
A Overview747

In this supplementary material we provide the following information:748

• Appendix B discuss other high-quality and Monte Carlo explainers.749

• Appendix C discuss a guide to select the coverage α when the agent providing selective750

explanations has a budget for the average number of inferences to provide an explanation.751

• Appendix D shows more experimental results on selective explanations.752

• Appendix E shows the proofs for the theoretical results in Section 4.753

B Additional Explanation Methods754

In this section, we describe high-quality, Monte Carlo, and amortized explainers with further details.755

B.1 High-Quality Explainers756

Shapley Values (SHAP) [21] is a high-quality explainer that attributes a value ϕi for each feature xi757

in x = (x1, ..., xd) which is the marginal contribution of feature xi if the model was to predict y (2).758

ϕi(x,y) =
1

d

∑
S⊂[d]/{i}

(
d− 1

|S|

)−1 (
hy(xS∪{i})− hy(xS)

)
. (13)

SHAP has several desirable properties and is widely used. However, as (2) indicates, computing759

Shapley values and the attribution vector HQ(x,y) = (ϕ1(x,y), ..., ϕd(x,y)) requires 2d inferences760

from h, making SHAP impractical for large models where inference is costly. This has motivated761

several approximation methods for SHAP, discussed next6.762

Local Interpretable Explanations (Lime). Lime is another feature attribution method [28] widely763

used to provide feature attributions. It relies on selecting combinations of features, removing these764

features from the input to generate perturbations, and using these perturbations to approximate the765

black box model h locally by a linear model. The coefficients of the linear model are considered to766

be the attribution of each feature. Formally, given a weighting kernel π(S) and a penalty function Ω,767

the attribution produced by lime are given by768

(ϕ, a) = argmin
ϕ∈Rd,a∈R

∑
S⊂[d]

π(S)

(
h(xS)− a0 −

∑
i∈S

ϕi

)
, (14)

where HQ(x,y) = ϕ. As in SHAP, to compute the feature attributions using lime, we need to769

perform a large number of model inferences, which is prohibitive for large models.770

B.2 Monte Carlo Lime771

Shapley Value Sampling (SVS) [23] is a Monte Carlo explainer that approximates SHAP by772

restricting the sum in (2) to specific permutations of feature. SVS computes the attribution scores by773

uniformly sampling m features permutations S1, ..., Sm restricting the sum in (2) and performing774

n = md+ 1 inferences. We denote SVS that samples m feature permutations by SVS-m.775

Kernel Shap (KS) [21] is a Monte Carlo explainer that approximate the Shapley values using the776

fact that SHAP can be computed by solving the optimization problem777

(ϕ, a) = argmin
ϕ∈Rd,a∈R

n∑
i=1

π(Si)

h(xSi
)− a0 −

∑
j∈Si

ϕj

 , (15)

using π(S) =
(

d
|S|
)
|S|(d − |S|) and where MCn(x,y) = ϕ. Kernel Shap samples n > 0 feature778

combinations S1, ..., Sn and define the feature attributions to be given by the coefficients ϕ. We refer779

to Kernel Shap using n inferences as KS-n. We use the KS-n from the Captum library [17] for our780

experiments.781

6We also discuss Lime and its amortized version in Appendix B
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Sample Constrained Lime. To approximate the attributions from Lime, we consider the sample-782

contained version of (15). Instead of sampling all feature combinations in [d], we only uniformly783

sample a fixed number n of feature combinations S1, ..., Sn. For our experiments, shown in the784

appendix, we use the Sample Constrained Lime from the Captum library [17].785

B.3 Amortized Explainers786

Stochastic Amortization [6] is a Amortized explainer that uses noisy Monte Carlo explanations787

to learn high-quality explanations. Covert et al. [6] trained an amortized explainer Amor ∈ F in a788

hypothesis class F (we use multilayer perceptrons) that takes an input and predicts an explanation.789

Specifically, taking the amortized explainer to be the solution of the training problem given in (3).790

Amor ∈ argmin
f∈F

∑
(x,y)∈Dtrain

∥f(x,y)− MCn(x,y)∥22. (16)

We are interested in explaining the predictions of large models for text classification. However, the791

approach in (3) is only suitable for numerical inputs. Hence, we follow the approach from Yang et al.792

[34] to explain the predictions of large language models, explained next.793

Amortized Shap for LLMs [34] is a Amortized explainer similar to the one in (3) but tailored for794

