
Supplementary Material for NeRF Revisited: Fixing
Quadrature Instability in Volume Rendering

Mikaela Angelina Uy1 George Kiyohiro Nakayama1 Guandao Yang1,2
Rahul Krishna Thomas1 Leonidas Guibas1 Ke Li3,4

1Stanford University 2Cornell University 3Simon Fraser University 4Google
{mikacuy, w4756677, guandao, rt03mas, guibas}@stanford.edu, keli@sfu.ca

We conduct further experiments, analysis and discussions on our proposed reformulation, where we
take a piecewise linear approximation to opacity and piecewise constant approximation to color
that results in an integral that is a simple and closed-form expression. This allows us to address
the drawbacks of current piecewise constant assumption in NeRFs such as ray conflicts during
optimization and a non-invertible CDF that lead to imprecise importance samples and vanishing
gradients. We provide additional results in Sec S.1: ablation study (Sec S.1.1), a video demo
(Sec S.1.2), additional results on a real dataset (Sec S.1.3), additional qualitative results (Sec S.1.4),
comparison with PL-DIVeR S.1.5, additional geometric extraction results S.1.6 and comparison with
less number of samples S.1.7. We then provide a walkthrough of the piecewise constant derivation
from (2) (Sec S.2), which is followed by the thorough step-by-step derivation of our piecewsie linear
opacity in volume rendering and precise importance sampling (Sec S.3). We also include analyses
on piecewise quadratic and higher order polynomials in Sec S.4. Finally, we end with additional
implementation and experiment details (Sec S.5), Limitations (Sec S.6) and Societal Impact (Sec S.7).

S.1 Additional Results

S.1.1 Ablation Study

We conduct a further ablation study on our precise importance sampling. As described in Sec. 4 in the
main paper, our piecewise linear opacity approximation allows to solve for a closed-form solution for
inverse transform sampling leading to the formulation of our precise importance sampling. Unlike
the vanilla piecewise constant opacity approximation, our approach results in an invertible CDF, and
hence we do not need to define an invertible surrogate function G for inverse transform sampling
as in piecewise constant opacity (see Eq. 8 of main paper), which does not necessarily result in
samples from the actual ray distribution p(s). We quantitatively ablate the effectiveness of our precise
importance sampling (Precise) by replacing our formulation (Eq. 13 main paper) with the surrogate
function G as in the vanilla constant setting (Surrogate). As shown in Table S1 (first and second
row of each metric), our precise importance sampling consistently outperforms using the surrogate
on all metrics across all 8 scenes in the Blender dataset (hemisphere). Moreover, we also show that
our precise importance sampling enables us to use fewer samples for the fine network as it is able
to sample correctly from the ray distribution. Hence, keeping the same total number of rendering
samples, we are able to achieve a further boost in performance by using 128 coarse and 64 fine
samples as shown in Table S1 (second and third row of each metric). We use Nc and Ni to denote the
number of coarse and fine samples, respectively.

S.1.2 Video Demo

We also ahow a video demo of our results. Please see our project page (pl-nerf.github.io) for the
video (best viewed in full screen). In the mic scene, we observe that the structure inside the mic is
lost in the piecewise constant opacity approximation. Moreover, we see the blurriness along the sides
of the body of the mic caused by ray conflicts from the perpendicular and grazing angle views during
optimization of the vanilla NeRF model. For the chair scene, we see that our PL-NeRF is able to

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://pl-nerf.github.io

Metrics Method Nc Ni Avg. Chair Drums Ficus Hotdog Lego Mat. Mic Ship

PSNR↑
Surrogate 64 128 30.25 31.96 24.69 29.05 35.64 31.32 29.10 32.60 27.59
Precise 64 128 30.87 32.85 24.96 29.61 36.54 32.27 29.35 33.21 28.22
Precise 128 64 31.10 32.92 25.07 30.18 36.46 32.90 29.52 33.08 28.71

SSIM↑
Surrogate 64 128 0.940 0.962 0.914 0.957 0.973 0.953 0.943 0.978 0.841
Precise 64 128 0.946 0.969 0.921 0.961 0.977 0.962 0.947 0.982 0.848
Precise 128 64 0.948 0.969 0.923 0.965 0.977 0.966 0.948 0.981 0.857

LPIPS↓
Surrogate 64 128 5.50 3.85 8.52 4.15 2.70 2.94 4.04 2.30 15.5
Precise 64 128 4.77 2.94 7.54 3.85 2.27 2.25 3.39 1.59 14.3
Precise 128 64 4.39 2.85 7.10 3.03 2.28 1.81 3.21 1.73 13.1

Table S1: Ablation Study. Reported LPIPS scores are multiplied by 102. We use Nc and Ni to
denote the number of coarse and fine samples, respectively.

achieve shaper textures on the back of the chair. Moreover, we see that there is an instability to the
samples as illustrated by the inconsistencies in the noise – the gold specs on the green texture (please
view in full screen). This is also evident when we vary the camera-to-scene distance. The chair model
was trained on multi-distance Blender data to highlight the difference when camera distances vary.

