
Under review as a conference paper at ICLR 2021

APPENDIX

A CAUSALITY: BASICS

A causal factorization as in equation 3 allows to model causal relations. With Structural Causal
Models (SCM), we are able to express causal relations on a functional level. Following Peters et al.
(2017) we define a SCM in the following way:

Definition 1. A Structural Causal Model (SCM) S = (S, PNNN) consists of a collection S of D
(structural) assignments

Xj := fj(X̃pa(j), Nj), j = 1, . . . , D (10)

where pa(j) ⊂ {1, . . . , j − 1} are called parents of Xj . PNNN denotes the distribution over the noise
variablesNNN = (N1, . . . , ND) which are assumed to be jointly independent.

An SCM defined as above produces an acyclic graph G and induces a probability distribution over
PX̃ which allows for the causal factorization as in equation 3 Peters et al. (2017). Children of Xi in
G are denoted as ch(i) or ch(Xi).

An SCM satisfies the causal sufficiency assumption if all the noise variables in Definition 1 are
indeed jointly independent. A random variable H in the SCM is called confounder between two
variables Xi, Xj if it causes both of them. If a confounder is not observed, we call it hidden con-
founder. If there exists a hidden confounder, the causal sufficiency assumption is violated.

The random variables in an SCM correspond to vertices in a graph and the structural assignments
S define the edges of this graph. Two sets of verticesAAA,BBB are said to be d-separated if there exists
a set of vertices CCC such that every path between AAA and BBB is blocked. For details see e.g. Peters
et al. (2017). The subscript ⊥d denotes d-separability which in this case is denoted byAAA ⊥d BBB. An
SCM generates a probability distribution PX̃ which satisfies the Causal Markov Condition, that is
AAA ⊥d BBB | CCC results in AAA ⊥ BBB | CCC for sets or random variables AAA,BBB,CCC ⊂ X̃. The Causal Markov
Condition can be seen as an inherent property of a causal system which leaves marks in the data
distribution.

A distribution PX̃ is said to be faithful to the graph G if AAA ⊥ BBB | CCC results in A ⊥d BBB | CCC for all
A,B,C ⊂ X̃. This means from the distribution PX̃ statements about the underlying graph G can
be made.

Assuming both, faithfulness and the Causal Markov condition, we obtain that the d-separation state-
ments inG are equivalent to the conditional independence statements in PX̃. These two assumptions
allow for a whole class of causal discovery algorithms like the PC- or IC-algorithm (Spirtes & Gly-
mour, 1991; Pearl, 2009).

The smallest set MMM such that Y ⊥d X \ ({Y } ∪MMM) is called Markov Blanket. It is given by
MMM = Xpa(Y) ∪Xch(Y) ∪Xpa(ch(Y)) \ {Y }. The Markov Blanket of Y is the only set of vertices
which are necessary to predict Y .

B DISCUSSION AND ILLUSTRATION OF ASSUMPTIONS

B.1 EXAMPLES

Domain generalization is in general impossible without strong assumptions (in contrast to classi-
cal supervised learning). In our view, the interesting question is “Which strong assumptions are
the most useful in a given setting?” For instance, Heinze-Deml et al. (2018) use Assumption 2
to identify causes for birth rates in different countries. If all variables mediating the influence of
continent/country (environment variable) on birth rates (target variable) are included in the model
(e.g. GDP, Education), this assumption is reasonable. The same may hold for other epidemiological
investigations as well. Pfister et al. (2019) suppose Assumption 2 in the field of finance.

Another reasonable example are data augmentations in computer vision. Deliberate image rotations,
shifts and distortions can be considered as environment interventions that preserve the relation be-

12

Under review as a conference paper at ICLR 2021

tween semantic image features and object classes (see e.g. Mitrovic et al. (2020)), i.e. verify as-
sumption 2. In general, assumption 2 may be justified when one studies a fundamental mechanism
that can reasonably be assumed to remain invariant across environments, but is obscured by unstable
accidental relationships between observable variables.