LLMs. First, the authors note that they can use the LLM to write all input texts x as a sequence of795

token embedding [e1(x), ..., e|x|(x)] where ei(x) ∈ Rd denotes the LLM embedding for the i-th796

token contained in the input text x and |x| is the number of tokens in the input text. Second, they797

restrict F in (3) to be the set of all linear regressions that take the token embeddings and output the798

token attribution score. Then, they solve the optimization problem in799

W ∈ argmin
W∈Rd,b∈R

∑
(x,y)∈Dtrain

|x|∑
j=1

∥WT ej(x) + b− MCn(x,y)j∥22, (17)

and define the amortized explainer as Amor(x) = (WT e1(x) + b, ...,WT e|x|(x) + b).800

We use stochastic amortization to produce amortized explainers for tabular datasets and Amortized801

Shap for LLMs to produce explainers for LLM predictions. Both explainers are trained using SVS-12802

as MCn.803

C Selecting Coverage for a Given Inference Budget804

Determining Coverage from Inference Budget: Providing explanations with initial guess in-805

creases the number of model inferences from 1 when using solely the amortized explainer to n+ 1.806

However, a practitioner may have a budget of inferences, i.e., a maximum average number of infer-807

ences they are willing to perform to provide an explanation. We formalize the notion of inference808

budget in Definition 3.809

Definition 3 (Inference Budget). Denote by N(SE(x,y)) the number of model inferences to produce810

the explanation SE(x,y). The inference budget Nbudget ∈ N is the maximum average number of811

inferences a practitioner is willing to perform per explanation, i.e., it is such that812

Nbudget ≥ E [N(SE(x,y))] . (18)

Once an inference budget Nbudget is defined, the coverage α should be set to follow it. In Proposition813

1, we show the minimum coverage for the selective explanations to follow the inference budget.814

Proposition 1 (Coverage for Inference Budget). Let Nbudget ≥ 1 be the inference budget, and assume815

that the Monte Carlo method MCn(x,y) uses n model inferences. Then, the coverage level α should816

be chosen such that817

n+ 1− Nbudget

n
= min

α∈[0,1]
α, such that E [N(SE(x,y))] ≤ Nbudget. (19)

Recall that SVS-m performs n = 1+dm inferences (x ∈ Rd), and KS-m performs n = m inferences.818
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D More Experimental Results819

In this section, we (i) give further implementation details and (ii) discuss further empirical results.820

D.1 More Details on Experimental Setup821

High-Quality Explanations: We define the high-quality explanations for the tabular datasets to822

be given by Kernel Shap with as many inferences as needed for convergence, using the Shapley823

Regression library [4]. For the textual dataset, following [34], we define the high-quality explanations824

to be given by Kernel Shap using 8912 model inferences per explanation.825

Amortized Explainers: For the tabular datasets, we use the amortized explainer from [6] that826

we describe in Section 2. Specifically, we use a multilayer perceptrom model architecture to learn827

the shapley values for the tabular datasets. For the textual datasets, we use the linear regression on828

token-level textual embeddings to learn the shapley values, as described in Section 2. Both amortized829

models learn from the training dataset of explanations generated using Shapley Value Sampling from830

the Captum library [17] with parameter 12, i.e., SVS-12.831

Uncertainty Metrics: We test the two proposed uncertainty metrics in Section 3, namely, deep832

uncertainty and uncertainty learn. For deep uncertainty, we run the training pipeline for the833

amortized explainers 20 times for each dataset we perform experiments on, resulting in 20 different834

amortized explainer that we use to compute (4). For uncertainty learn, we use the multilayer835

perceptrom as the hypothesis class with only one hidden layer. The hidden layer was composed of836

κ = 3d neurons where d is the dimension of the input vector x ∈ Rd. The uncertainty learn metric837

was trained on Dtrain, the same training dataset as the amortized explainers.838

Dataset sizes: We use 4000 samples from each dataset due to computational limitations on the839

computation of high-quality explanations used to evaluate selective explanations. All explanations840

were computed using the Captum library [17]. The dataset D with N = 4000 samples was partitioned841

in three parts, Dtrain with 50% of points, Dcal with 25% of points, and Dtest with the other 25% of842

points.843

Computational Resources: All experiments were run in a A100 40 GB GPU. For each dataset, we844

compute different Monte Carlo explanations. For the UCI-News dataset, the high quality explanations845