S.1.3 Real Dataset Results

PSNR↑ SSIM↑ LPIPS↓
Const. (Vanilla) 27.96 0.909 8.58
Linear (Ours) 28.43 0.918 7.73

Table S2: DTU Quantative Results Metrics computed from the average of 15 scenes from DTU
dataset. The reported LPIPS score is multiplied by 102.

We further evaluate our PL-NeRF on a real dataset - DTU (1). We train and evaluate our approach
on the 15 test scenes used in (6), and report the standard metrics (PSNR, SSIM, LPIPS). We follow
the protocol used in (3) for the Real Forward Facing scene where 1

8 of the views were held out for
testing while the rest are used for training. Table S2 shows the quantitative results averaged over the
15 scenes, where our PL-NeRF outperforms the constant (3) baseline.

S.1.4 Additional Qualitative Results

We additionally show qualitative results from DTU dataset in Fig. S1. More qualitative results are
also shown in Fig. S2.

Blender Avg. Chair Drums Ficus Hotdog Lego Mat. Mic Ship

PSNR↑ DIVeR 30.78 32.01 24.72 30.1 35.94 29.03 29.31 32.10 29.08
PL-DIVeR 30.88 32.92 24.7 30.23 35.94 33.42 32.06 33.08 28.99

SSIM↑ DIVeR 0.956 0.959 0.917 0.963 0.974 0.965 0.977 0.978 0.870
PL-DIVeR 0.947 0.969 0.916 0.963 0.966 0.966 0.977 0.981 0.871

LPIPS↓ DIVeR 3.39 2.79 6.13 2.34 1.92 1.46 1.77 2.16 7.77
PL-DIVeR 3.28 2.85 6.01 2.12 1.83 1.49 1.77 1.73 7.82

Table S3: Quantitative Results of DIVeR v.s. PL-DIVeR Reported LPIPS scores are multiplied by
102

S.1.5 PL-DiVER

We plug our method into DIVeR by using their voxed-based representation and feature integration,
and dropping in our piecewise linear opacity formulation for volume rendering (PL-DIVeR). Results
are shown in Table S3 demonstrating that our approach is on-par if not better across the different
scenes in the Blender dataset. We highlight that this shows the improvement of using our piecewise
linear opacity formulation, which is a drop-in replacement to existing methods.

2

Figure S1: DTU Qualitative Result Visualizations of rendered DTU dataset test views. Because of
the issue of grazing angle and binning inaccuracy of the piecewise constant opacity assumption, the
vanilla NeRF (constant) exhibits blurry geometry, and rendering artifacts in the zoomed-in views
(middle column). On the other hand, the piecewise linear opacity assumption in our model (linear)
alleviates these issues (right column). Overall, the rendered views exhibit sharper surface boundaries
and more faithful reconstruction compared to the constant model.

3

GT Constant Linear

Figure S2: Blender Qualitative Result Additonal visualizations of rendered Blender dataset test
views. We see that our PL-NeRF is able to achieve sharper and crisper texture (chair and hotdog
surface), better capture fine geometric detail (hole in lego, rope in ship) and avoid blurriness caused
by conflicting rays, e.g. grazing angle views as shown in the mic.

4

Blender Avg. Chair Drums Ficus Hotdog Lego Mat. Mic Ship

CD↓ Vanilla NeRF 10.43 5.162 6.842 29.94 7.555 7.474 6.833 5.214 11.44
PL-NeRF 10.10 4.676 7.754 29.58 7.004 6.825 6.061 5.213 10.44

Table S4: Geometry Extraction Error Distance between the surface of the GT to the predicted
meshes. Scores are ×103

S.1.6 Geometric Extraction

We also show quantitative results in geometric extraction improvement of PL-NeRF compared to the
original Vanilla NeRF. Table S4 reports the distance between the surface of the ground truth model
to the predicted meshes by sampling point clouds via ray casting. We see that our piecewise linear
approach achieves a lower error compared to Vanilla NeRF on almost all the scenes in the Blender
dataset.

S.1.7 Comparison with Less Samples

We run both our PL-NeRF and Vanilla NeRF with 64 coarse and 64 fine samples results in an
average of (30.09, 0.939, 0.056) and (29.86, 0.937, 0.059) for (PSNR, SSIM, LPIPS), respectively,
on the Blender dataset. This shows that under less number of samples our piecewise linear opacity
formulation is better than the original piecewise constant opacity assumption.

S.2 Volume Rendering: Walkthrough of Piecewise Constant Derivation from (2)

From (2), under the approximation that both opacity and color are piecewise constant, for s ∈
[si, si+1], where τi = τ(si) and τ(s) = τi∀s ∈ [si, si+1], the probability of the interval Pi is derived
as follows:

Pi =

∫ si+1

si

τ(s)T (s)ds

=

∫ si+1

si

τi exp (−
∫ s

0

τ(u)du)ds

=

∫ si+1

si

τi exp (−
∫ si

0

τ(u)du) exp (−
∫ s

si

τ(u)du)ds

=

∫ si+1

si

τiT (si) exp (−
∫ s

si

τidu)ds

= τiT (si)

∫ si+1

si

exp (−τi(s− si))ds

= τiT (si)
exp (−τi(s− si))

−τi

∣∣∣si+1

si

= τiT (si)
(
1− exp (−τi(si+1 − si))

)
.