B.2 CAUSAL SUFFICIENCY

Violation of the causal sufficiency assumption might prevent Assumption 2 to hold true. For instance,
a causal graph with edges H → X1, X1 → Y and H → Y where H is not observed, violates
the causal sufficiency assumption. If the environment influences X1, i.e. the graph also contains
edge E → X1, and the generated distribution satisfies the Causal Markov Condition, it follows
that Y ⊥ E | X1 is unachievable. This example also illustrates also that the causal sufficiency
assumption is necessary for the principle of ICM.

B.3 ROBUSTNESS

To illustrate the impact of causality on robustness, consider the following example: Suppose we
would like to estimate the gas consumption of a car. In a sufficiently narrow setting, the total amount
of money spent on gas might be a simple and accurate predictor. However, gas prices vary dramat-
ically between countries and over time, so statistical models relying on it will not be robust, even
if they fit the training data very well. Gas costs are an effect of gas consumption, and this relation-
ship is unstable due to external influences. In contrast, predictions on the basis of the causes of gas
consumption (e.g. car model, local speed limits and geography, owner’s driving habits) tend to be
much more robust, because these causal relations are intrinsic to the system and not subjected to
external influences. Note that there is a trade-off here: Including gas costs in the model will improve
estimation accuracy when gas prices remain sufficiently stable, but will impair results otherwise. By
considering the same phenomenon in several environments simultaneously, we hope to gain enough
information to adjust this trade-off properly.

In the gas example, countries can be considered as environments that “intervene” on the relation
between consumed gas and money spent, e.g. by applying different tax policies. In contrast, inter-
ventions changing the impact of motor properties or geography on gas consumption are much less
plausible – powerful motors and steep roads will always lead to higher consumption. From a causal
standpoint, finding robust models is therefore a causal discovery task Meinshausen (2018).

C NORMALIZING FLOWS

Normalizing flows are a specific type of neural network architecture which are by construction
invertible and have a tractable Jacobian. They are used for density estimation and sampling of a
target density (for an overview see Papamakarios et al. (2019)). This in turn allows optimizing
information theoretic objectives in a convenient and mathematically sound way.

Similarly as in the paper, we denote withH the set of feature extractors h : RD → RM where M is
chosen a priori. The set of all one-dimensional (conditional) normalizing flows is denoted by T .

Together with a reference distribution pref , T defines a new distribution νT = (T (·;h(x)))−1# pref
which is called the push-forward of the reference distribution pref (Marzouk et al., 2016). By draw-
ing samples from pref and applying T on these samples we obtain samples from this new distribu-
tion. The density of this so-obtained distribution pνT can be derived from the change of variables
formula:

pνT (y | h(x)) = pref (T (y;h(x)))|∇yT (y;h(x))|. (11)

The KL-divergence between the target distribution pY |h(X) and the flow-based model pνT can be
written as follows:

13

Under review as a conference paper at ICLR 2021

Eh(X)[DKL(pY |h(X)‖pνT)] = Eh(X)

[
EY |h(X)

[
log
(pY |h(X)

pνT

)]]
= −H(Y | h(X))− Eh(X),Y [log pνT (Y | h(X))]

= −H(Y | h(X)) + Eh(X),Y [− log pref (T (y;h(x))− log |∇yT (y;h(x))|] (12)

The last two terms in equation 12 correspond to the negative log-likelihood (NLL) for conditional
flows with distribution pref in latent space. The NLL in Section 3 is given in case we assume the
reference distribution is the standard normal distribution.