took 4:30 hours to be generate until convergence while for UCI-Adult it took 3:46 hours. For the846

tabular datasets, all other Monte Carlo explainers were generated in less than 1 hour. For the language847

models, the high-quality explanations with 8192 model inferences, took 18:51 hours for the Toxigen848

dataset and 20:00 hours for the Yelp Review datasets. The other used Monte Carlo explanations took849

proportional (to the number of inferences) time to be generated.850

D.2 Uncertainty Measures Impact on Spearman’s Correlation851

Figure 7 shows in the x-axis the coverage (α) and in the y-axis the average Spearman’s correlation of852

the selected amortized explanations from high-quality explanations using deep uncertainty (with 20853

models) and the uncertainty learn to select low-quality explanations. The Oracle7 is computed by854

sorting examples by the smallest to higher MSE and computing the average Spearman’s correlation855

in the bottom x-axis points accordingly to the MSE and is the best that can be done in terms of MSE.856

Figure 7 shows that the Oracle and proposed uncertainty metrics don’t always select the points857

with the smallest Spearman’s correlation first. This implies that MSE and Spearman’s correlation858

don’t always align, i.e., there are points with high MSE and high Spearman’s correlation at the859

same time. However, we note that the uncertainty learns selector can be applied to any metric ℓ as860

we define in (5) including Spearman’s correlation and any combination of Spearman’s correlation861

and MSE aiming to approximate both metrics. Moreover, when the smallest MSE aligns with the862

highest Spearman’s correlation, i.e., the oracle is decreasing in Spearman’s correlation when the863

coverage increases (Figure 7 (a) and (c)), the proposed uncertainty metrics also accurately detect the864

low-quality explanations in term of Spearman’s correlation.865

7The oracle is computationally expensive because it requires access to high-quality explanations.
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Fig. 7: Coverage vs. Spearman’s correlation from the high-quality explanation. Coverage is the per-
centage of the points that the selection function predicts that will receive a higher-quality explanation,
i.e., τt(x) = 1. When coverage is 100% Spearman’s correlation is the average performance for the
amortized explainer.

D.3 The Effect of Explanations with Initial Guess866

In Figure 8 we compare explanations with initial guess (Definition 2) to only using the Monte Carlo867

to provide recourse to the low-quality explanaitons, i.e., λh = 0 we call it Naive. In all tested cases,868

Spearman’s correlation of the Monte Carlo method is comparable to or larger than the amortized869

explainer. Although selective explanations optimized for MSE by using explanations with initial870

guess (Definition 2), we observe that the Spearman’s correlation of selective explanations is close to871

or larger than the naive method, once again, demonstrating the efficacy of selective explanations.872
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Fig. 8: Fraction of the population that receive explanations with initial guess (x-axis) vs. their
Spearman’s correlation from the high-quality explanations (y-axis). Naive uses λh = 0 while initial
guess uses explanations with initial guess, i.e., when λh is given in (12).

D.4 Performance for Different Monte-Carlo Explainers873

Figure 9 shows how the MSE and Spearman’s correlation behave accordingly with the quality of the874

Monte Carlo explainer. We compare Kernel Shap and Shapley Value Sampling in all experiments. We875

observe that when the quality of the Monte Carlo explainer increases, the quality of the Selective ex-876

planation also increases, i.e., the MSE decreases and the Spearman’s correlation increases. Moreover,877

we also observe diminishing returns, i.e., after a certain point, increasing the quality of the Monte878

Carlo explanations doesn’t lead to a tailored increase in performance. For example, observe the SVS879

method in the tabular datasets Figure 9 (a) and (b). We also observe that providing explanations880

with initial guess has a high impact on both Spearman’s correlation and MSE when only providing881

recourse toa small fraction of the population. For example, when providing explanations with initial882

guess for 20% of the population using SVS-12 in the Yelp Review dataset, Figure 9 (c), increases the883

Spearman’s correlation in more than 50% (from 0.2 to more than 0.3).884
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Fig. 9: MSE (top) and Spearman’s correlation (bottom) for selective explanations using different
Monte Carlo explainers.