Moreover, under the piecewise constant assumption, transmittance T is derived and given by:

5

T (si) = exp (−
∫ si

0

τ(u)du)

=

i∏
j=1

exp (−
∫ sj

sj−1

τ(u)du)

=

i∏
j=1

exp (−
∫ sj

sj−1

τj−1du)

=

i∏
j=1

exp (τj−1(sj − sj−1)).

This is the formulation that is used in most, if not all, NeRF works, which has the drawbacks that
we raised such as ray conflicts during NeRF optimization and non-invertible CDF causing imprecise
importance sampling and vanishing gradients when defining a loss w.r.t. the samples. We propose to
approach this issue by deriving the volume rendering equation under a piecewise linear approximation
to opacity, which we detail in the next sections.

S.3 Volume Rendering: Our Piecewise Linear τ Derivation

We now show our full derivation for the volume rendering equation, under the assumption that the
opacity τ(s) is piecewise linear, i.e. it is linear within each interval [si, si+1], and piecewise constant
color. We then derive the probability of an interval under this assumption.

S.3.1 Generalized form for Pi.

Recall the generalized form of Pi as derived in the main paper. First from the definition of transmit-
tance, we have

T (s) = exp (−
∫ s

0

τ(u)du)

dT

ds
= − exp (−

∫ s

0

τ(u)du)τ(s) = −T (s)τ(s)

T ′(s) = −T (s)τ(s).

This results in the exact expression for the probability Pi of an interval given as follows:

Pi =

∫ si+1

si

τ(s)T (s) ds = −
∫ si+1

si

T ′(s) ds = T (si)− T (si+1). (1)

S.3.2 Evaluating τ(s) for s ∈ [si, si+1].

Let τj = τ(si), τi+1 = τ(si+1), be sampled points along the ray. For s ∈ [si, si+1], assuming
piecewise linear opacity τ , i.e. τ(s) is linear within each bin, we have

τ(s) = (
si+1 − s

si+1 − si
)τi + (

s− si
si+1 − si

)τi+1

=
1

si+1 − si
[(τi+1 − τi)s+ (si+1τi − siτi+1)]

6

S.3.3 Transmittance T (si)

We first derive expression for transmittance T (si) under the piecewise linear τ assumption.

T (si) = exp (−
∫ si

0

τ(u)du)

=

i∏
j=1

exp (−
∫ sj

sj−1

τ(u)du)

=

i∏
j=1

exp (
−1

sj − sj−1

∫ sj

sj−1

[(τj − τj−1)u+ (sjτj−1 − sj−1τj)]du)

=

i∏
j=1

exp
(−1

sj − sj−1

[
(
τj − τj−1

2
)(s2j − s2j−1) + (sjτj−1 − sj−1τj)(sj − sj−1)

])

=
i∏

j=1

exp
(
−
[
(
τj − τj−1

2
)(sj + sj−1) + (sjτj−1 − sj−1τj)

])

=

i∏
j=1

exp
(
− 1

2

[
τjsj + τjsj−1 − τj−1sj − τj−1sj−1 + 2sjτj−1 − 2sj−1τj

])

=

i∏
j=1

exp
(
− 1

2

[
τjsj − τjsj−1 + τj−1sj − τj−1sj−1

])

Thus we get

T (si) =

i∏
j=1

exp
(
− (τj + τj−1)(sj − sj−1)

2

)
. (2)

S.3.4 Probability of interval [si, si+1]

From the generalized form for Pi as derived in the main paper, we plug in the expression for
transmittance T (si) as derived above to obtain:

Pi =

∫ si+1

si

τ(s)T (s)ds

= T (si)− T (si+1)

=

i∏
j=1

exp
(
− (τj + τj−1)(sj − sj−1)

2

)
−

i+1∏
j=1

exp
(
− (τj + τj−1)(sj − sj−1)

2

)

Hence, we obtain

Pi = T (si) ·
(
1− exp

[
− (τi+1 + τi)(si+1 − si)

2

])
. (3)

S.3.5 Our Precision Importance Sampling

To sample from the ray distribution, inverse transform sampling is needed, that is, one draws u ∼
U(0, 1) then passes it to the inverse of a cumulative distribution (CDF), i.e. a sample x = F−1(u),

7

where F is the CDF of the distribution. Unlike the piecewise constant case, where F is not invertible,
needing for a surrogate function G derived from F, we show that under our piecewise linear opacity
assumption, we can solve for the solution x for each corresponding u.

As illustrated in the main paper, since F is continuous and increasing, under our assumption that
τ > 0 1, then F is invertible. Now, without loss of generality, let sample u fall into the CDF interval
[ck, ck+1], where ck =

∑
j<k Pj . We know that the probability of the corresponding interval is Pk

as given by Eq. 3. Thus we have:

ck+1 − ck = Pk

=

∫ sk+1

sk

T (s)τ(s)ds

= T (sk) ·
(
1− exp

(
− (τk+1 + τk)(sk+1 − sk)

2

))

We want to solve for sample x ∈ [sk, sk+1], such that x = F−1(u). Equivalently, since we know
that x ∈ [sk, sk+1], then we reparameterize and let x = sk + t, where t ∈ [0, sk+1 − sk]. We are
solving for x as follows:

u =

∫ x

0

T (s)τ(s)ds

=

∫ sk

0

T (s)τ(s)ds+

∫ x

sk

T (s)τ(s)ds

= ck +

∫ x

sk

T (s)τ(s)ds

u− ck =

∫ x

sk

T (s)τ(s)ds

Now, from the derivation of the general form for Pi in Eq. 1, we can similarly obtain

u− ck = T (sk)− T (x).