We restate Lemma 1 with a more general notation:

Lemma 1. Let X, Y be random variables. We furthermore assume that for each h ∈ H there exists
one T ∈ T with Eh(X)[DKL(pY |h(X)‖pνT)] = 0. Then, the following two statements are true

(a) Let

h?, T ? = arg min
h∈H,T∈T

−Eh(X),Y [log pνT (Y | h(X))]

then it holds h? = g? where g? = argmaxg∈H I(g(X);Y)

(b) Let

T ? = arg min
T∈T

Eh(X)[DKL(pY |h(X)‖pνT)]

then it holds h(X) ⊥ T ?(Y ;h(X))

Proof. (a) From equation equation 12, we obtain −Eh(X),Y [log pνT (Y | h(X))] ≥ H(Y | h(X))
for all h ∈ H, T ∈ T . We furthermore have minT∈T −Eh(X),Y [log pνT (Y | h(X))] = H(Y |
h(X)) due to our assumptions on T . Therefore, minh∈H,T∈T −Eh(X),Y [log pνT (Y | h(X))] =
minh∈HH(Y | h(X)). Since we have I(Y ;h(X)) = H(Y) −H(Y | h(X)) and only the second
term depends on h, statement (a) holds true.

(b) For convenience, we denote T (Y ;h(X)) = R and h(X) = Z. We have EZ [DKL(pY |Z‖pνT?)] =
0 and therefore pY |Z(y | z) = pref (T (y; z))|∇yT−1(y; z)|.
Then it holds

pR|Z(r | z) = pY |Z(T
−1(r; z)|z) · |∇yT−1(r; z)|

= pref (T (T
−1(r; z); z)) · |∇yT (y; z)| · |∇yT−1(r; z)|

= pref (r) · 1

Since the density pref is independent of Z, we obtain R ⊥ Z which concludes the proof of (b)

Statement (a) describes an optimization problem that allows to find features which share maximal
information with the target variable Y . Due to statement (b) it is possible to draw samples from the
conditional distribution P (Y | h(X)) via the reference distribution.

Let H⊥ the set of features which satisfy the invariance property, i.e. Y ⊥ E | h(X) for
all h ∈ H⊥. In the following, we sketch why argminh∈H⊥

maxe∈E minT∈T LeNLL(T ;h) =
argmaxh∈H⊥

mine∈E I(Y
e;h(Xe)) follows from Lemma 1.

Let h ∈ H⊥. Then, it is easily seen that there exists a T ? ∈ T with (1) LNLL(T
?;h) =

minT∈T LNLL(T, h) and (2) LeNLL(T
?;h) = minT∈T LeNLL(T, h) for all e ∈ E since the con-

ditional densities p(y | h(X)) are invariant across all environments. Hence we have H(Y e |
h(Xe)) = LeNLL(T

?;h) for all e ∈ E . Therefore, argminh∈H⊥
maxe∈E minT∈T LeNLL(T ;h) =

argmaxh∈H⊥
mine∈E I(Y

e;h(Xe)) due to I(Y e;h(Xe)) = H(Y e)−H(Y e | h(Xe)).

14

Under review as a conference paper at ICLR 2021

D HSIC AND WASSERSTEIN

The Hilbert-Schmidt Independence Criterion (HSIC) is a kernel based measure for independence
which is in expectation 0 if and only if the compared random variables are independent (Gretton
et al., 2005). An empirical estimate of HSIC(A,B) for two random variables A,B is given by

ĤSIC({aj}nj=1, {bj}nj=1) =
1

(n− 1)2
tr(KHK ′) (13)

where tr is the trace operator. Kij = k(ai, aj) and K ′ij = k′(bi, bj) are kernel matrices for given
kernels k and k′. The matrix H is a centering matrix Hi,j = δi,j − 1/n.

The one dimensional Wasserstein loss compares the similarity of two distributions (Kolouri et al.,
2018). This loss has expectation 0 if both distributions are equal. An empirical estimate of the one
dimensional Wasserstein loss for two random variables A,B is given by

LW = ‖sort({aj}nj=1)− sort({bj}nj=1)‖2

Here, the two batches are sorted in ascending order and then compared in the L2-Norm. We assume
that both batches have the same size.