D.5 Time Sharing Using Selective Explanations885

0 20 40 60 80 100 120 140
Number of Inferences

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

M
SE

Method
Amortized
SVS (3)
SVS (6)
SVS (12)

Recourse Strategies
Vanilla Time Sharing
SExp (Deep)
SExp (Learn)
Oracle

(a) UCI-Adult

0 100 200 300 400 500 600 700
Number of Inferences

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

M
SE

Method
Amortized
SVS (3)
SVS (6)
SVS (12)

Recourse Strategies
Vanilla Time Sharing
SExp (Deep)
SExp (Learn)
Oracle

(b) UCI-News

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Inferences

0.04

0.06

0.08

0.10

M
SE

Method
Amortized
SVS (12)
SVS (25)
SVS (50)

Recourse Strategies
Vanilla Time Sharing
SExp (Deep)
SExp (Learn)
Oracle

(c) Yelp Review

0 1000 2000 3000 4000 5000 6000
Number of Inferences

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

M
SE

Method
Amortized
SVS (25)
SVS (50)

Recourse Strategies
Vanilla Time Sharing
SExp (Deep)
SExp (Learn)
Oracle

(d) Toxigen

Fig. 10: Number of model inferences (x-axis) vs. MSE (y-axis) using (i) vanilla time sharing, (ii)
time sharing using selective explanations compared to (iii) the oracle when the MSE of the provided
explanation is known.
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We analyze how selective explanations can be used to improve the quality of Monte Carlo methods886

by time sharing between methods. When computing explanations using Monte Carlo methods, we887

perform n model inferences (x-axis in Figure 10) until a desired MSE (y-axis in Figure 10) is achieved.888

This is done by gradually increasing the number of inferences per points we generate explanations –889

this is displayed by the blue dotted curve in Figure 10 and we name it vanilla time sharing because890

the inferences (time) are shared gradually across points. We also compare it with the Oracle given891

the red curve in Figure 10 where, for each point, we compute Monte Carlo explanations using SVS892

with parameter 12, 25, and 50, compute their MSE to high-quality explanations and give the best893

explanation possible for a given number of inferences. Oracle is the best that can be done in terms894

of MSE vs. Number of Inferences only using Monte Carlo explanations. We compare both Orcle895

and vanilla time sharing with time sharing using selective explanations given by the black lines in896

Figure 10. For the time sharing using selective explanations, we also gradually increase the number897

of inferences but use selective explanations instead of plain Monte Carlo explanations.898

Figure 10 shows that selective explanations closely approximate the Oracle curve, indicating the899

selective explanations have close to optimal trade-off between the number of model inferences and900

MSE. We highlight the performance of selective explanations in the Toxigen dataset. With only 1000901

model inferences, we get better performance than using SVS-50 with about 6000 model inferences.902

We also note that in both LLMs, using selective explanations closely approximates the oracle and903

provides a better explanation with the same number of inferences than just using SVS.904

E Proofs of Theoretical Results905

Theorem 1 (Optimal λh). Let 0 = α1 < α2 < ... < αm = 1 and define Qi as in (9). Then, λi that906

solves the optimization problem in (11) is given by907

λi =

∑
(x,y)∈Dval
sh(x)∈Qi

⟨MCn(x,y)− MCn′
(x,y),MCn(x,y)− Amor(x,y)⟩∑

(x,y)∈Dval
sh(x)∈Qi

||Amor(x,y)− MCn(x,y)||22
. (20)

Proof. First, recall that908

λi ≜ argmin
λ∈R

∑
(x,y)∈Dval
sh(x)∈Qi

∣∣∣∣∣∣SE(x,y)− MCn′
(x,y)

∣∣∣∣∣∣2
2

(21)

= argmin
λ∈R

∑
(x,y)∈Dval
sh(x)∈Qi

∣∣∣∣∣∣λAmor(x,y) + (1− λ)MCn(x,y)− MCn′
(x,y)

∣∣∣∣∣∣2
2
. (22)

Note that the function in (22) is convex in λ; therefore, if the derivative of it with respect to λ is zero,909

then the lambda that achieves the zero gradient is the minima. So, let’s derivate (22) to find λi.910

0 =
d

dλ

∑
(x,y)∈Dval
sh(x)∈Qi

∣∣∣∣∣∣λAmor(x,y) + (1− λ)MCn(x,y)− MCn′
(x,y)

∣∣∣∣∣∣2
2

(23)

= 2
∑

(x,y)∈Dval
sh(x)∈Qi

λ||MCn(x,y)− Amor(x,y)||2 (24)

− 2
∑

(x,y)∈Dval
sh(x)∈Qi

⟨MCn(x,y)− MCn′
(x,y),MCn(x,y)− Amor(x,y)⟩ (25)