= T (sk) · (1− exp (−
∫ x

sk

τ(u)du)).

Thus, simplifying we get

u− ck
T (sk)

= 1− exp (−
∫ x

sk

τ(u)du)

exp (−
∫ x

sk

τ(u)du) = 1− u− ck
T (sk)

−
∫ x

sk

τ(u)du) = ln
(
1− u− ck

T (sk)

)
1In practice, we can simply add a small ϵ, say ϵ = 10−6, to the model output resulting in positive τ , to make

τ positive everywhere.

8

which gives us the expression∫ x

sk

τ(u)du = ln(T (sk))− ln(T (sk)− (u− ck)). (4)

This holds for T (sk) ̸= 0, which is true under our assumption that τ > 0, and T (sk)− (u− ck) ≥ 0,
which we will show in Sec. S.3.8 below.

S.3.6 Evaluating −
∫ x

sk
τ(u)du.

We evaluate the expression −
∫ x

sk
τ(u)du in order to solve for the exact sample x. Recall, for

s ∈ [sk, sk+1], we have

τ(s) = (
sk+1 − s

sk+1 − ki
)τk + (

s− ki
sk+1 − sk

)τk+1

=
1

sk+1 − sk
[(τk+1 − τk)s+ (sk+1τk − skτk+1)]

Let constants a = τk+1− τk, b = sk+1τk−skτk+1, d = 1
sk+1−sk

, thus we can write τ(s) as follows:

τ(s) = d(as+ b). (5)

Thus, from Eq 5 we have:

∫ x

sk

τ(u)du =

∫ x

sk

d(au+ b)du

= d(

∫ x

sk

audu+

∫ x

sk

bdu)

= d[
au2

2

∣∣∣x
sk

+ b(x− si)]

= d[
a(x2 − s2k)

2
+ b(x− sk)]

= d[
a((sk + t)2 − s2k)

2
+ b((sk + t)− sk)]

= d[
a(t2 + 2skt)

2
+ bt]

= d[
a

2
t2 + (ask + b)t]

=
1

sk+1 − sk
[
τk+1 − τk

2
t2 + ((τk+1 − τk)sk + sk+1τk − skτk+1)t]

=
1

sk+1 − sk
[
τk+1 − τk

2
t2 + (sk+1τk − skτk)t]

=
τk+1 − τk

2(sk+1 − sk)
t2 + τkt

Hence, plugging this in Eq. 4, we get the quadratic equation

τk+1 − τk
2(sk+1 − sk)

t2 + τkt− (ln(T (sk))− ln(T (sk)− (u− ck))) = 0.

9

We want to solve for t ∈ [0, sk+1 − sk], and the roots of the quadratic equation is given by

t =
(sk+1 − sk)(−τk ±

√
τ2k + 2(τk+1−τk)(lnT (sk)−ln(T (sk)−(u−ck)))

(sk+1−sk)
)

(τk+1 − τk)
(6)

That means to compute for the solution, we need to find the root

(−τk ±
√
τ2k + 2(τk+1−τk)(lnT (sk)−ln(T (sk)−(u−ck)))

(sk+1−sk)
)

(τk+1 − τk)
∈ (0, 1)

which we will show always exists and is unique.

S.3.7 Bounding ∆ = τ2k + 2(τk+1−τk)(lnT (sk)−ln(T (sk)−(u−ck)))
(sk+1−sk)

Let us first bound the discriminant of the quadratic formula. We have

u− ck ≤ ck+1 − ck

=

k∑
j=0

Pj −
k−1∑
j=0

Pj = Pk

= T (sk) · (1− exp
(
− (τk+1 + τk)(sk+1 − sk)

2

)
)

Thus we have

ln(T (sk)− (u− ck)) ≥ ln
(
T (sk)− T (sk) · (1− exp

(
− (τk+1 + τk)(sk+1 − sk)

2

)
)
)

= ln(T (sk) · exp
(
− (τk+1 + τk)(sk+1 − sk)

2

)
)

= ln(T (sk))−
(τk+1 + τk)(sk+1 − sk)

2

lnT (sk)− ln(T (sk)− (u− ck)) ≤
(τk+1 + τk)(sk+1 − sk)

2

2(τk+1 − τk)(lnT (sk)− ln(T (sk)− (u− ck)))

(sk+1 − sk)
≤

2(τk+1 − τk)(
(τk+1+τk)(sk+1−sk)

2)

(sk+1 − sk)

= τ2k+1 − τ2k

Hence, computing the discriminant we get:

∆ = τ2k +
2(τk+1 − τk)(lnT (sk)− ln(T (sk)− (u− ck)))

(sk+1 − sk)
≤ τ2k + (τ2k+1 − τ2k) = τ2k+1.