E ALGORITHM

In order to optimize the DG problem in equation 4, we optimize a normalizing flow Tθ and a feed
forward neural network hφ as described in Algorithm 1. There is an inherent trade-off between
robustness and goodness-of-fit. The hyperparameter λI describes this trade-off and is chosen a priori.

Data: Samples from PXe,Y e in different environments e ∈ Eseen.
Initialize θ, φ;
for number of training iterations do

for e ∈ Eseen do
Sample minibatch {(ye1,xe1), . . . , (yem,xem)} from PY,X|E=e for e ∈ Eseen;
Compute: rej = Tθ(y

e
j ;hφ(x

e
j));

end
Update θ, φ by descending alongside the stochastic gradient

∇θ,φ
(
max
e∈Eseen

{ m∑
i=1

[
1
2‖Tθ(y

e
i ;hφ(x

e
i))‖2 − log∇yTθ(yei ;hφ(xei))

]}
+ λILI({rej}j,e, {hφ(xej), e}j,e)

)
;

end
Result: In case of convergence, we obtain Tθ? , hφ? with

θ?, φ? = argmin
θ,φ

(
max
e∈Eseen

{
EXe,Y e

[
1
2‖Tθ(Y

e;hφ(X
e))‖2 − log∇yTθ(Y e;hφ(Xe))

}]
+ λILI(PR, Phφ(X),E)

)
Algorithm 1: DG training with normalizing flows

If we choose a gating mechanisms hφ as feature extractor similar to Kalainathan et al. (2018), then
a complexity loss is added to the loss in the gradient update step.

15

Under review as a conference paper at ICLR 2021

In case we assume that the underlying mechanisms elaborates the noise in an additive manner, we
could replace the normalizing flow Tθ with a feed forward neural network fθ and execute Algorithm
2.

Data: Samples from PXe,Y e in different environments e ∈ Eseen.
Initialize θ;
for number of training iterations do

for e ∈ Eseen do
Sample minibatch {(ye1,xe1), . . . , (yem,xem)} from PY,X|E=e for e ∈ Eseen;
Compute: rej = yej − fθ(xej);

end
Update θ by descending alongside the stochastic gradient

∇θ
(
max
e∈Eseen

{ m∑
i=1

|rej |2
}
+ λILI({rej}j,e, {fθ(xej), e}j,e)

)
;

end
Result: In case of convergence, we obtain fθ? with

θ? = argmin
θ

(
max
e∈Eseen

{
EXe,Y e

[
|Y e − fθ(Xe)|2

]}
+ λILI(PR, Pfθ(X),E)

)
Algorithm 2: DG training under the assumption of additive noise

If we choose a gating mechanism, minor adjustments have to be made to Algorithm 2 such that we
optimize 9. The classification case can be obtained similarly as described in 4.

F IDENTIFIABILITY RESULT

Under certain conditions on the environment and the underlying causal graph, the direct causes of
Y become identifiable:
Proposition 1. We assume that the underlying causal graph G is faithful with respect to PX̃,E . We
further assume that every child of Y inG is also a child ofE inG. A variable selection h(X) = XT

corresponds to the direct causes if the following conditions are met: (i) T (Y ;h(X)) ⊥ E, h(X)
are satisfied for a diffeomorphism T (·;h(X)), (ii) h(X) is maximally informative about Y and (iii)
h(X) contains only variables from the Markov blanket of Y .

Proof. Let S(Eseen) denote a subset of X which corresponds to the variable selection due to h. With-
out loss of generality, we assume S(Eseen) ⊂M where M is the Markov Blanket. This assumption
is reasonable since we have Y ⊥ X \M |M in the asymptotic limit.

Since pa(Y) cannot contain colliders between Y and E, we obtain that Y ⊥ E | S(Eseen) implies
Y ⊥ E | (S(Eseen) ∪ pa(Y)). This means using pa(Y) as predictors does not harm the constraint in
the optimization problem. Due to faithfulness and since the parents of Y are directly connected to
Y , we obtain that pa(Y) ⊂ S(Eseen).

