
A PROOFS

A.1 PROOF OF THEOREM 1

Proof. Let α and (1−α) be the prior probabilities of positive and negative examples under pθ(xt; t).
Note that α remains independent of t because

α =

∫
pθ(xt; t)pθ(x0|xt)pθ(y = 1|x0) dx0 dxt =

∫
pθ(xt; t)pθ(x0|xt)O(x0) dx0 dxt

=

∫
pθ(x0,xt; t)O(x0) dx0dxt =

∫
pθ(x0; 0)O(x0) dx0.

The objective in Eq. (9) is equal to

−Et
[
Epθ(xt)

[
Epθ(x0|xt) [O(x0)] logCϕ(xt; t) + Epθ(x0|xt) [(1−O(x0))] log(1− Cϕ(xt; t))

]]
= −Et

[
Epθ(xt) [p(y = 1|xt) logCϕ(xt; t) + p(y = 0|xt) log(1− Cϕ(xt; t))]

]
(14)

This is equivalent to Eq. (6) after replacing q with pθ, i.e. sampling from the reverse process instead
of the forward. Therefore, its optimal solution follows Eq. (7). Hence,

∇xt
log pθ(xt; t) +∇xt

logCϕ∗(xt; t)

=∇xt
log pθ(xt; t) +∇xt

logαpθ(x|y = 1; t)

−∇xt
log
[ pθ(xt;t)︷ ︸︸ ︷
αpθ(xt|y = 1; t) + (1− α)pθ(xt|y = 0; t)

]
=∇xt

logαpθ(xt|y = 1; t) = ∇xt
log pθ(xt|y = 1; t)

A.2 PROOF OF COROLLARY 1.1

Proof. Since pθ,ϕ∗ is defined as the distribution generated by simulating the SDE in equation 2, its
score function∇xt

log pθ,ϕ∗(xt; t) is by definition equal to sθ,ϕ∗(xt; t) (Risken & Risken, 1996; Song
& Ermon, 2019). Similarly for the baseline DM we have sθ(xt; t) = ∇xt log pθ(xt; t). Therefore,

∇xt log pθ,ϕ∗(xt; t) = sθ,ϕ∗(xt; t)
Eq. (8)
== sθ(xt; t) +∇xt logCϕ∗(xt; t) (15)

= ∇xt log pθ(xt; t) +∇xt logCϕ∗(xt; t)
Thm. 1
== ∇xt log pθ(xt|y = 1) (16)

Here we derived sθ,ϕ∗(xt; t) = ∇xt
log pθ(xt|y = 1). By (Anderson, 1982), we proved the first

statement.

The second statement follows by decomposing pθ(xt|y = 1):

pθ,ϕ∗(x) = pθ(x|y = 1) ∝ pθ(x)O(x) ⇒ pθ,ϕ∗(x) = 0 ∀x ∈ Ω∁.

For the last statement, we have

pθ,ϕ∗(x) = pθ(x)O(x)∫
pθ(x)O(x) dx∫

pθ(x)O(x) dx ≤ 1

⇒ pθ,ϕ∗(x) ≥ pθ(x) ∀x ∈ Ω

D⊆Ω
=⇒ log pθ,ϕ∗(D) =

∑
x∈D

log pθ,ϕ∗(x) ≥
∑
x∈D

log pθ(x) = log pθ(D).

We demonstrate this corollary with a one-dimension density in Fig. 4. We show a “base distribution”
p(x) and the positive and negative regions Ω and Ω∁, respectively. We can see that the distribution
p(x|y = 1) assigns no mass to Ω∁ and has a larger mass assigned to any point in Ω.
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Figure 4: We use this one-dimensional density plot to show how we guide the generation process
towards the positive support region indicated by the oracle. The original density curve p(x) is a
mixture of two Gaussian distributions, and we depicts the region in cyan as the eligible support
restricted by oracle function, otherwise in buff. Ideally, the well-behaved Bayes optimal classifier
helps to target exactly the score function of oracle-approved examples such that the resulting density
function p(x|y = 1) only lands in the cyan area and assigns zero probability outside this region.