From (25) we conclude the proof by showing that911

λi = λ =

∑
(x,y)∈Dval
sh(x)∈Qi

⟨MCn(x,y)− MCn′
(x,y),MCn(x,y)− Amor(x,y)⟩∑

(x,y)∈Dval
sh(x)∈Qi

||MCn(x,y)− Amor(x,y)||2
. (26)
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912

Theorem 2 (λi ≈ λopti ). Let the Monte Carlo explanation used to provide recourse MCn to be913

different enough from the amortized explainer, i.e., E
[
||MCn(X,Y )− Amor(X,Y )||2

]
= µ > 0.914

Also, assume that MCn′
is a good Monte Carlo approximation for the high-quality explainer HQ, i.e.,915

E
[
||MCn′

(X,Y )− HQ(X,Y )||2
]
= µ∗ for ϵ >

√
5µ∗

µ . Recall that x ∈ Rd. If the explanations are916

bounded, i.e., ||MCn(x,y)||, ||Amor(x,y)||, ||HQ(x,y)| < Cd for some C > 0 then917

Pr[|λi − λopti | > ϵ] ≤ e
−µ2|Qi|

4Cd + e
−µ4ϵ4|Qi|

400Cd , (27)

where |Qi| is the number of points x in the validation dataset Dval that are in the bin Qi.918

Proof. Denote |Qi| = |{(x,y) ∈ Dval, s.t. sh(x) ∈ Qi}|.919

We start by showing that if E
[
||MCn(X,Y )− Amor(X,Y )||2

]
= µ then920

Pr

 1

|Qi|
∑

(x,y)∈Dval
sh(x)∈Qi

||MCn(x,y)− Amor(x,y)||2 ≤ µ

2

 (28)

=Pr

µ− 1

|Qi|
∑

(x,y)∈Dval
sh(x)∈Qi

||MCn(x,y)− Amor(x,y)||2 ≥ µ

2

 (29)

≤e
−µ2|Qi|

4Cd . (30)

Where the inequality in (30) follows from Hoeffding’s inequality and the fact that:921

||MCn(x,y)− Amor(x,y)||2 ≤ ||MCn(x,y)||+ ||Amor(x,y)|| ≤ 2Cd. (31)

Second, we recall that E
[
||MCn′

(X,Y )− HQ(X,Y )||2
]
= µ∗ ≤ µ2ϵ2

5 . Then, we have that922

Pr

 1

|Qi|
∑

(x,y)∈Dval
sh(x)∈Qi

||HQ(x,y)− Amor(x,y)||2 ≥ ϵ2
µ2

4

 (32)

=Pr

 1

|Qi|
∑

(x,y)∈Dval
sh(x)∈Qi

||HQ(x,y)− Amor(x,y)||2 − µ∗ ≥ ϵ2
µ2

4
− µ∗

 (33)

≤Pr

 1

|Qi|
∑

(x,y)∈Dval
sh(x)∈Qi

||HQ(x,y)− Amor(x,y)||2 − µ∗ ≥ ϵ2
µ2

20

 (34)

≤e
−µ4ϵ4|Qi|

400Cd . (35)

Where the inequality in (35) follows from Hoeffding’s inequality and the fact that:923

||HQ(x,y)− Amor(x,y)||2 ≤ ||HQ(x,y)||+ ||Amor(x,y)|| ≤ 2Cd. (36)

Third, notice by directly applying Theorem 1 and replacing the Monte Carlo explanation by the924

high-quality explanation, we have that925

λopti =

∑
(x,y)∈Dval
sh(x)∈Qi

⟨MCn(x,y)− HQ(x,y),MCn(x,y)− Amor(x,y)⟩∑
(x,y)∈Dval
sh(x)∈Qi

||MCn(x,y)− Amor(x,y)||2
. (37)
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Hence, we can write λopti − λi as926

|λopti − λi| (38)

=

∣∣∣∣∣∣∣∣
∑

(x,y)∈Dval
sh(x)∈Qi

⟨MCn′
(x,y)− HQ(x,y),MCn(x,y)− Amor(x,y)⟩∑

(x,y)∈Dval
sh(x)∈Qi

||MCn(x,y)− Amor(x,y)||2

∣∣∣∣∣∣∣∣ (39)

≤

(∑
(x,y)∈Dval
sh(x)∈Qi

||MCn′
(x,y)− HQ(x,y)||22||MCn(x,y)− Amor(x,y)||22

)1/2

∑
(x,y)∈Dval
sh(x)∈Qi

||MCn(x,y)− Amor(x,y)||2
, (40)

where the last inequality (40) comes from the Cauchy–Schwarz inequality. Denote the denominator
in (40) by ∆, i.e., ∑

(x,y)∈Dval
sh(x)∈Qi

||MCn(x,y)− Amor(x,y)||2 = ∆.

