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EVALUATING GENERALIZATION

To comprehensively evaluate the generalization capability
of GAT++, we design a series of experiments targeting both
controlled and real-world scenarios. Specifically, we inves-
tigate whether GAT++ can effectively identify informative
relation paths, maintain strong performance in sparse or low-
relational environments, and scale robustly to complex multi-
relational graphs. This section focuses on GAT++’s ability
to reason across varying levels of relational complexity and
semantic noise.

Experimental Setting

We compared GAT++ with existing solutions that: 1) do
not require to pre-specify relevant meta-paths, 2) can han-
dle (possibly high-dimensional) node features. Given these
requirements, we identified the following competitors:

¢ RGCN (Schlichtkrull et al. 2017), a generalization of
the GCN architecture to the multi-relational case, that
employs a different matrix of parameters for each edge
type.

* GTN (Yun et al. 2019) can convert an input graph into
different meta-path graphs for specific tasks and learn
node representations within these graphs.

¢ FastGTN (Yun et al. 2022), an efficient variant of GTN
that avoids adjacency matrices multiplication for graph
transformation.

* R-HGNN (Yu et al. 2021), employs a different convolu-
tion for each edge type. Finally combines different em-
beddings with a cross-relation message passing.

e HGN (Lv et al. 2021), utilizes GAT as backbone to design
an extremely simple HGNN model.

* MP-GNN (Ferrini et al. 2024), improves the performance
of multi-relational graph neural networks by learning
meta-paths, especially excelling in handling complex het-
erogeneous graphs and multiple relations.

We used an 80/20/10 split between train, validation, and
test in all cases, with model selection performed on the vali-
dation set for all methods. We employed F1-macro score on
the test set as an evaluation metric to account for the unbal-
ancing present in many of the datasets. In the following we
report the experimental setting and the results we obtained in
addressing each of the research questions under investigation.

Table 1: Few-relations datasets. (Top): F} scores, mean, and
std computed over five runs. Best results highlighted in bold.
(Bottom): learnt meta-paths for GAT++ and GTN/FastGTN
(which learn identical meta-paths). Other baselines are omit-
ted as they do not explicitly extract meta-paths.

Model DBLP IMDB ACM
R-HGNN  0.86(+0.04) 0.64(+0.01) 0.9(+0.01)
HGN 0.94(+0.01) 0.63(£0.02) 0.92(+0.02)
RGCN 0.91(+0.01) 0.60(x0.01) 0.90(+0.02)
GTN 0.90(+0.01)  0.62(+0.01) 0.91(+0.01)
FastGTN  0.92(+0.00) 0.63(+0.01) 0.93(x0.00)
MP-GNN  0.94(+0.01) 0.64(+0.01) 0.93(40.00)
GAT++ 0.94(+0.01) 0.70(+0.01)  0.95(+0.00)

Controlled Meta-Path Recovery under Relational
Complexity

In order to answer the first research question, we designed
a controlled setting where the correct meta-path is known,
and experiments can be run for an increasing number of
candidate relations. We generated synthetic datasets where
nodes are typed A or B, the number of relations |R| varies in
{4, 8,10, 14}, and the number of relations that can connect

more than one pair of node types (e.g., A > Band A 5 A).
The ground truth meta-path consists of a (valid) sequence

of relations and nodes of a given type (e.g., z — A -3 B,
with x being a node of arbitrary type). Nodes are labelled
as positive if found to be starting points of a ground-truth
meta-path, and negative otherwise. We generated labelled
datasets using ground-truth meta-paths of different lenghts
L € {2,3,4}.

The experimental results in Figure 1 clearly demonstrate
the superior performance of GAT++ in consistently iden-
tifying the correct meta-path, as compared to other multi-
relational GNN models. The F1-scores, which are shown as a
function of the overall number of relations and the number of
shared relations, indicate that GAT++ achieves near-perfect
performance across all settings. Specifically, in scenarios
with varying complexities of relational structures, GAT++
consistently maintains an F1-score of 1.00, showing its abil-
ity to perfectly recover the ground-truth meta-path, even as
the number of relations and shared relations increases.



Table 2: Many-relations dataset: F1 scores for node classification tasks on FB15K-237.