A.3 EQUIVALENCE OF CROSS-ENTROPY LOSS MINIMIZATION AND KL DIVERGENCE
MINIMIZATION

This is a well-known result in the literature. Nonetheless, we include the result and its proof here for
completeness and ease of reference.

Claim: minimizing the cross-entropy loss between the classifier output and the true label is equivalent
to minimizing the KL divergence between the classifier output and the Bayes optimal classifier.

Proof. The Bayes optimal classifier C∗(xt; t) approximates q(y = 1|xt). Let pϕ(y|xt) be the
distribution represented by the learned classifier Cϕ(xt; t) i.e., pϕ(y = 1|xt) = Cϕ(xt; t). For an
arbitrary diffusion time step t, the expected KL divergence between the Bayes optimal and the learned
classifier therefore is

Eq(xt) [KL (q(y|xt)||pϕ(y|xt))]

= Eq(xt)

[
Eq(y|xt)

[
q(y|xt) log

q(y|xt)
pϕ(y|xt)

]]
(17)

= Eq(xt)

[
q(y = 1|xt) log

q(y = 1|xt)
Cϕ(xt; t)

+ q(y = 0|xt) log
q(y = 0|xt)
1− Cϕ(xt; t)

]
(18)

= Eq(xt) [H(q(y|xt))]− Eq(xt) [q(y = 1|xt) logCϕ(xt; t) + q(y = 0|xt) log(1− Cϕ(xt; t))] .
(19)

The first term is the expected entropy of the optimal classifier and is independent of ϕ. Therefore,

argmin
ϕ

Eq(xt) [KL (q(y|xt)||pϕ(y|xt))]

= argmin
ϕ

−Eq(xt) [q(y = 1|xt) logCϕ(xt; t) + q(y = 0|xt) log(1− Cϕ(xt; t))] (20)

= argmin
ϕ

CE(q(y|xt), pϕ(y|xt)). (21)

Note that Eq. (6) is the expected cross entropy for different time steps t.
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A.4 CONNECTION BETWEEN EQ. (9) AND EQ. (11)

In this section we make the connection between Eq. (6) and Gen-neG’s objective (Eq. (11)) more
clear. The objective in Eq. (9), ignoring the outer expectation with respect to t, is equal to

−
(
Epθ(x0,xt) [O(x0) logCϕ(xt; t) + (1−O(x0)) log(1− Cϕ(xt; t)]

)
(22)

= −
∫
pθ(x0,xt)

(
p(y = 1|x0) logCϕ(xt; t) + p(y = 0|x0) log(1− Cϕ(xt; t))

)
dx0dxt (23)

= −
∫
pθ(y = 1)pθ(x0|y = 1)pθ(xt|x0) logCϕ(x; t) dx0dxt

+

∫
pθ(y = 0)pθ(x0|y = 0)pθ(xt|x0) log(1− Cϕ(xt; t)) dx0dxt (24)

≈ −
∫
pθ(y = 1)pθ(x0|y = 1)q(xt|x0) logCϕ(x; t) dx0dxt

+

∫
pθ(y = 0)pθ(x0|y = 0)q(xt|x0) log(1− Cϕ(xt; t)) dx0dxt (25)

= p(y = 1)Epθ(x0|y=1)

[
Eq(xt|x0) [− logCϕ(xt; t)]

]
+ p(y = 0)Epθ(x0|y=0)

[
Eq(xt|x0) [− log(1− Cϕ(xt; t))]

]
(26)

Noting that α := p(y = 1) recovers Eq. (11).

A.5 GEN-NEG’S OBJECTIVE FUNCTION

Here we show why Eq. (12) is an importance sampling estimator of the original objective function in
Eq. (11).

