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APPENDIX

A

ALGORITHM OF DP-SGD

Algorithm 2 DP-SGD

Require: Batch size B, noise multiplier o, clipping threshold C, learning rate 7, total number of

iterations 7.

Ensure: Trained model parameters wr.

1:

Initialize a model with parameters wy.

2: for eachiterationt = 0,1,....,T — 2,7 — 1 do
3: Derive the average clipped gradient g; with respect to the sampled subset S € D and the
clipping threshold C'.
4: Add noise n; drawn from a zero-mean Gaussian distribution with standard deviation cC'I
to g:, i.e., g; = g+ + ni/B, where n; is jointly determined by both o and C.
5: Update wjy, ; by taking a step in the direction of the noisy gradient, i.e., w;,; = w; — 1g; .
6: end for
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Figure 2: Coordinates Conversions in Three-dimensional Space.
C DETAILS OF PROOFS
C.1 PROOF OF THEOREM[I]
For DP-SGD, we have:
* 2 ~x |12
|wyyy — w*]|” = |w; — w* — ng; || 9)
= Jwe — w*[I* + 2?[1g7 I* + 20(g;, w* — wy).
While for SGD, we have:
* (12 * ~ 2
lwirr — w*[|” = Jlw, — w* —1g.||
*|2 21~ 112 PO (10)
= llwe — w7 + 77| gel|” + 20{gs, w* — wy).
Subtracting Equation [I0] from Equation[9] we have:
* 2 2
|wipr —w*||” = lwesr —w’|
=n* (1g:1” = 1g:11*) +21 (g7 — go, w" —wy) . an

Item A Item B
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Recall that n; follows a noise distribution whose standard deviation is CoI. Suppose n, follows a
noise distribution with the standard deviation oI, we have n; = Cn,. For Item A:

197117 = [1g¢1I* = (g7 — g¢) (g7 + g¢)
=n;/B(2g; + n:/B) (12)
=2(Cny /B, g;) + C*nZ /B>
And for Item B:
g — gt =ny/B=Cn,/B. (13)

Applying Equation[12]and [13|into Equation[T1] we have:

[wisy — w* || = [[wesr — w*||?

=n" (2(Cny/B,g) + C*n’/B?) +2nC/B (n,, w* — wy) . (14)
—_——
Item A Item B

C.2 PROOF OF COROLLARYI]

Let us just assume DP-SGD reaches the global optima, i.e. w; = w*. Accordingly, [tem B becomes
zero while Item A is non-zero unless n,, stays zero (which is unlikely), as shown in Equation [T5]
That is, DP noise would immediately cause SGD to deviate from global optima even if SGD can
reach optima.

* 2 w2 2C - C’Qng
Wity — w*H — [[wer —w*|* =17 (B(na,gt> + Bz |-

lim
wi—w*

15)

Item A

C.3 PROOF OF COROLLARY 2|

We analyze the effectiveness of DP-SGD techniques (i.e., fine-tuning clipping, learning rate and
batch size) on Item A and Item B, respectively.

1. Item A.

As per learning rate, we apply different learning rate n* to DP-SGD, and see if tuning n*
can make Item A zero. Applying n* to Equation[T1] we have:

fem A = 072 |lg7|1* = nl1g.]* (16)
As Equation[16]is only composed of numerical values, fined-tuned n* = 72|\g:|1>/||g; ||
can certainly zero Item A.

As for clipping, given n, is a random variable drawn from the noise distribution whose
standard deviation is oI, we have:

n, = Cn,. a7)

As gf = gt + nt/ B, reducing C certainly reduces the scale of g;. Overall, fine-tuning of
DP-SGD can certainly reduce Item A.

2. Item B.
For learning rate, we have:
Item B = (n*g; — ng:, w* — wy)

T (18)

= In"g¢ —ngillllw” — wi|[ cos 6.
where 6 is the relative angle between two vectors. Apparently, no matter how to fine-tune
n*, how n*g; — ng: varies is rather random because there is no relevance between n* and
n*g; — ng: as well as 0.
For clipping, we prove that it cannot change the geometric property of the perturbed gra-

dient, although the noise scale is indeed changed. If the clipping thresholds C, C5 and a
gradient g(||g|| > C1 > C3), we have the clipped gradient g, = Hglﬁ’/cl’ go = ”92[“’/02