Similarly, u− ck ≥ 0, where equality holds when u = ck. This gives us ∆ ≥ τ2k .

Hence, we know that τ2k+1 ≥ ∆ ≥ τ2k . Since we need

10

(−τk ±
√
∆)

(τk+1 − τk)
∈ (0, 1), and

(−τk −
√
∆)

(τk+1 − τk)
≤ 0

Thus to find the solution t, we need to take the positive root. We have

(−τk +
√
∆)

(τk+1 − τk)
≥

(−τk +
√
τ2k

(τk+1 − τk)
= 0

(−τk +
√
∆)

(τk+1 − τk)
≤

(−τk +
√
τ2k+1

(τk+1 − τk)
= 1

This shows that the solution is within the desired interval. Hence, the solution is

t =
(sk+1 − sk)(−τk +

√
τ2k + 2(τk+1−τk)(lnT (sk)−ln(T (sk)−(u−ck)))

(sk+1−sk)
)

(τk+1 − τk)
(7)

Hence, for the positive root, we know that t ∈ [0, sk−1 − sk].

S.3.8 Proof for T (sk) ≥ (u− ck)

ck =

k−1∑
j=0

Pj

=

k−1∑
j=0

T (sj) · (1− exp(− (τj+1 + τj)(sj+1 − sj)

2
))

We know that

T (sj) =

j∏
i=1

exp(− (τi + τi−1)(si − si−1)

2
)

Let ai = exp(− (τi+τi−1)(si−si−1)
2), and T (s0) = 1. Hence we have

T (sj) =

j∏
i=1

ai,

ck = T (s0)(1− a1) +

k−1∑
j=1

(

j∏
i=1

ai) · (1− aj+1))

= (1− a1) + (a1)(1− a2) + (a1a2)(1− a3) + ...

= 1− a1a2...ak

Since T (sk) = a1a2...ak and ai > 0∀i then

T (sk) + ck = a1a2...ak + (1− a1a2...ak)

= 1

≥ ck+1

≥ u.□

Note that above proof and solutions hold for τk ̸= τk+1 and T (sk) ̸= 0, which is all holds since we
have τ(s) > 0∀s, which is equivalent to F being an increasing function.

11

S.3.9 The solution for sample u:

Putting everything together, we have the solution t given as

t =
(sk+1 − sk)(−τk +

√
τ2k + 2(τk+1−τk)(lnT (sk)−ln(T (sk)−(u−ck)))

(sk+1−sk)
)

(τk+1 − τk)
. (8)

From Sec S.3.8, we have T (sk) = a1a2...ak and ck = 1−a1a2...ak, thus T (sk)− (u− ck) = 1−u.
Hence we can simplify it to

t =
(sk+1 − sk)(−τk +

√
τ2k + 2(τk+1−τk)(lnT (sk)−ln(1−u))

(sk+1−sk)
)

(τk+1 − τk)

t =
(sk+1 − sk)(−τk +

√
τ2k +

2(τk+1−τk)(− ln
(1−u)
T (sk)

)

(sk+1−sk)
)

(τk+1 − τk)
. (9)

S.4 Piecewise Quadratic and Higher Order Polynomials

Now, we first consider the full derivation for volume rendering equation under the assumption that
opacity is piecewise quadratic and color is piecewise constant. Consider opacities τ1, . . . , τn queried
at n samples s1, . . . , sn along the ray. Here, we set s0 = tn and sn+1 = tf to the near and far plane,
with τ0 = 0 and τn+1 = 1010 denoting empty and opaque space.

To interpolate opacity, because a quadratic function can only be uniquely defined with 3 points, we
choose τ(s) to be quadratic within each interval [sj , sj+2] for even values of j. To encapsulate all
points, this forces n to be odd, e.g. using 127 coarse samples and 64 fine samples.

S.4.1 Derivation: Computing T (s)

In the same way as Sec. S.3.3, we can derive transmittance, which is in closed-form. The only
modification is that the formulae for integrals of opacity are different over left and right subintervals
[sj , sj+1] and [sj+1, sj+2], with j even (see the next section for a derivation of these integrals):

T (s2i) = exp (−
∫ s2i

s0

τ(u)du) =
i∏

j=1

exp (−
∫ s2j

s2j−1

τ(u)du) exp (−
∫ s2j+1

s2j

τ(u)du). (10)

Substituting the expressions in Eqs. 14 and 15 gives a closed form expression in terms of the sj’s and
τj’s. We can similarly compute

T (s2i+1) = exp(−
∫ s2i+1

s2i

τ(u)du)

i∏
j=1

exp (−
∫ s2j

s2j−1

τ(u)du) exp (−
∫ s2j+1

s2j

τ(u)du). (11)

Then the probability of the ith interval for each 0 ≤ i ≤ n is, as before,

Pi = T (si)− T (si+1). (12)

This leads to a closed-form expression for Pi. This means the behavior of Pi depends entirely on
that of the opacity integral. However, due to the form of

∫
τ(s)ds detailed in the next section, this

means Pi involves a piecewise exponential of a rational function in τj’s and sj’s, which leads to poor
numerical conditioning and thus optimization instability.