Lcls
ϕ (α) := αEpθ(x0|y=1)

[
Eq(xt|x0) [− logCϕ(xt; t)]

]
+ (1− α)Epθ(x0|y=0)

[
Eq(xt|x0) [− log(1− Cϕ(xt; t))]

]
(27)

= − Epθ(y)
[
Epθ(x0|y)

[
Eq(xt|x0) [y logCϕ(xt; t) + (1− y) log(1− Cϕ(xt; t)]

]]
. (28)

Now we apply importance sampling to pθ(y) by sampling from π(y) as the proposal distribution.
Therefore,

Lcls
ϕ (α) = − Epθ(y)

[
Epθ(x0|y)

[
Eq(xt|x0) [y logCϕ(xt; t) + (1− y) log(1− Cϕ(xt; t)]

]]
(29)

= − Eπ(y)
[
pθ(y)

π(y)
Epθ(x0|y)

[
Eq(xt|x0) [y logCϕ(xt; t) + (1− y) log(1− Cϕ(xt; t)]

]]
(30)

=
pθ(y = 1)

π(y = 1)
Epθ(x0|y=1)

[
Eq(xt|x0) [− logCϕ(xt; t)]

]
+
pθ(y = 0)

π(y = 0)
Epθ(x0|y=0)

[
Eq(xt|x0) [− log(1− Cϕ(xt; t))]

]
(31)

= Epθ(x0|y=1)

[
α

π(y = 1)
Eq(xt|x0) [− logCϕ(xt; t)]

]
+ Epθ(x0|y=0)

[
1− α

π(y = 0)
Eq(xt|x0) [− log(1− Cϕ(xt; t))]

]
(32)

In our case, π(y) is a uniform Bernoulli distribution i.e., π(y = 1) = π(y = 0) = 0.5. Therefore,
minimizing Eq. (12) is equivalent to minimizing a Mone Carlo estimate of Eq. (32).
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A.6 ERROR BOUND ON THE PRIOR PROBABILITY OF POSITIVE EXAMPLES α

In practice, the prior probability of generating positive samples α = p(y = 1) is not accessible,
and we use an empirical α̂ obtained from the generated synthetic dataset to estimate it. Here is the
statistical analysis for the difference of joint log-probability based on true and estimated α.

Lemma 1. (Delta method) Suppose θ̂n follows an asymptotic normal distribution,
√
n(θ̂n − θ)

converges to N (0, σ2) in distribution as n → ∞ , then if g is a continuous function with a well-
defined first derivative at θ and g′(α) ̸= 0, then

√
n(g(θ̂n)− g(θ)) D−→ N (0, (g′(θ))2σ2). (33)

Proof. By Taylor approximation expansion,

g(θ̂n) ≈ g(θ) + g′(θ)(θ̂n − θ)⇒
√
n(g(θ̂n)− g(θ)) ≈

√
ng′(θ)(θ̂n − θ) (34)

by subtracting g(θ) and multiplying
√
n on the both sides. Therefore,

√
n(g(θ̂n) − g(θ))

D−→
N (0, (g′(θ))2σ2).

Given a fully synthetic dataset of sizeN , we estimate αwith α̂ = 1
N

∑
i 1[yi = 1], and its expectation

and variance are:

E [α̂] = E

[
1

N

∑
i

1[yi = 1]

]
=

1

N

∑
i

E [1[yi = 1]] =
1

N

∑
i

pθ(yi = 1) = α (35)

Var [α̂] = Var

[
1

N

∑
i

1[yi = 1]

]
=

1

N2

∑
i

(
E
[
1
2[yi = 1]

]
− (E [1[yi = 1]])

2
)
=
α− α2

N

(36)

Let N →∞, by central limit theorem (CLT), we have α̂ D−→ N
(
α, α−α

2

N

)
. If α−α

2

N → 0, we have
α̂→ α, then by Theorem 1, the joint log-probability is:

log pθ(xt; t, α) + logCϕ∗(xt; t, α) = log(αpθ(xt|y = 1, t) + (1− α)pθ(xt|y = 0, t))

+ log

(
αpθ(xt|y = 1, t)

αpθ(xt|y = 1, t) + (1− α)pθ(xt|y = 1, t)

)
(37)

= logα+ log pθ(xt|y = 1, t) (38)

otherwise,

log pθ(xt; t, α) + logCϕ∗(xt; t, α̂) = log(αpθ(xt|y = 1, t) + (1− α)pθ(xt|y = 0, t))