For each subset XT ⊂ X for which there exists an Xi ∈ XT ∩Xch(Y), we have XT 6⊥ Y | E. This
follows from the fact that Xi is a collider, in particular E → Xi ← Y . Conditioning on Xi leads
to the result that Y and E are not d-separated anymore. Hence, we obtain Y 6⊥ XT | E due to the
faithfulness assumption. Hence, for each XT with Y ⊥ E | XT we have XT ∩ Xch(Y) = ∅ and
therefore Xch(Y) ∩ S(Eseen) = ∅.

Since Xpa(Y) ⊂ S(Eseen), we obtain that Y ⊥ Xpa(ch(Y)) | Xpa(Y) and therefore the parents of
ch(Y) are not in S(Eseen) except when they are parents of Y .

Therefore, we obtain that S(Eseen) = Xpa(Y)

One might argue that the conditions are very strict in order to obtain the true direct causes. But
the conditions set in Proposition 1 are necessary if we do not impose additional constraints on the

16

Under review as a conference paper at ICLR 2021

true underlying causal mechanisms, e.g. linearity as done by Peters et al. (2016). For instance if
E → X1 → Y → X2, a model including X1 and X2 as predictor might be a better predictor than
the one using onlyX1. From the Causal Markov Condition we obtainE ⊥ Y | X1, X2 which results
in X1, X2 ∈ S(Eseen). Under certain conditions however, the relation Y → X2 might be invariant
across E . This is for instance the case when X2 is a measurement of Y . In this cases it might be
useful to use X2 for a good prediction.

G EXPERIMENTAL SETTING FOR SYNTHETIC DATASET

G.1 DATA GENERATION

In Section 5 we described how we choose different Structural Causal Models (SCM). In the follow-
ing we describe details of this process.

We simulate the datasets in a way that the conditions in Proposition 1 are met. We choose different
variables in the graph shown in Figure 1 as target variable. Hence, we consider different “topologi-
cal” scenarios. We assume the data is generated by some underlying SCM. We define the structural
assignments in the SCM as follows

(a) f
(1)
i (Xpa(i), Ni) =

∑
j∈pa(i)

ajXj +Ni [Linear]

(b) f
(2)
i (Xpa(i), Ni) =

∑
j∈pa(i)

ajXj − tanh(ajXj) +Ni [Tanhshrink]

(c) f
(3)
i (Xpa(i), Ni) =

∑
j∈pa(i)

log(1 + exp(ajXj)) +Ni [Softplus]

(d) f
(4)
i (Xpa(i), Ni) =

∑
j∈pa(i)

max{0, ajXj)}+Ni [ReLU]

(e) f
(5)
i (Xpa(i), Ni) =

(∑
j∈pa(i)

ajXj

)
· (1 + (1/4)Ni) +Ni [Mult. Noise]

with Ni ∼ N (0, c2i) where ci ∼ U [0.8, 1.2], i ∈ {0, . . . , 5} and ai ∈ {−1, 1} according to Figure
6. Note that the mechanisms in (b), (c) and (d) are non-linear with additive noise and (e) elaborates
the noise in a non-linear manner.

We consider hard- and soft-interventions on the assignments fi. We either intervene on all variables
except the target variable at once or on all parents and children of the target variable (Intervention
Location). We consider three types of interventions:

• Hard-Intervention on Xi: Force Xi ∼ e1 + e2N (0, 1) where we sample for each environ-
ment e2 ∼ U([1.5, 2.5]) and e1 ∼ U([0.5, 1.5] ∪ [−1.5,−0.5])

• Soft-Intervention I onXi: Add e1+e2N (0, 1) toXi where we sample for each environment
e2 ∼ U([1.5, 2.5]) and e1 ∼ U([0.5, 1.5] ∪ [−1.5,−0.5])

• Soft-Intervention II on Xi: Set the noise distribution Ni to N (0, 22) for E = 2 and to
N (0, 0.22) for E = 3

Per run, we consider one environment without intervention (E = 1) and two environments with
either both soft- or hard-interventions (E = 2, 3). We also create a fourth environment to measure a
models’ ability for out-of-distribution generalization:

• Hard-Intervention: Force Xi ∼ e+N (0, 42) where e = e1 ± 1 with e1 from environment
E = 1. The sign {+,−} is chosen once for each i with equal probability.