16



Under review as a conference paper at ICLR 2025

as per Equation 4 and corresponding noise n; = C1n,, no = Con, as per Equation
Accordingly, the perturbed gradient is:

g

gi =g1+n1/B=-—"—+C1/Bn,.
! lg1ll/Ca
g (19)
> =Gg2+mn2/B=-—"r+Co/Bn,.
: llg2l/C2
Then, we have: } }
g9 _ 9
c, Oy (20)
1911l > [lg51l-
Namely, clipping cannot control the directions of perturbed gradients .ﬁl = g—i, while

indeed reducing the noise scale (||g7|| > 1195 1)-

C.4 PROOF OF THEOREM[2]

{g,|1 < j < B} are independently and identically distributed variables because each one is derived
from one data s; of the same subset S. According to CLT, the following probability holds:

<Zf_1 gjz — Bx E(gjz) < X)

B xvar(g;,)

lim Pr
B—oo

ES 5i: — E(Gye) x ey
— lim pr | B2zt 90y z/ o(z)dz,
5 o (3,0)/ B .
where ¢(z) = ﬁexp(—m;) is the pdf of the standard Gaussian distribution. As such,

Z]‘B:l gjz/BiE(gjz)
V/var(g;=)/B

follows standard Gaussian distribution A/ (0, 1), by which this theorem is proved.

C.5 PRrROOF OoF LEMMAI

For traditional DP (adding noise m to the gradient g), we can derive the perturbed angle 87 according
to Equation[f] i.e.,

0 — arctan2 (\/Zg_l(gzﬂ +n.41)%,9, + nz) ifl1<z<d-2,

arctan2 (g,+1 +n,41,9, +n.) ifz=d-1.

(22)

Observing both acrtan2 equations above, we can conclude that the traditional DP perturbation
introduces biased noise to the original direction, i.e., E(6*) # 0(bias(6*) # 0). Also, the variance
of 6 (var(0*)) is non-zero, if the noise scale n, > 0.

For GeoDP, we have 6* = 6 + 7“”;%77,0. Accordingly, E(6*) = E(0 + 7”1;2%71,0) =
0(bias(6*) = 0), which means that GeoDP adds unbiased noise to the direction. Besides, beta
directly controls the noise added to the direction. In specific, the variance of 8*(var(6*)) can ap-

0+ XI5

proaching zero if 5 — 0, because 8* = n, approaches 0 if 5 — 0.

Given that MSE(8) = bias?(0) + var(0) (Duan et al., 2024), there always exist such one 3 that:
MSE(6*) = bias?(6*) + var(8*) <= bias*(8*) + var(0*) = MSE(8"). (23)

by which this lemma is proven.

C.6  PROOF OF THEOREM[J]

Following Corollary [2] we just have to prove Item B of GeoDP is smaller than Item A of DP.
Different learning rates n* and n* are applied to GeoDP and DP, respectively. Recall from Corollary
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2l we have:
Item B = (n*g; — ngs, w* — wy)
= [In*g; — ngul [[w* — w|[ cos . (24)
c D B

Note that the only way to optimize Item B is via Item C, whereas Item D, the distance between
the current model and the optima (this distance is a vector), is fixed, and Item E, the relative angle
between noise and the fixed distance, is too random. Therefore, we should reduce Item C as much
as possible to optimize Item B. In general, we have:

Ttem C2 = (*g;)” + (nG:)° — 20" n(g7, 1) (25)

While (*g7)> + (ng)? can be fine-tuned to zero by the learning rates, the only way for (g}, g¢)
to be zero is that the direction of g* approximates that of g; (or the opposite direction of g;, which
rarely happens and is therefore ignored here). Since MSE(6;) < MSE(6}) in Lemma GeoDP
therefore makes Item B zero more easily than DP, by which our theorem is proved.

D SUPPLEMENTARY INFORMATION ON EXPERIMENTS
This section provides extensive information on experiments.

D.1 DATASETS

MNIST. This is a dataset of 70,000 gray-scale images (28x28 pixels) of handwritten digits from O to
9, commonly used for training and testing machine learning algorithms in image recognition tasks.
It consists of 60,000 training images and 10,000 testing images, with an even distribution across the
10 digit classes.

CIFAR-10. It is a dataset of 60,000 small (32x32 pixels) color images, divided into 10 distinct
classes such as animals and vehicles, used for machine learning and computer vision tasks. It con-
tains 50,000 training images and 10,000 testing images, with each class having an equal number of
images.