+ log

(
α̂pθ(xt|y = 1, t)

α̂pθ(xt|y = 1, t) + (1− α̂)pθ(xt|y = 1, t)

)
(39)

= log

(
αpθ(xt|y = 1; t) + (1− α)pθ(xt|y = 0; t)

α̂pθ(xt|y = 1; t) + (1− α̂)pθ(xt|y = 0; t)

)
+ log α̂+ log pθ(xt|y = 1, t) (40)

The difference between Eq. (40) and Eq. (38) is:

ℓ(xt; t, α̂) =

∣∣∣∣log( α̂α
)
− log

(
α̂pθ(xt|y = 1; t) + (1− α̂)pθ(xt|y = 0; t)

αpθ(xt|y = 1; t) + (1− α)pθ(xt|y = 0; t)

)∣∣∣∣ (41)

Let g(α) = logα− log
(
αpθ(xt|y = 1; t) + (1− α)pθ(xt|y = 0; t)

)
, then

g′(α) =
1

α
− pθ(xt|y = 1; t)− pθ(xt|y = 0; t)

αpθ(xt|y = 1; t) + (1− α)pθ(xt|y = 0; t)
. (42)

Based on Lemma 1, we have
√
N (ℓ(xt; t, α̂))

D−→ N (0, g′(α)(α− α2)) (43)

where g′(α) follows Eq. (42).
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Figure 5: Architecture of the network in the toy experiment. Left: the overall of the model. Right:
detailed architecture of our “Residual Block”. In this architecture, timestep is embedded using
sinusoidal embedding and all nonlinearities are SiLU. The output of the network Fθ(xt, t) is then
used in a preconditioning function to get an estimate of x0.

B EXPERIMENTAL DETAILS

B.1 TOY EXPERIMENT

Architecture We use a fully connected network with 2 residual blocks as shown in Fig. 5. The
hidden layer size in our experiment is 256 and timestep embeddings (output of the sinusiodal
embedding layer) is 128. Our classifier has a similar architecture, the only difference is that the
classifier has a different output dimension of one. Our baseline DM and classifier networks both have
around 330k parameters.

Training the baseline DM We train our models baseline models on a single GPU, (we use either of
GeForce GTX 1080 Ti or GeForce GTX TITAN X) for 30,000 iterations. We use the Adam optimizer
(Kingma & Ba, 2014) with a batch size of 3× 10−4 and full-batch training i.e., our batch size is 1000
which is the same as the training dataset size.

Training the classifiers Each classifier is trained on a fully-synthetic dataset of 100k samples
which consists of 50k positive and 50k negative samples. This dataset is generated with 100 diffusion
steps. We train the classifier for 20k iterations with a batch size of 8192. We use Adam optimizer
with a learning rate of 3× 10−3.

Distillation The distilled models have the same architecture and hyperparameters as the baseline
DM model. They are trained for 250k iterations on the true dataset with a batch size of 1000. We use
Adam optimizer with a learning rate of 3× 10−4.

Diffusion process We use the EDM framework in this experiment with a preconditioning similar to
the one proposed in Karras et al. (2022). In particular, the following precoditioning is applied to the
the network in Fig. 5, called Fθ(xt, t), to get Dθ(xt; t) which returns an estimate of x0.

Dθ(xt; t) =
σ2

data

σ(t)2 + σ2
data

xt + σ(t)Fθ

(
1√

σ(t)2 + σ2
data

xt;
1

4
ln(σ(t))

)
. (44)

Following (Karras et al., 2022), we simply let σdata = 0.5.

In total, we spent around 250 GPU-hours for this experiment.
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B.2 INFRACTIONS IN TRAFFIC SCENE GENERATION

Overview This section provides additional details for the traffic scene generation task. The
architecture for training the baseline DM model, classifiers and distillation models is majorly based
on transformers introduced by Vaswani et al. (2017) . In particular, the architecture backbone consists
of an encoder, a stack of attention residual blocks, and a decoder. Each of them will be discussed
in detail later. The original data input shape is [B,A, F ] corresponding to A vehicles and F feature
dimensions in a batch with B many scenes.