• Soft-Intervention I: Add e +N (0, 42) to Xi where e = e1 ± 1 with e1 from environment
E = 1. The sign {+,−} is chosen once for each i with equal probability as for the do-
intervention case.

17

Under review as a conference paper at ICLR 2021

• Soft-Intervention II: Half of the samples have noise Ni distributed due to N (0, 1.22) and
the other half of the samples have noise distributed as N (0, 32)

We randomly sample causal graphs as described above. Per environment, we consider 1024 samples.

G.2 TRAINING DETAILS

X1 X2

X3

X4

X5

X6

+

+ -

-
+ +

-

Figure 6: The signs of the coeffi-
cients aj for the mechanisms of the
different SCMs

All used feed forward neural networks have two internal layers
of size 256. For the normalizing flows we use a 2 layer MTA-
Flow described in Appendix G.3 with K=32. As optimizer we
use Adam with a learning rate of 10−3 and a L2-Regularizer
weighted by 10−5 for all models. Each model is trained with a
batch size of 256. We train each model for 1000 epochs and de-
cay the learning rate every 400 epochs by 0.5. For each model
we use λI = 1 and the HSIC LI employs a Gaussian kernel
with σ = 1. The gating architecture was trained without the
complexity loss for 200 epochs and then with complexity loss
weighted by 5. For the Flow model without gating architecture
we use a feed forward neural network hφ with two internal lay-
ers of size 256 mapping to an one dimensional vector. In total,
we evaluated our models on 1365 created datasets as described
in G.1.

Once the normalizing flow T is learned, we predict y given
features h(x) using 512 normally distributed samples ui which
are mapped to samples from p(y|h(x)) by the trained normal-
izing flow T (ui, h(x)). As prediction we use the mean of these
samples.

G.3 ONE-DIMENSIONAL NORMALIZING FLOW

We use as one-dimension normalizing flow the More-Than-Affine-Flow (MTA-Flow), which was
developd by us. An overview of different architectures for one-dimensional normalizing flows can
be found in Papamakarios et al. (2019). For each layer of the flow, a conditioner network C maps
the conditional data h(X) to a set of parameters a, b ∈ R and w,v, r ∈ RK for a chosen K ∈ N. It
builds the transformer τ for each layer as

z = τ(y | h(X)) := a

(
y +

1

N(w,v)

K∑
i=1

wif(viy + ri)

)
+ b, (14)

where f is any almost everywhere smooth function with a derivative bounded by 1. In this work we
used a gaussian function with normalized derivative for f . The division by

N(w,v) := ε−1

(
K∑
i=1

|wivi|+ δ

)
, (15)

with numeric stabilizers ε < 1 and δ > 0, assures the strict monotonicity of τ and thus its invert-
ibility ∀x ∈ R. We also used a slightly different version of the MTA-Flow which uses the ELU
activation function and – because of its monotonicity – can use a relaxed normalizing expression
N(w,v).

G.4 PC-VARIANT

Since we are interested in the direct causes of Y , the widely applied PC-Algorithm gives not the
complete answer to the query for the parents of Y . This is due to the fact that it is not able to orient
all edges. To compare the PC-Algorithm we include the environment as system-intern variable and
use a conservative assignment scheme where non-oriented edges are thrown away. This assignment
scheme corresponds to the conservative nature of the ICP.