12

S.4.2 Derivation: Computing and Integrating τ(s) on Intervals

We now compute τ(s) and its integral on each interval. Fix the interval [sj , sj+2], with j odd, and
τj = τ(sj), τj+1 = τ(sj+1), τj+2 = τ(sj+2). By Lagrange interpolation, the quadratic τ(s)
passing through (sj , τj), (sj+1, τj+1), (sj+2, τj+2) is given by:

τ(s) =
τj

αjγj
(s− sj+1)(s− sj+2)−

τj+1

αjβj
(s− sj)(s− sj+2) +

τj+2

βjγj
(s− sj)(s− sj+1),

αj = sj+1 − sj , βj = sj+2 − sj+1, γj = sj+2 − sj .
(13)

Note the integrals of the three monic quadratics over [sj , sj+1] can be expressed in terms of αj , βj , γj :

∫ sj+1

sj

(s− sj+1)(s− sj+2)ds =

∫ 0

−αj

s(s− βj)ds =
α3
j

3
+

α2
jβj

2
,∫ sj+1

sj

(s− sj)(s− sj+2)ds =

∫ αj

0

s(s− γj)ds =
α3
j

3
−

α2
jγj

2
,∫ sj+1

sj

(s− sj)(s− sj+1)ds =

∫ αj

0

s(s− αj)ds = −
α3
j

6
.

Thus, using Eq. 13 gives the integral of opacity over [sj , sj+1]:

∫ sj+1

sj

τ(s)ds =
τj
γj

·

[
α2
j

3
+

αjβj

2

]
− τj+1

βj

[
α2
j

3
− αjγj

2

]
+

τj+2

βjγj
·

[
−
α3
j

6

]
. (14)

Similarly, the integrals of those same three quadratics over [sj+1, sj+2] factor out βj :

∫ sj+2

sj+1

(s− sj+1)(s− sj+2)ds =

∫ βj

0

s(s− βj)ds = −
β3
j

6
,∫ sj+2

sj+1

(s− sj)(s− sj+2)ds =

∫ 0

−βj

(s+ γj)sds =
β3
j

3
−

β2
j γj

2
,∫ sj+2

sj+1

(s− sj)(s− sj+1)ds =

∫ βj

0

(s+ αj)sds =
β3
j

3
+

β2
jαj

2
.

Then, summing these up along Eq. 13 gives the integral of opacity over [sj+1, sj+2]:

∫ sj+2

sj+1

τ(s)ds =
τj

αjγj
·

[
−
β3
j

6

]
− τj+1

αj

[
β2
j

3
− βjγj

2

]
+

τj+2

γj
·

[
β2
j

3
+

βjαj

2

]
. (15)

Observe in Eqs. 14 and 15 that the integral of opacity involves some terms with αj , βj , γj in the
denominator, which do not cancel. Thus, the integral of opacity over an interval is not a polynomial
in τi’s and si’s, but is instead a rational function. This contrasts with the linear derivation in Sec.
S.3.3, where this integral was a degree 2 multivariate polynomial in τi’s and si’s. This caveat causes
numerical instability, which will be discussed further in Secs. S.4.3 and S.4.4.

Generally, following the steps of the above derivation shows that if we interpolate τ piecewise by any
degree d polynomial, d ≥ 2, then the result is a rational function in si’s and τi’s, but not a polynomial,
which would also lead to training instability as in the quadratic case.

13

S.4.3 Piecewise Quadratic Problem 1: Negative Interpolated Opacity

Figure S3: Interpolation gives negative
τ -values when s-values are close.

As seen above, one problem with the piecewise quadratic
model is that the integral of opacity is a rational function
in αi, βi, γi. In particular, due to the presence of negatives
in front of certain rational terms in Eqs. 14 and 15, it
may become negative as the denominators of these terms
approach zero. One example is shown in Figure S.4.3,
for samples s1, s2, s3 with τ1 = τ2 < τ3 and s3 − s2 ≪
s2−s1, where the interpolated quadratic dips far below the
x-axis. Note this interpolation is physically implausible,
as opacity should be nonnegative everywhere.

Furthermore, from Eqs. 10 and 11, when the opacity
integral is negative on intervals, transmittance can then
be a product with exponentials of negative terms, and
potentially be greater than 1. This is incompatible with the
physical interpretation of transmittance as a probability
that a light travels a distance along a ray without being
absorbed.

S.4.4 Piecewise Quadratic Problem 2: Instability from Sample Proximity

In Eqs. 14 and 15, we observe the presence of terms such as αj , βj , γj in the denominator. These
do not appear in the piecewise linear model. As a result, because these quantities approach zero
as samples sj , sj+1, sj+2 become closer, then the integral of opacity can become an arbitrarily
large positive or even negative (as shown qualitatively in the previous section). Referencing the
transmittance formulae in Eqs. 10 and 11, this means transmittance can approach zero or infinity and
gradients can explode as samples are clustered together. This is fairly common in stratified sampling,
and even more so with importance sampling.