In terms of parameters, the attention layers comprise the majority portion of the entire architectures
so that the difference in decoder is relatively small, and the resulting architectures all contain
approximately 6.3 million parameters. We use NVIDIA A100 GPUs for training and validating
models, synthetic datasets generation with around 400 GPU-hours in total. We train each model with
a batch size of 64 and Adam optimizer with a learning rate of 10−4.

Encoder and time embeddings To generate input features, we use sinusoidal positional embed-
dings to embed the diffusion time and 2-layer MLP with activation function SiLU to embed the
original data separately into H = 196 hidden feature dimensions. The sum of the two embeddings is
the input that is fed into the attention-based architecture.

Self-attention Layer and Cross-attention Layer The major implementation of multi-head (k = 4)
attention blocks is built on Transformer (Vaswani et al., 2017). Applying self-attention across agents
enables model to learn the multi-agent interactions, while applying map-conditional cross-attention
between agents and map allows agents to interact with the road representations. To prepare road image
for model input, we use a convolutional neural network and a feed-forward network (Carion et al.,
2020) to generate a lower-resolution mapm′ ∈ R196×32×32 from the original imagem ∈ R3×256×256.
Since the transformer architecture is permutation-invariant, we add a 2D positional encoding (Parmar
et al., 2018; Bello et al., 2019) based on m′ on the top of the map representation to preserve the
spatial information of the image.

Relative Positional Encodings (RPEs) During experiments, we find the collision rate is much
higher than the offroad rate. In order to effectively lower the frequency of or completely avoid vehicle
collision occurrence, we attempt to capture the relative positions by performing relative positional
encodings (RPEs) in self-attention residual blocks and enforce the vehicles being aware of the other
vehicles in close proximity in each scene. Following (Shaw et al., 2018; Wu et al., 2021; Harvey
et al., 2022), we compute the distances of each pair of vehicles and summarise into a tensor of
shape [B,A,A], where dbij is the distance between vehicle i and j in the bth scene. We choose to
use sinusoidal embeddings (similar to how we embed diffusion time t) to parameterize dbij rather
than logarithm function fRPE(d

b
ij) = log(1 + dbij), as we need to adequately amplify the pairwise

distances between vehicles when it is comparably small. We perform this operation together with
diffusion time embedding at each diffusion time step, and we regard their sum as the complete
pairwise distance embeddings. The resulting embedding tensor p is of the shape [B,A,A,H], where
pbij is the encoding vector of length H representing the pairwise distance of vehicle i and j in the bth

scene.

In each scene, we have an input sequence, x = (x1, · · · ,xA), and each xi is linearly transformed to
query qi = WQxi, key ki = WKxi and value vi = WV xi. We also apply linear transformation
onto RPEs to obtain query pQij = UQpij , key pKij = UKpij and value pVij = UV pij . Then the add-
on output from the self-attention residual block is the aggregated outputs of the vanilla transformer
and the relative-position-aware transformer:

xoutput
i = xi +

A∑
j=1

αij(vj + pVij) (45)

where αij =
exp(eij)∑A
k=1 exp(eik)

and eij =
q⊤
i kj + pQ

⊤

ij kj + q⊤
i p

K
ij√

dx
(46)

Decoder The settings for baseline, distillation models and classifiers are almost identical except the
decoder for producing the final output. For baseline and distillation models, we apply 2-layer MLP
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Figure 6: Infraction and ELBO estimations from different iterations of Gen-neG and an ablated
version of it without label imbalance correction. Gen-neG achieves a lower infraction rate and a
comparable ELBO.

and reconstruct the output of the shape [B,A,H] from the final attention layer into [B,A,D] through
the decoder. To ensure we output individual label for each vehicle with by-agent classifiers, and a
collective label for a scene with by-scene classifiers, and we conduct the operations as follows. The
decoder takes the hidden representation of the shape [B,A,H] and produces a tensor with feature
dimension F ′ = 1 with a 2-layer MLP, which is the predicted labels from the by-agent classifiers.
For by-scene classifier, we add additional MLP layer to extract the first column from the second
dimension of the by-agent classifier resulting predictions and obtain a tensor of the shape [B, 1, 1].