For further interest going beyond this work, we consider diverse variants of the PC-Algorithm. We
consider two orientation schemes: A conservative one, where non-oriented edges are thrown away

18

Under review as a conference paper at ICLR 2021

On
eE

nv

On
eE

nv
Co

ns

En
vO

ut

En
vO

ut
Co

ns

En
vI

n

En
vI

nC
on

s0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracies

Figure 7: Detection accuracies of direct causes for different variants of the PC-Algorithm. EnvOut
means we pool over all environments and EnvIn means the environment is treated as system intern
variable E. The suffix Cons means we us the conservative assignment scheme. OneEnv means we
only consider the observational environment for inference.

and a non-conservative one where non-oriented edges from a node Xi to Y are considered parents
of Y .

We furthermore consider three scenarios: (1) the samples across all environments are pooled, (2)
only the observational data (from the first environment) is given, and (3) the environment variable
is considered as system-intern variable and is seen by the PC-Algorithm (similar as in Mooij et al.
(2016)). Results are shown in Figure 7. In order to obtain these results, we sampled 1500 graphs as
described above and applied on each of these datasets a PC-Variant. Best accuracies are achieved if
we consider the environment variable as system-intern variable and use the non-conservative orien-
tation scheme (EnvIn).

G.5 VARIABLE SELECTION

We consider the task of finding the direct causes of a target variable Y . Our models based on the
gating mechanism perform a variable selection and are therefore compared to the PC-Algorithm
and ICP. In the following we show the accuracies of this variable selection according to different
scenarios.

Figure 8 shows the accuracies of ICP, the PC-Algorithm and our models pooled over all scenarios.
Our models perform comparably well and better than the baseline in the causal discovery task.

In the following we show results due to different mechanisms, target variables, intervention types
and intervention locations.

Figure 9b shows the accuracies of all models across different target variables. Parentless target vari-
ables, i.e. Y = X4 or Y = X0 are easy to solve for ICP due to its conservative nature. All our
models solve the parentless case quite well. Performance of the PC-variant depends strongly on the
position of the target variable in the SCM indicating that its conservative assignmend scheme has
a strong influence on its performance. As expected, the PC-variant deals well with with Y = X6

which is a childless collider. The causal discovery task seems to be particularly hard for variable
Y = X6 for all other models. This is the variable which has the most parents.

The type of intervention and its location seem to play a minor role as shown in Figure 9a and Figure
9a.

Figure 9b shows that ICP performs well if the underlying causal model is linear, but degrades if the
mechanism become non-linear. The PC-Algorithm performs under all mechanisms comparably, but
not well. ANMG performs quite well in all cases and even slightly better than FlowG in the cases
of additive noise. However in the case of non-additive noise FlowG performs quite well whereas
ANMG perform slightly worse – probably because their requirements on the underlying mechanisms
are not met.

19

Under review as a conference paper at ICLR 2021

PC
-A

lg IC
P

Fl
ow

G

AN
M

G0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracies

Figure 8: Accuracies for different models across all scenariso. FlowG and ANMG are our models.

Hard-Int. Soft-Int. I Soft-Int. II
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1 2

PC-Alg
ICP

FlowG (ours)
ANMG (ours)

(a) Accuracies of different models for different inter-
vention types and locations. 1 stands for intervention
on all variables except Y and 2 stands for interventions
on parents and children only.

X1 X2 X3 X4 X5 X6
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

L T S R M

PC-Alg
ICP

FlowG (ours)
ANMG (ours)

(b) Accuracies of different models according to target
variables and mechanisms of the underlying SCM.

Figure 9: Comparison of models across different scenarios in the causal discovery task.

20

Under review as a conference paper at ICLR 2021

CE
RM IC

P

ER
M

Fl
ow

G

Fl
ow

AN
M

G

AN
M

10 1

100

101

Linear

CE
RM IC

P

ER
M

Fl
ow

G

Fl
ow

AN
M

G

AN
M

10 1

100

101

Tanhshrink

CE
RM IC

P

ER
M

Fl
ow

G

Fl
ow

AN
M

G

AN
M

10 1

100

101

Softplus

CE
RM IC

P

ER
M

Fl
ow

G

Fl
ow

AN
M

G

AN
M

10 1

100

101

Mult. Noise

CE
RM IC

P

ER
M

Fl
ow

G

Fl
ow

AN
M

G

AN
M

10 1

100

101

ReLU

Figure 10: Logarithmic plot of L2 errors, normalized by CERM test error. For each method (ours in
bold) from left to right: training error, test error on seen environments, domain generalization error
on unseen environments. Scenarios for different mechanisms are shown.