D.2 GEODP vs. DP: ACCURACY OF DESCENT TREND

We verity the superiority of GeoDP on preserving directional information. On the synthetic dataset,
we perturb gradients by GeoDP and DP, respectively, and compare their MSEs under various
parameters. As illustrated in Figure [3] labels § and g represent MSEs of perturbed directions
and gradients, respectively. In Figure 3(a)3(c)l we fix dimension d = 5,000 and batch size
B = 2,048, while varying noise multiplier o in {107%,1073,1072,107*,1,10} if § = 107°)
under three bounding factors 5 = {0.01,0.1, 1}, respectively. We have two major observations.
First, GeoDP better preserves directions (the red line is below the black line) while DP better
preserves gradients (the blue line is below the green line) in most scenarios. Second, GeoDP is
sometimes not robust to large noise multiplier and high dimensionality. When ¢ > 1 in Fig-
ure [3(a)] GeoDP is instead outperformed by DP in preserving directions. Similar results can
be also observed in Figure (fixing ¢ = 8, B = 4096 while varying dimensionality in
{500, 1000, 2000, 5000, 10000, 20000}) and Figure @ (fixing d = 10000, o = 8 while vary-
ing batch size in {512, 1024, 2048, 4096, 8192, 163984}), respectively. For example, Figure m
and Figure 3(g)l which all fix 3 = 1, show that GeoDP is outperformed by DP on preserving direc-
tions when d > 2000 and B < 8192, respectively.

Before addressing this problem, we discuss reasons behind the ineffectiveness of GeoDP. Recall

from Sectionthat the perturbation of GeoDP on directions is 7“”32'8” n,. Obviously, both large

noise multiplier (n,) and high dimensionality (v/d + 2) increase the perturbation on directions.

Nevertheless, GeoDP can overcome this shortcoming by tuning 3, which controls the sensitivity
of direction. In both Figures (8 = 0.1) and (8 = 0.01), we reduce the noise on the
direction by reducing the bounding factor, and the pay-off is very significant. Results show that
GeoDP simultaneously outperforms DP in both direction and gradient. Tuning j is also effective
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Figure 3: GeoDP vs. DP on Preserving Gradients under Various Parameters on Synthetic Dataset

in Figure [3(e)] B(f)] and Figure 3(h)} respectively. Most likely, smaller bounding factor reduces
noise added to the direction while does not affect the noisy magnitude. Accordingly, GeoDP reduces
both MSEs of direction and gradient, and thus perfectly outperforms DP in preserving directional
information.

To further confirm this conjecture, extensive experiments, by varying the bounding factor in
{0.1,0.2,0.4,0.6,0.8,1.0} under different scenarios, are conducted in Figure All experimen-
tal results show that there always exists a bounding factor (5 = 0.2 in Figure 4(a)|and 5 = 0.4 in
Figure fi(b)| for GeoDP to outperform DP in preserving both direction and gradient. These results
also perfectly align with our theoretical analysis in Lemma [I|and Theorem [3} respectively.

Also, GeoDP can improve accuracy by tuning batch size. As illustrated in Figure d =
10000,0 = 8,8 = 1), we demonstrate how the performance of GeoDP is impacted by batch
size. Obviously, a large batch size can boost GeoDP to provide optimal accuracy on directions.
In contrast, the accuracy of DP on directions hardly changes with batch size (see the black line
in , although the noise scale on gradients is reduced by larger batch size (see the blue line in
ﬁhese results validate that optimization techniques of DP-SGD, such as fine-tuning learning
rate, clipping threshold and batch size, cannot reduce the noise on the direction, as confirmed by
Corollary 2]
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Figure 4: The Effectiveness of Bounding Factor

D.3 GEODP vs. DP: RESNET

Similar to our observations on LR, GeoDP even outperforms DP under smaller noise multiplier (e.g.,
under 8 = 1.). Note that the perturbed direction of GeoDP is unbiased while that of DP is biased, as
previously confirmed in Lemma([l} As such, the optimality of GeoDP over DP under smaller noise
is a reflection of this property.

Dataset Method c=01 o0=0.01
DP (B = 8192) 59.39% 63.27%
DP (B = 16384) 60.12% 63.84%
DP(B = 16384 60.51% 63.91%
CIFAR-10 +AUTO-S)

(noise-free GeoDP (B =8192,5=1) 61.47%  65.93%
67.43%) GeoDP (B =16384,5=1) 6338% 66.51%
GeoDP (B = 16384, =0.1) 6547%  67.35%
GeoDP (B =16384,5=0.1 65.58% 67.37%

+AUTO-S)

Table 3: GeoDP vs. DP on ResNet under CIFAR-10 Dataset: Test Accuracy

E LITERATURE REVIEW

In this section, we review related works from three aspects: DP, SGD and their crossover works
DP-SGD.