To formally describe this instability, we first look at what happens when sj and sj+1 coincide:

lim
sj+1→s+j

∫ sj+1

sj

τ(s)ds = 0

because τ : R≥0 → R is continuous. There is no instability in this integral when sj+1 → s+j .
However, when sj+1 and sj+2 coincide, because βj → 0+ and γj → α+

j , the integral approaches

lim
sj+2→s+j+1

∫ sj+1

sj

τ(s)ds = lim
sj+2→s+j+1

[
τj
γj

·

[
α2
j

3
+

αjβj

2

]
− τj+1

βj

[
α2
j

3
− αjγj

2

]
+

τj+2

βjγj
·

[
−
α3
j

6

]]

=
τjαj

3
− lim

sj+2→s+j+1

τj+1α
2
j

3 − τj+1αjγj

2 +
τj+2α

3
j

6γj

βj

=
τjαj

3
− lim

sj+2→s+j+1

2τj+1α
2
jγj − 3τj+1αjγ

2
j + τj+2α

3
j

6γjβj

=
τjαj

3
− lim

sj+2→s+j+1

τj+1αj(α
2
j + 2αjγj − 3γ2

j) + α3
j (τj+2 − τj+1)

6γjβj

=
τjαj

3
− lim

sj+2→s+j+1

τj+1αj(αj + 3γj)(αj − γj) + α3
j (τj+2 − τj+1)

6γjβj

=
τjαj

3
− lim

sj+2→s+j+1

−τj+1αj(αj + 3γj)βj + α3
j (τj+2 − τj+1)

6γjβj

14

=
τjαj

3
+

2τj+1αj

3
− lim

sj+2→s+j+1

α3
j (τj+2 − τj+1)

6γjβj

=
τjαj

3
+

2τj+1αj

3
−

α2
j

6
lim

sj+2→s+j+1

τj+2 − τj+1

βj
.

The behavior of this integral limit depends on the last limit. To analyze this, let h : R≥0 → R be the
network function which takes in samples on the ray and outputs opacity. The last limit is

lim
sj+2→s+j+1

τj+2 − τj+1

βj
= lim

sj+2→s+j+1

h(sj+2)− h(sj+1)

sj+2 − sj+1
. (16)

Because h is almost always differentiable at sj+1, this becomes h′(sj+1), and so

lim
sj+2→s+j+1

∫ sj+1

sj

τ(s)ds =
τjαj

3
+

2τj+1αj

3
−

α2
j

6
h′(sj+1). (17)

There are no constraints on the value of h′(sj+1) as the network trains, so the above limit can achieve
any real value. In particular, we can derive a condition for when the limit is negative:

lim
sj+2→s+j+1

∫ sj+1

sj

τ(s)ds < 0 ⇐⇒ h′(sj+1) >
2τj + 4τj+1

αj
. (18)

That is, whenever there is a sharp enough increase in opacity (which can happen at, say, a surface
crossing) and samples sj+1, sj+2 are sufficiently close, the interpolated quadratic can have a negative
integral on [sj , sj+1], which leads to the issues described in Sec. S.4.3. In other words, the integral of
opacity over [sj , sj+1] is unstable as sj+2 → s+j+1. A similar analysis holds to show the instability
of the opacity integral on [sj+1, sj+2] as sj+1 → s+j .

S.4.5 Piecewise Quadratic Problem 3: Importance Sampling

Suppose we wish to importance sample in the same manner as piecewise linear, that is, we use inverse
transform sampling. In essence, we draw u ∼ U(0, 1) and then sample x = F−1(u), with F the
CDF of the distribution. Recall F is computed as

f(x) =

∫ x

s0

T (s)τ(s)ds =

∫ sk

s0

T (s)τ(s)ds+

∫ x

sk

T (s)τ(s)ds = ck +

∫ x

sk

T (s)τ(s)ds. (19)

As before, the latter equation becomes
f(x) = ck + T (sk)− T (x). (20)

Hence, computing x amounts to solving the equation f(x) = u, which becomes from above:
T (x) = ck + T (sk)− u. (21)

As T is the exponential of a cubic, this amounts to solving a cubic above. This does have a real
solution, as F is increasing and continuous, so the Intermediate Value Theorem implies f(x) = u
has a solution; and the solution is unique because F is strictly increasing, as it is an exponential of a
polynomial. However, the complexity of exact importance sampling would be large.

This analysis reveals another downside of higher order polynomials. In general, suppose we wish
to interpolate opacity τ with a piecewise degree n polynomial. Then following the same method as
above, we see transmittance T is the piecewise exponential of a degree n+ 1 polynomial, which is
the integral of τ . So inverse transform sampling reduces to solving a degree n+ 1 polynomial. The
Abel-Ruffini Theorem asserts for n+ 1 ≥ 5 that this polynomial is in general not solvable by radicals.
In other words, there is no simple closed form for exact importance sampling when n ≥ 4.

Theoretically, this could be exactly solved for n = 2 and n = 3 (i.e. when opacity is piecewise
quadratic or cubic, respectively), but the formulae to derive cubic and quartic solutions can become
sufficiently complicated and the resulting complicated expressions may result in numerical instability
during optimization, especially when taking the gradient w.r.t. the samples.