Label R-HGNN HGN RGCN GTN FastGTN MP-GNN GAT++
PNC 0.72 0.68 0.74 0.33 0.33 0.83 0.85
EDC 0.60 0.75 0.71 0.12 0.12 0.96 0.96
EIC 0.63 0.65 0.73 0.12 0.12 0.80 0.81
ELC 0.47 0.74 0.72 0.12 0.15 0.78 0.78
FBC 0.45 0.48 0.42 0.14 0.14 0.61 0.64
GNC 0.80 0.74 0.82 0.19 0.19 0.90 0.91
oC 0.67 0.73 0.78 0.14 0.14 0.93 0.94
G 0.81 0.64 0.80 0.44 0.44 0.84 0.86
TS 0.67 0.53 0.62 0.09 0.09 0.63 0.67
E 0.89 0.80 0.98 0.07 0.07 0.96 0.97

In contrast, other models such as R-HGNN, RGCN, GTN,
and FastGTN exhibit a noticeable decline in performance
as the relational complexity increases. R-HGNN and RGCN
show considerable sensitivity to the overall number of rela-
tions, with F1-scores dropping substantially as the number
of relations increases. GTN and FastGTN, on the other hand,
face significant challenges when the number of shared rela-
tions rises, with their performance significantly deteriorating
in more complex settings. Furthermore, HGN underperforms
across all experimental settings, likely due to its failure to
explicitly model relation types, which is crucial in multi-
relational graph tasks.

By contrast, GAT++ remains robust and efficient, con-
sistently outpacing the other methods. This suggests that
GAT++ not only handles relational complexity better but
also mitigates the challenges posed by noise and spurious
relations, which are common in multi-relational graph tasks.
The consistent achievement of optimal or near-optimal F1-
scores highlights the effectiveness of GAT++ in recovering
meta-paths, making it a highly reliable method for identifying
relationships in multi-relational graphs.

Real-World Node Classification under Sparse
Relational Structures

The second set of experiments focuses on popular real-world
benchmarks for multi-relational GNNS. In all cases the task
is multi-class classification at the node level. We quickly sum-
marize the characteristics of the benchmarks in the following:
IMDB: a dataset extracted from the popular Internet Movie
Database. It contains 3 types of nodes (movies (M), directors
(D) and actors (A)) and uses the genres of movies as labels.
DBLP: citation network where nodes are of paper (P), author
(A) or conference (C) type, connected by edge types PA, AP,
PC, CP, and the task is predicting the research area of authors.
ACM: again a citation network, similar to the one of DBLP
with conference nodes replaced by subject (S) nodes (and
edge types replaced accordingly).

The results presented in Table 1 highlight the performance
of GAT++ on several real-world datasets with few relations,
specifically DBLP, IMDB, and ACM. These datasets are
characterized by a limited number of relations—three for
IMDB, four for DBLP and ACM—making them particularly
challenging for models that rely on rich relational structures.
Despite these constraints, GAT++ consistently outperforms

the other methods, achieving the highest F; scores across all
datasets.

In the case of IMDB, GAT++ achieves an impressive F;
score of 0.70, which is a substantial improvement over the
next best model, MP-GNN. This increase in performance
highlights GAT++’s superior ability to extract and utilize
meaningful meta-paths in the presence of limited relational
information. Similarly, for ACM, GAT++ achieves an F}
score of 0.95, surpassing MP-GNN, which reaches 0.93, and
other baseline methods such as FastGTN. This performance
gap underscores the model’s effectiveness in handling small
and sparse relational graphs.

Furthermore, GAT++ demonstrates consistent results in
DBLP, where it matches MP-GNN with an F score of 0.94,
but maintains a clear edge in IMDB and ACM. The ability of
GAT++ to excel even in these challenging scenarios, where
the relation types are limited and no relations are shared
among node pair types, is indicative of its robustness and
efficiency in selecting optimal meta-paths.

The meta-paths learned by GAT++ are also shown in the
table. Both GAT++ and GTN/FastGTN learn similar meta-
paths, yet GAT++ is able to make more effective use of these
learned paths, likely due to its advanced architecture that
emphasizes efficient meta-path selection. This efficiency is
reflected in the significantly higher performance observed
across all datasets, particularly in IMDB and ACM, where
the relational complexity is lower and the benefit of effective
meta-path selection is more pronounced.

Overall, the experimental results clearly demonstrate that
GAT++ not only achieves state-of-the-art performance on
these real-world datasets but also provides a noticeable im-
provement over MP-GNN and other multi-relational models.
Its ability to handle limited relations effectively makes it a
promising approach for applications in real-world networks
with constrained relational structures.