B.3 MOTION DIFFUSION

We used the official implementation of MDM1 for our Motion Diffusion experiment. For the
baseline DM, we used their officially released best pretrained checkpoint of text to motion task on
HumanML3D dataset. We generate a synthetic dataset of around 250k positive and 250k negative
examples from the baseline DM which is a DDPM-based model with 1000 diffusion steps. We then
define our classifier architecture using their code base. Following our other experiments, our classifier
architecture is the same as the baseline DM model. We train the classifier with a batch size of 256
and a learning rate of 10−4 for 100k iterations. Otherwise, we use the same hyperparameters as in
(Tevet et al., 2023). All the training and data generation is done on A100 GPUs.

To compute the FID scores, in accordance with (Tevet et al., 2023), we generate one motion for each
caption in the HumanML3D test set, resulting in a total of 4,626 generated motions. In contrast to
(Tevet et al., 2023), we refrain from applying classifier-free guidance during the sample generation
process. Subsequently, we calculate the FID score between the generated motions and the ground-
truth motions in the test set. The FID metric quantifies the distance in the latent space of a motion
encoder, which has been pre-trained using contrastive learning (Guo et al., 2022).

The total compute used for this experiment (generating the datasets and training the classifiers) was
around 600 GPU-hours.

C ADDITIONAL RESULTS

C.1 ALTERNATIVE APPROACHES TO CONDITIONAL GENERATION WITH DIFFUSION MODELS

In our journey towards solving this problem, we explored multiple different approaches. Here we
briefly mention a few of the more promising ones.

Data redaction Kong & Chaudhuri (2023) proposes a GAN-based framework for data redaction
relying on the pre-trained generative models, and this is performed by restricting the learned data
distribution within the complement of a specified redaction set. One of the proposed algorithm is to
keep updating the fake dataset with invalid samples from GAN and keep the true dataset fixed. We

1https://github.com/GuyTevet/motion-diffusion-model
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implement this data redaction baseline for our toy experiment and performed network architecture
and hyperparameter tuning to achieve the best baseline results. In line with the results in our paper
we report infraction rate and a metric of faithfulness to the true data distribution. Before we report
ELBO or r-ELBO, but since GANs are implicit generative models i.e., do not provide densities, we
compute the Maximum Mean Discrepancy (MMD) between the generated samples and a held-out
test set instead. To compare it against our method, we computed MMD for our results in the paper as
well.

The best infraction rate we got from this GAN-based baseline was 0.595%. This is better than
the baseline diffusion model in iteration 0 of Gen-neG (5.75%) but Gen-neG outperforms it after
two iterations of guidance, and improves even further in later iterations.In terms of MMD (lower
is better), all iterations of Gen-neG are between 7 × 10−4 and 8.1 × 10−4 while the best MMD
from the GAN baseline is larger than 9.4 × 10−4 (more than 16% worse than the weakest MMD
in Gen-neG). Moreover, visual inspection of quality of samples shows a clear sign of overfitting in
the GAN baseline. For example, samples very close to the boundaries are underrepresented. This
is expected since data redaction only changes the distribution of “fake” samples fed to the GAN
discriminator and the set of “real” samples is always fixed to the training set. Consequently, training
the model longer for data redaction results in a side effect of overfitting to the training set. This is less
of a problem when the training set is large enough which is not the case in our setup. It is in contrast
to Gen-neG where overfitting in the refinement steps does not pose a threat because the training data
for refinement iterations is fully synthetic and abundant.

Diffusion bridges Liu et al. (2023) proposes a framework for diffusion modeling of constrained
domains. Their proposed method requires adding a guidance term to the diffusion process which
comes in form of an expectation. This expectation is only tractable for simple constraints such as the
one in our toy experiment. We applied this method on our toy experiment which lead to practically
zero infraction, without overfitting. As the update term is intractable for the larger scale experiment,
we tried to learn an estimation of it, but we failed to reliably estimate the update term.