E.1 DIFFERENTIAL PRIVACY (DP)

DP (Dwork et all [2014; Wasserman & Zhoul 2010) is a framework designed to provide strong
privacy guarantees for datasets whose data is used in data analysis or machine learning models.
It aims to allow any third party, e.g., data scientists and researchers, to glean useful insights from
datasets while ensuring that the privacy of individuals cannot be compromised. Since Dwork er
al. 2006/ first introduced the definition of differential privacy (DP), DP has been extended to various
scopes, such as numerical data collection (Duchi et al., 2018; Wang et al.| 2019), set-value data
collection (Chen et al.l 2011} |Wang et al. |2020), key-value data collection (Ye et al.,[2021b)), high-
dimensional data (Duan et al.| 2022}, graph analysis (Sun et al., 2023)), time series data release (Ye
et al.,|2021a), private learning (Zheng et al.,|2019; Fu et al.,|2023)), federated matrix factorization (L1
et al.| [2021), data mining (Hu et al} 2015)), local differential privacy (Xu et al.l 20205 2019} Bao
et al., [2021; [Wang et al., 2018)), database query (Farias et al., 2023} [Bogatov et al [2021), Markov
model (X1ao et al., 2017) and benchmark (Schéler et al., [2023; |Duan et al., 2022;2024)). Relevant to
our work, we follow the common practice to implement Gaussian mechanism (Dwork et al., [2014)
to perturb model parameters. Besides, Rényi Differential Privacy (RDP) (Mironov, |2017) allows us
to more accurately estimate the cumulative privacy loss of the whole training process.
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E.2 STOCHASTIC GRADIENT DESCENT (SGD)

Stochastic Gradient Descent (SGD) is a fundamental optimization algorithm widely used in machine
learning and deep learning for training a wide array of models. It is especially popular for its
efficiency in dealing with large datasets and high-dimensional optimization problems. SGD was
first introduced by Herbert et al. [1951} and applied for training deep learning models (1986, The
development of SGD has seen several significant improvements over the years. Xavier et al. 2010
and Yoshua 2012 optimized deep neural networks using SGD. Momentum, a critical concept to
accelerate SGD, was emphasized by Llya et al. 2013| Diederik et al.|2015|proposed Adam, a variant
of SGD that adaptively adjusts the learning rate for each parameter. Sergey et al. |2015|introduced
Batch Normalization, a technique to reduce the internal covariate shift in deep networks. Yang
et al. 2017 and Zhang et al. [2019 further proposed large-batch training and lookahead optimizer,
respectively. These advancements have pushed the boundaries of SGD, enabling efficient training of
increasingly complex deep learning models (Xu et al.,[2024}; [Zhang et al.,|2024a; Wang et al., 2024;
Xing et al.l 2024). Without loss of generality, we follow the common practice of existing works and
implement SGD without momentum to better demonstrate the efficiency of our strategy.

E.3 DIFFERENTIALLY PRIVATE STOCHASTIC GRADIENT DESCENT (DP-SGD)

As a privacy-preserving technique for training various models, DP-SGD is an adaptation of the tradi-
tional SGD algorithm to incorporate differentially private guarantees. This is crucial in applications
where data confidentiality and user privacy are concerns, such as in medical or financial data pro-
cessing. The basic idea is adding DP noise to gradients during the training process. Chaudhuri et
al. 201 1}initially introduced a DP-SGD algorithm for empirical risk minimization. Abadi et al. 2016
were one of the first to introduce DP-SGD into deep learning. Afterwards, DP-SGD has been rapidly
applied to various models, such as generative adversarial network (Ho et al.,[2021)), Bayesian learn-
ing (Heikkild et al., |2017), federated learning (Zhang et al.| [2022), graph neural networks (Zhang
et al.,2024b).

As for optimizing model efficiency of DP-SGD, there are three major streams. First, gradient clip-
ping can help to reduce the noise scale while still following DP framework. For example, adaptive
gradient clipping (Xia et al., 2023} Zhang et al., 2022} (Chen et al., [2020), which adaptively bounds
the sensitivity of the DP noise, can trade the clipped information for noise reduction. Second, we
can amplify the privacy bounds to save privacy budgets, such as Rényi Differential Privacy (Gopi
et al.| [2021). Last, more efficient SGD algorithms, such as DP-Adam (Tang et al.,2024), can be
introduced to DP-SGD so as to improve the training efficiency.

However, existing works still cling to numerical perturbation, and there is no work investigating
whether the numerical DP scheme is optimal for the geometric SGD in various applications. In this
work, we instead fill in this gap by proposing a new DP perturbation scheme, which exclusively
preserves directions of gradients so as to improve model efficiency. As no previous works carry out
optimization from this perspective, our work is therefore only parallel to vanilla DP-SGD while
orthogonal to all existing works.
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