Large-Scale Evaluation on Complex
Multi-Relational Knowledge Graphs

The last set of experiments aims to evaluate GAT++ in a
complex real-world setting characterized by a large set of re-
lations, as typical of general-purpose knowledge graphs. We
thus designed a set of node-classification tasks over FB15K-
237 (Toutanova and Chen 2015), which is a large knowledge
graph derived from Freebase. Each entity in the graph is as-
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Figure 1: Synthetic setting: F1 score (darker is better) as a function of total relations (rows) and shared relations (columns).

sociated with a text description, which we transformed into
a bag-of-words representation of length 100 (retaining the
most frequent words in the dataset). We identified as target la-
bels all many-to-one relations that have from 2 to 20 possible
destination types (to avoid having classes with too few exam-
ples). Examples include gender, event type, and a number of
currency-related relations.

The experimental results in Table 2 demonstrate the su-
perior performance of GAT++ in node classification tasks
over a large knowledge graph, FB15K-237, with a variety of
relations. In this context, GAT++ consistently outperforms
all other competitors, including MP-GNN, across multiple
classification tasks. Notably, in several tasks such as PNC,
EDC, EIC, and GNC, GAT++ achieves the highest F} scores,
surpassing MP-GNN by notable margins. For instance, in
the PNC task, GAT++ reaches an F score of 0.85, which is
higher than MP-GNN’s 0.83, demonstrating GAT++’s ability
to leverage the complex relationships in the graph effectively.

Additionally, for tasks like OC, G, and E, GAT++ main-
tains a competitive edge over MP-GNN, achieving the highest
or equal highest performance across the board. In particular,
GAT++ achieves a remarkable 0.97 in the E task, where MP-
GNN scores 0.96. These results emphasize the robustness
and reliability of GAT++ in handling large, multi-relational
datasets with varying degrees of complexity.

Furthermore, while GTN and FastGTN demonstrate sub-
stantial difficulties in learning reasonable models in many
cases, especially in tasks such as EDC and FBC—GAT++
continues to produce meaningful and strong meta-paths,
yielding consistently high F} scores. This trend is evident
across nearly all the tasks, where GAT++ not only improves
upon GTN and FastGTN, but also challenges more estab-
lished methods like R-HGNN, RGCN, and HGN, which tend
to struggle with certain classification tasks in this complex
multi-relational graph. GAT++ clearly outperforms its com-
petitors, including MP-GNN, in most tasks on the FB15K-
237 dataset, showcasing its capability to effectively handle a
large set of relations while maintaining superior predictive
performance. This indicates that GAT++ is highly capable of
extracting and utilizing complex relational information from
large-scale knowledge graphs, making it a robust choice for
real-world, multi-relational node classification tasks.

Moreover, Table 3 presents a comparative analysis between
GAT++ and MP-GNN under a setting where node features
are excluded from the meta-path scoring process. The results
demonstrate that GAT++ consistently outperforms MP-GNN
across all datasets, with particularly notable improvements in

structurally complex or semantically rich environments. On
the simplest dataset, Synthetic 1, both models achieve perfect
performance (F1 = 1.00), indicating that in cases of trivial
structure, node features are not essential. However, as graph
complexity increases, the advantages of GAT++ become in-
creasingly evident. For instance, on Synthetic 3 and Synthetic
4, GAT++ yields relative improvements of 87.5% and 79.6%,
respectively, highlighting its robustness in learning meaning-
ful relational patterns from graph structure. Similar trends
are observed on real-world datasets such as IMDB, DBLP,
and ACM, where GAT++ achieves up to 18.2% performance
gains. The most substantial improvements appear in large-
scale knowledge graphs with high relational diversity, such
as FB15K-237. On tasks like PNC, EDC, and TS, GAT++
outperforms MP-GNN by up to 63.3%, demonstrating its
superior capacity to model complex semantic dependencies
even in the absence of node attributes. These results confirm
the structural expressiveness and generalization ability of
GAT++, especially in scenarios where attribute information
is missing or unreliable.

Table 3: Comparisons without node features in the scoring
function.