Lastly, notice that MCn′
(x,y) is sampled independently of MCn(x,y) and that HQ(x,y) is deter-927

ministic. Therefore:928

Pr[|λopti − λi| ≥ ϵ] (41)

≤Pr


(∑

(x,y)∈Dval
sh(x)∈Qi

||MCn′
(x,y)− HQ(x,y)||22||MCn(x,y)− Amor(x,y)||22

)1/2

∑
(x,y)∈Dval
sh(x)∈Qi

||MCn(x,y)− Amor(x,y)||2
≥ ϵ


(42)

≤Pr


∑

(x,y)∈Dval
sh(x)∈Qi

||MCn′
(x,y)− HQ(x,y)||22||MCn(x,y)− Amor(x,y)||22

∆2
≥ ϵ2

 (43)

≤Pr


∑

(x,y)∈Dval
sh(x)∈Qi

||MCn′
(x,y)− HQ(x,y)||22||MCn(x,y)− Amor(x,y)||22

∆2
≥ ϵ2

∣∣∣∣∣∣∣∣∆ ≤ µ

2


× Pr

[
∆ ≤ µ

2

]

+Pr


∑

(x,y)∈Dval
sh(x)∈Qi

||MCn′
(x,y)− HQ(x,y)||22||MCn(x,y)− Amor(x,y)||22

∆2
≥ ϵ2

∣∣∣∣∣∣∣∣∆ >
µ

2


× Pr

[
∆ >

µ

2

]
(44)

≤Pr

 ∑
(x,y)∈Dval
sh(x)∈Qi

||MCn′
(x,y)− HQ(x,y)||22||MCn(x,y)− Amor(x,y)||22 ≥ ϵ2

µ2

4


+ Pr

[
∆ ≤ µ

2

]
(45)

≤e
−µ2|Qi|

4Cd + e
−µ4ϵ4|Qi|

400Cd . (46)
Where the inequality in (42) is a direct application of 40, the inequality in (44) comes from simply929

conditioning, the inequality in (45) comes from the fact that probabilities are bounded by one getting930
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rid of the first term in (45) (first out of lines) and the fourth term in (45) (forth out of lines) and the931

fact that MCn′
(x,y) is sampled independently of MCn(x,y) and that HQ(x,y) is deterministic.932

Finally, the last inequality in (46) comes from applying (30) and (35).933

Hence, from (46), we conclude that934

Pr[|λopti − λi| ≥ ϵ] ≤ e
−µ2|Qi|

4Cd + e
−µ4ϵ4|Qi|

400Cd . (47)

935

Proposition 2 (Coverage for Inference Budget). Let Nbudget ≥ 1 be the set inference budget, and936

assume that the Monte Carlo method MCn(x,y) uses n model inferences. Then, the coverage level937

α should be chosen such that938

argmin
α∈[0,1]

{
E [N(SE(x,y))] ≤ Nbudget

}
=

n+ 1− Nbudget

n
. (48)

Recall that Shapley Value Sampling with parameter m performs 1 + dm inferences (x ∈ Rd), and939

Kernel Shap with parameter m performs m inferences.940

Proof. Let α ∈ [0, 1], then an α portion of examples receive explanations from the amortized941

explainer, i.e., they receive one inference, and 1− α portion of examples receive explanations with942

initial guess, i.e., n model inferences. Therefore, the expected number of model inferences per943

instance is given by (49).944

E [N(SE(x,y))] = α+ (1− α)(n+ 1) (49)

In order for the inference budget to be followed, it is necessary that945

E [N(SE(x,y))] = α+ (1− α)(n+ 1) ≤ Nbudget. (50)

From (50), we conclude that:946

α ≥
n+ 1− Nbudget

n
, (51)

Hence,947

argminα ∈ [0, 1]
{
E [N(SE(x,y))] ≤ Nbudget

}
=

n+ 1− Nbudget

n
. (52)

948
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