G.6 TRANSFER STUDY

In the following we show the performance of different models on the training set, a test set of
the same distribution and a set drawn from an unseen environment for different scenarios. As in
Section 5, we use the L2-Loss on samples of an unseen environment to measure out-of-distribution
generalization. Figure 10, 11 and 12 show results according to the underlying mechanisms, target
variable or type of intervention respectively.

21

Under review as a conference paper at ICLR 2021

CE
RM IC

P

ER
M

Fl
ow

G

Fl
ow

AN
M

G

AN
M

10 1

100

101

Y = X0

CE
RM IC

P

ER
M

Fl
ow

G

Fl
ow

AN
M

G

AN
M

10 1

100

101

Y = X1

CE
RM IC

P

ER
M

Fl
ow

G

Fl
ow

AN
M

G

AN
M

10 1

100

101

Y = X2

CE
RM IC

P

ER
M

Fl
ow

G

Fl
ow

AN
M

G

AN
M

10 1

100

101

Y = X3

CE
RM IC

P

ER
M

Fl
ow

G

Fl
ow

AN
M

G

AN
M

10 1

100

101

Y = X4

CE
RM IC

P

ER
M

Fl
ow

G

Fl
ow

AN
M

G

AN
M

10 1

100

101

Y = X5

Figure 11: Logarithmic plot of L2 errors, normalized by CERM test error. For each method (ours in
bold) from left to right: training error, test error on seen environments, domain generalization error
on unseen environments. Sceanarios for different target variables are shown.

22

Under review as a conference paper at ICLR 2021

CE
RM IC

P

ER
M

Fl
ow

G

Fl
ow

AN
M

G

AN
M

10 1

100

101

Soft-Intervention II

CE
RM IC

P

ER
M

Fl
ow

G

Fl
ow

AN
M

G

AN
M

10 1

100

101

Hard-Intervention

CE
RM IC

P

ER
M

Fl
ow

G

Fl
ow

AN
M

G

AN
M

10 1

100

101

Soft-Intervention I

Figure 12: Logarithmic plot of L2 errors, normalized by CERM test error. For each method (ours in
bold) from left to right: training error, test error on seen environments, domain generalization error
on unseen environments. Scenarios for different intervention types are shown.

23

Under review as a conference paper at ICLR 2021

H EXPERIMENTAL DETAILS COLORED MNIST

For the training, we use a feed forward neural network consisting of a feature selector followed by
a classificator. The feature selector consists of two convolutional layers with a kernel size of 3 with
16 respectively 32 channels followed by a max pooling layer with kernel size 2, one dropout layer
and a fully connected layer mapping to 16 feature dimensions. After the first convolutional layer
and after the pooling layer a ReLU activation function is applied. For the classification we use a
ReLU activation function followed by a linear layer which maps the 16 features onto the two classes
corresponding to the labels.

We use the dataset from Arjovsky et al. (2019). 50 000 samples are used for training and 10 000
samples as test set. For training, we choose a batch size of 2048 and train our models for 300 epochs.
We choose a starting learning rate of 6 ·10−3. The learning rate is decayed by 0.33 after 100 epochs.
We use an L2-Regularization loss weighted by 10−5. After each epoch we randomly reassign the
colors and the labels with the corresponding probabilities. The one-dimensional Wasserstein loss
is applied dimension-wise and the maximum over dimensions is computed in order to compare
residuals. Since the output of the Wasserstein is very small, we multiplied it by a factor of 10. For
the HSIC we use a gaussian kernel with σ = 1. For Figure 4 we trained our model with λI ≈ 1.585.

24

