init). Shading with maximum and minimum over runs is not
shown for clarity, but all plots report the mean over 3 seeds.

30

Figure 11: Training curves for ablation experiments. Shading shows maximum and minimum over 3
runs, while dark lines indicate the mean. Both ablations of BT offer benefits over the baseline, but in
different sets of games. Combining them retains the best of both methods, and boosts performance
even further in some games.

31

	Introduction
	Preliminaries
	Behavior Transfer
	Reward-free pre-training
	Experiments
	Related work
	Discussion
	Pseudo-code
	Hyperparameters
	Extended Unsupervised RL Results
	Extended Atari-57 Results
	Alternative Reward Functions
	Distributed setting
	Unsupervised stage
	Transfer with BT

	Intrinsic Rewards
	Random Network Distillation
	Never Give Up

	Scores per game
	Learning curves