Learning in the joint space of (x, y) Inspired by Weilbach et al. (2022), we trained a model
to estimate all the marginals and conditionals on the joint space of (x, y) where q(x|y = 1) is
the training set, q(x|y = 0) is a synthetically generated set of negative examples and q(y = 1)
is a hyper-parameter. We assign a probability vector for choosing a training task among learning
conditional probabilities q(x|y), q(y|x) and joint probability q(x, y) collectively with one architecture
parameterized by θ with implicit classifier learner pθ(y|x). Intuitively, feeding the model with both
positive and negative samples helps the model learn the boundary between the positive region Ω

and negative region Ω∁. At test time, we only sample from pθ(x|y = 1). Our preliminary results
suggested that it helps reducing the infraction rate, but is outperformed by Gen-neG.

C.2 ABLATION ON LABEL IMBALANCE

As mentioned in Section 3.2, naively generating synthetic datasets for training the classifier causes a
major label imbalance issue hinders training of the classifier. In this section we perform an ablation
study to empirically demonstrate its effect in our experiments.

As a reminder, Gen-neG guarantees an equal number of positive and negative examples in the
synthetic datasets, and it employs importance sampling to address any distribution shift introduced.
In the ablated experiment (referred to as "imbalanced" in the results), the ratio of positive to negative
examples is model-dependent, being equal to the model’s infraction rate. It results in a gradual
increase in the dominance of positive examples as the model’s infraction rate decreases.

Toy experiment We repeat our toy experiment with and without Gen-neG’s imbalance correction.
In each iteration, we create a synthetic dataset of 20,000 samples and train a binary classifier for
10,000 iterations. The other details are the same as the experiment in the main text. We show the
performance of these models in Fig. 6. We observe that “imbalaced”, the ablated version of Gen-neG,
is consistently outperformed by Gen-neG in infraction rate. Furthermore, the performance gap
between the two methods widens as the models improve. However, it is worth noting that Gen-neG
achieves a comparable ELBO to that of “imbalanced” despite these infraction rate differences.
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Figure 7: Ablation study for toy experiment on synthetic dataset size

Table 3: Ablation study for the traffic scene generation experiment on synthetic dataset size
Classifier dataset size Collision (%) ↓ Offroad (%) ↓ Infraction (%) ↓ r-ELBO (×102) ↑
baseline DM 28.3± 0.7 1.3± 0.1 29.3± 0.6 −27.5± 0.01

8000 23.8± 0.4 0.9± 0.2 24.5± 0.5 −28.0± 0.01
40000 19.7± 0.8 0.8± 0.2 20.3± 0.9 −27.8± 0.01
80000 17.6± 0.7 0.7± 0.2 18.2± 0.6 −27.7± 0.01
400000 16.6± 0.7 0.8± 0.2 17.5± 0.7 −27.7± 0.01
800000 16.4± 0.5 0.9± 0.1 17.2± 0.4 −27.7± 0.01

Table 4: Results for traffic scene generation, in terms of collision, offroad, and overall infractions as
well as ELBO. Two varieties (“by-scene” and “by-agent”) for the classifier are presented, as well as
results with (Gen-neG) and without importance sampling. The final two rows provide the results of
distilling the models labelled with † and *.

Method Collision (%) ↓ Offroad (%) ↓ Infraction (%) ↓ r-ELBO (×102) ↑
baseline DM 28.3± 0.70 1.3± 0.14 29.3± 0.64 −27.5± 0.01

by-scene 23.3± 0.7 1.0± 0.28 24.1± 0.67 −27.6± 0.01
by-scene imbalanced 23.8± 0.6 1.0± 0.3 24.6± 0.54 −27.6± 0.01

by-agent 16.4± 0.5 0.9± 0.12 17.2± 0.44 −27.7± 0.01
by-agent imbalanced 17.8± 1.21 0.9± 0.16 18.6± 1.3 −27.7± 0.01

Traffic Scene Generation We conduct a similar ablation as described above, where we train
classifiers on a imbalanced datasets of the same size as our method. The results of this ablated
experiment are presented in Table 4, and they are compared with the results reported in the main text.