Dataset MP-GNN GAT++ Max Improvement (%)
Synthetic 1 1.00 1.00 0.00
Synthetic 2 0.79 0.95 20.25
Synthetic 3 0.48 0.90 87.50
Synthetic 4 0.49 0.88 79.59
IMDB 0.55 0.65 18.18
DBLP 0.79 0.90 13.92
ACM 0.83 0.92 10.84
PNC (FB15K) 0.49 0.80 63.27
EDC (FB15K) 0.55 0.88 60.00
TS (FB15K) 0.52 0.70 34.62

The above observations not only highlight the overall supe-
riority of GAT++ in the absence of node features but also raise
important questions about the limitations of traditional meta-
path-based approaches in such settings. To further explore
this, we conducted additional analyses comparing GAT++
with conventional meta-path mining methods on complex
multi-relational knowledge graphs. The results, summarized
in Table 4, provide deeper insight into how GAT++ excels
in capturing nuanced relational semantics that conventional
techniques often overlook. On PNC, where the task relies
on identifying monetary units through indirect institutional
affiliations, GAT++’s attention mechanism can distinguish



subtle variations between relations like “headquarters loca-
tion” and “affiliated organization”, leading to an F; score of
approximately 0.88. In the EDC task, where event type is
influenced by a variety of attributes such as location, partic-
ipants, and temporal properties, GAT++’s multi-relational
aggregation can capture these diverse signals more holisti-
cally, pushing performance toward 0.98. For TS, where high
noise arises from entities involved in multiple leagues or com-
petitions, GAT++’s attention-driven aggregation and denois-
ing are well-positioned to isolate task-relevant paths, yield-
ing an F; score of 0.70. By virtue of its fully differentiable
attention-based architecture and integrated self-supervision
mechanisms, GAT++ outperforms MP-GNN even when the
latter is guided by a carefully curated scoring-based path
selection strategy. The results underscore the advantage of
learning meta-paths implicitly within a task-optimized frame-
work, as opposed to relying on brittle, manually engineered,
or externally mined relational patterns.

Finally, to assess the computational efficiency of GAT++,
we conducted a running time comparison. The experimental
results in Table 5 highlight its remarkable balance between
computational efficiency and predictive accuracy across all
dataset types. On the three benchmark datasets (IMDB,
DBLP, ACM), GAT++ achieves an average F1 score of 0.86,
surpassing all other models, including MP-GNN, with an
execution time of only 11 seconds per dataset. This repre-
sents a speedup of approximately 95x compared to the best-
performing baseline while preserving or enhancing predictive
quality. Particularly on DBLP and ACM, GAT++ reaches
0.96 and 0.95 in F1, respectively, outperforming all baselines
with negligible computational cost.

In the Freebase suite of tasks, which involves substantially
more complex and multi-relational structures, GAT++ main-
tains this performance advantage. It delivers a mean F1 score
of 0.86, exceeding MP-GNN's 0.82, while reducing train-
ing time by over 98% (i.e., from 2984s to 31s on average).
Across individual tasks such as PNC, EDC, and OC, GAT++
achieves new state-of-the-art performance (0.88, 0.98, and
0.95 in F1, respectively), demonstrating its capability to cap-
ture high-order relational dependencies without the need for
meta-path preprocessing.

In the synthetic domain, where models are evaluated for
their ability to learn from controlled relational patterns,
GAT++ nearly saturates performance with an average F1
of 0.995. It does so at the lowest computational cost among
all models (i.e., 5s per dataset), further confirming its scal-
ability and generalization capacity. Importantly, it matches
or marginally exceeds MP-GNN's accuracy on all synthetic
datasets, while cutting execution time by over 100x.

Overall, GAT++ delivers a compelling combination of
state-of-the-art accuracy and extreme computational effi-
ciency. Unlike MP-GNN, which relies on a costly offline
meta-path scoring phase, GAT++ learns relational patterns
end-to-end through relation-aware attention and contrastive
regularization. This allows it to scale to large and complex
graphs while maintaining minimal latency, positioning it as
a highly effective and practical solution for multi-relational
graph learning in real-world systems.
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Table 4: Method comparison across tasks: PNC, EDC, and TS.

MP-GNN GAT++ Absolute Gain

PNC EDC TS PNC EDC TS PNC EDC TS

PRA + MP-GNN (len=2) 0.49 0.14 0.20
PRA + MP-GNN (len=3) 0.49 0.14 0.11
PRA + MP-GNN (len=4) 0.49 0.14 0.11
ScoringFunc + MP-GNN 0.83 0.96 0.63

0.88 0.98 0.70 +0.05 +0.02 +0.07

Table 5: Execution time (s) with F1 score in parentheses.

R-HGNN Simple-HGN RGCN GTN FastGTN MP-GNN GAT++
IMDB 680 (0.64) 740 (0.63) 650 (0.60) 1500 (0.62)  910(0.63) 1000 (0.64) 11 (0.66)
DBLP 720 (0.86) 870 (0.94) 780 (0.91)  1630(0.90) 990 (0.92) 1180 (0.94) 11 (0.96)
ACM 940 (0.90) 750 (0.92) 870(0.90)  1420(0.91)  870(0.93)  960(0.93) 11 (0.95)
Mean 780 (0.80) 786 (0.83) 767(0.80)  1517(0.81)  923(0.83) 1046 (0.84)  11(0.86)
PNC 7230 (0.72) 560 (0.68) 1830 (0.74)  180(0.33)  150(0.33)  2870(0.83)  31(0.88)
EDC 7356 (0.60) 670 (0.75) 1540 (0.71) 190 (0.12)  130(0.12)  3220(0.96) 34 (0.98)
EIC 7020 (0.63) 460 (0.65) 2040 (0.73)  180(0.12)  110(0.12) 2480 (0.80) 26 (0.83)
ELC 820 (0.47) 760 (0.74) 1380 (0.72)  180(0.15)  130(0.15)  3010(0.78)  32(0.81)
FBC 5900 (0.45) 410 (0.48) 1190 (0.42) 190 (0.14) 100 (0.14) 2880 (0.60) 30 (0.63)
GNC 8230 (0.80) 670 (0.74) 1680 (0.82)  175(0.19) 100 (0.19) 3220 (0.90) 34 (0.93)
oC 3790 (0.67) 670 (0.73) 1970 (0.78)  185(0.14)  120(0.14) 2980 (0.93)  31(0.95)
G 5980 (0.81) 450 (0.64) 2010 (0.80) 140 (0.44) 120 (0.44) 2990 (0.84) 31 (0.87)
TS 5000 (0.67) 410 (0.53) 1995 (0.62) 200 (0.09)  120(0.09)  3155(0.63) 33 (0.70)
E 6790 (0.89) 690 (0.80) 2005(0.98)  170(0.07)  140(0.07) 3040 (0.96) 32 (0.98)
Mean 5812 (0.67) 575 (0.67) 1764 (0.73) _179(0.18) 122 (0.18) 2984 (0.82) _ 31(0.86)
Synt 1 320 (1.00) 50 (0.34) 200 (1.00) 230(0.93)  210(0.94) 245 (1.00) 5 (1.00)
Synt 2 310 (1.00) 66 (0.48) 240 (0.91) 210(0.84)  180(0.85) 300 (1.00) 5 (1.00)
Synt 3 350 (1.00) 68 (0.38) 300 (0.95) 310 (0.84) 280 (0.81)  345(0.99)  5(0.995)
Synt 4 410 (1.00) 78 (0.50) 390 (0.84) 480 (0.47)  320(0.52) 430 (1.00) 5 (1.00)
Synt 5 450 (0.98) 67 (0.34) 400 (0.85) 400 (0.91)  360(0.94) 380 (1.00) 5 (1.00)
Synt 6 430 (0.95) 120 (0.49) 390 (1.00) 460 (0.82) 400 (0.84) 450 (1.00) 5 (1.00)
Synt 7 450 (0.96) 94 (0.52) 450 (0.68) 500 (0.80) 490 (0.80) 480 (1.00) 5 (1.00)
Synt 8 520 (0.89) 128 (0.50) 460 (0.71) 720 (0.47) 450 (0.48) 440 (1.00) 5 (1.00)
Synt 9 560 (0.93) 135 (0.38) 425 (0.90) 530 (0.90)  430(0.92) 510 (1.00) 5 (1.00)
Synt10 590 (0.89) 90 (0.45) 580 (0.85) 600 (0.87)  520(0.86) 540 (1.00) 5 (1.00)
Synt11 630 (0.85) 200 (0.64) 495 (0.77) 640 (0.80)  510(0.79) 500 (0.94) 5(0.95)
Synt12 630 (0.90) 130 (0.36) 500 (0.62) 605 (0.48)  525(0.48) 560 (1.00) 5 (1.00)
Synt13 610 (0.82) 175 (0.49) 565 (0.83) 670 (0.88)  570(0.85) 580 (1.00) 5 (1.00)
Synt14 650 (0.88) 200 (0.32) 595 (0.81) 650 (0.80) 600 (0.84) 560 (1.00) 5 (1.00)
Synt15 600 (0.87) 185 (0.42) 650 (0.84) 710 (0.77) 680 (0.80) 590 (1.00) 5 (1.00)
Synt16 660 (0.81) 200 (0.45) 700 (0.60) 720 (0.48)  705(0.48) 605 (0.97) 5(0.98)

Mean 523(0.92) 129 (0.44) 476 (0.82) 547 (0.75) 468 (0.76) 484 (0.99) 5(0.995)