C.3 ABLATION ON SYNTHETIC DATASET SIZE

We conducted an ablation on the number of samples required on the toy and the initial conditions
tasks. Fig. 7 and Table 3 shows our results. We observe that the infraction rate constantly decreases
irrespective of the dataset size. However, in order to avoid distribution shift we need a large enough
dataset, as is evident from the ELBO plot. It is important to emphasize that the classifiers are trained
on fully synthetic data generated by the model itself. Therefore, in principle we have access to an
unbounded number of samples. As our results show, for the best performance, it is important to
ensure the sample size is sufficiently large.
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Table 5: Computation cost of different experiments
Time per diffusion step (s)

Method Toy Traffic Scenes Motion Diffusion

baseline DM / distilled model 0.002± 1× 10−4 0.032± 9× 10−6 0.083± 2× 10−4

baseline DM + 1 classifier 0.005± 2× 10−4 0.086± 2× 10−5 0.171± 8× 10−4

baseline DM + 2 classifiers 0.008± 2× 10−4 0.138± 3× 10−5 -

(a) (b) (c) (d) (e)

Figure 8: Complete visualization comparisons for infraction in traffic scene generation experiments.
Subplots show infraction per unit area under different models. (a): before Gen-neG is applied; (b):
the second is the a classifier added onto the baseline model; (c): third is a stack of classifiers added
onto the baseline model. (d) and (e) are the distillation models trained to learn the baseline model
with one classifier or a stack of classifiers. A clear reduction in terms of infractions per unit area can
be observed from left to right.

C.4 COMPUTATIONAL COST

We compute the wall-clock time of different iterations of Gen-neG for different experiments and
present the results in Table 5. It is important to note that our distilled model has the same sampling
computational complexity as the baseline diffusion modell, since we use the same architecture for the
distilled model.

For each experiment, we run our model at different interactions on the same machine and report the
time it takes for one forward pass through the model. Table 5 shows the average wall-clock time for
running one denoising step in each of our experiments with a different number of classifiers from
Gen-neG. We observe that additional classifiers linearly increase the running time (for conciseness,
we have not included further iterations of Gen-neG on toy experiments in the table. Its runtime simply
continues growing linearly). Moreover, in the Traffic Scenes and toy experiments, the overhead of
each classifier is larger than the runtime of the baseline model alone (almost 1.5 times). This is
because the architecture of our classifier is the same as the baseline model and for each forward pass
of a classifier-guided model, one forward and one backward pass through the classifier is required.
However, on the Motion diffusion experiment, the overhead of the classifier is relatively smaller. This
is because the model is text-conditional, but the classifier is not. Therefore, the classifier is cheaper to
run.

C.5 MORE VISUALIZATION RESULTS FOR TRAFFIC SCENE GENERATION

In Fig. 8 we report more visualization results from our traffic scene generation experiment. This
figure follows from and adds more details to Fig. 1.

C.6 OVERFITTING IN THE TOY EXPERIMENT

Here we report our results for overfitting the baseline DM in the toy experiment. We run an experiment
with 250,000 training iterations, much larger than the 30,000 iterations in the reported results. As
we can see in Fig. 9, the infraction rate keeps decreasing. However, the model starts overfitting
after around 30,000 iterations, as measure by the ELBO on a held-put set. This suggests that the
architecture is expressive enough to model sharp jumps in the learned density. However, simply
training it on a small dataset without incorporating any prior on “where to allocate its capacity” fails
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Figure 9: Overfitting results in the toy experiment. The plot on the left shows the infraction rate and
the one on the right shows the ELBO on a held-out validation set. We observe that training baseline
DM for longer can achieve much lower infraction rates that reported. However, it quickly starts to
overfit, leading to poor ELBO estimates on the held-out validation set.

because the model does not receive any signal on where the actual “sharp jump” is. Gen-neG, on the
other hand, provides this kind of signal through the oracle-assisted guidance.
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