15

S.5 Experiment details, Reproducibility and Compute

S.5.1 Implementation Details

We include the core code snippets of our implementation of PL-NeRF. Figure S4 shows the volume
rendering equation that includes the implementation of Eq. 10 and 11 (main paper). This is a direct
replacement of the original constant approximation, where we also show the code snippet in the figure
as reference. Figure S5 shows the implementation of our precise importance sampling from Eq. 13
(main paper), which is also a direct replacement of the constant importance sampling implementation
(Figure S6) for reference. We highlight that our formulation is a direct replacement of the functions
from the original implementation, and hence for the depth experiments, we are also able to directly
adapt the codebase from (5). We use Nvidia v100 and A5000 GPU’s for our experiments. Each scene
is trained on a single GPU and takes 15− 20 hours. We used an internal academic cluster and cloud
compute resources to train and evaluate our models.

For the MipNeRF-based experiments, our experiments are also run on the standard train and test
split of the Blender dataset with the official released hyperparameters of Mip-NeRF using the
NerfStudio (4) codebase. For PL-MipNeRF, we use the two-MLP training scheme with a coarse loss
weight of 1.0.

For DIVeR-based experiments, we use their official implementation and configuration for DIVeR64
at 128 voxels. For PL-DIVeR, we utilize their voxel-based representation and feature integration
and dropping in our piecewise linear opacity rendering formulation. We similarly run the DIVeR
models on a single Nvidia v100 GPU trained using their default configurations and hyperparameters
for DIVeR64 at 128 voxels.

The total training time for 500k iterations on a single Nvidia v100 GPU is 17.78 and 21.43 hours
for Vanilla NeRF and PL-NeRF, respectively. Figure 2-c shows the head-to-head comparison of
training PSNR (y-axis) with respect to time (x-axis) of Vanilla NeRF vs PL-NeRF on the Lego scene.
Rendering a single 800x800 image takes 25.59 and 32.35 seconds for Vanilla NeRF and PL-NeRF,
respectively.

S.5.2 Computational complexity under different number of samples

We measured the total rendering time for a single 800x800 image under different numbers of samples
for our PL-NeRF. The total rendering time for (64+64), (64+128) and (128+64) are 19.20, 25.85 and
32.35 seconds, respectively.

S.5.3 Convergence plots under different number of samples

Figure ?? shows the convergence plots under different numbers of samples of our PL-NeRF vs Vanilla
NeRF. We see that under different number of samples, our linear approach converges to a higher
training PSNR.

S.6 Limitations

Our piecewise linear opacity approximation is able to handle arbitrarily small opacity, e.g. 1e−6,
however, we cannot handle coordinates with exactly zero opacity. This special case is not an issue in
practice. Also theoretically, any atom absorbs light and thus will not have exactly zero opacity, except
in a vacuum. Another limitation is our method is slightly slower than the original piecewise constant
approximation, and this is due to requiring more FLOPS for our importance sampling computation
(Eq. 13 main paper). Another additional limitation is we still assume piecewise color, i.e. within a
bin we do not handle color integration. Modeling this can potentially handle difficult scenarios such
as double-walled colored glass or atmospheric effects such as fog or smoke. Lastly, we also inherit
the limitations of NeRFs in general, such as requiring known camera poses.

S.7 Broader Impact

Our models require the usage of GPUs both in training time and rendering time, and GPUs use up
energy to run and power them. We acknowledge that this contributes to climate change that is an
important societal issue. Despite this, we observe the improvement in the results that is theoretically

16

Figure S4: Code snippet for volume rendering. The implementation for our piecewise linear opacity
approximation is a drop-in replacement from the original piecewise constant.

grounded and believe that it is beneficial for the pursuit of science. We responsibly ran our models by
first prototyping on selected scenes before scaling up to different scenes across datasets to minimize
its impact to climate change.

References
[1] Henrik Aanæs, Rasmus Ramsbøl Jensen, George Vogiatzis, Engin Tola, and Anders Bjorholm Dahl. Large-

scale data for multiple-view stereopsis. International Journal of Computer Vision, pages 1–16, 2016.
[2] Nelson Max and Min Chen. Local and global illumination in the volume rendering integral. In Hans Hagen,

editor, Scientific Visualization: Advanced Concepts, volume 1 of Dagstuhl Follow-Ups, pages 259–274,
Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[3] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

[4] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Justin Kerr, Terrance Wang, Alexander
Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David McAllister, and Angjoo Kanazawa. Nerfs-
tudio: A modular framework for neural radiance field development. In ACM SIGGRAPH 2023 Conference
Proceedings, 2023.

[5] Mikaela Angelina Uy, Ricardo Martin-Brualla, Leonidas Guibas, and Ke Li. Scade: Nerfs from space
carving with ambiguity-aware depth estimates. In CVPR, 2023.

[6] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields from one or
few images. In CVPR, pages 4578–4587, 2021.

17

Figure S5: Code snippet for our Precise Importance Sampling. The implementation of our
precision importance sampling is also a direct replacement from the original function from the
constant implementation called sample_pdf (See next figure for reference).

18

Figure S6: This is the original importance sampling for the constant approximation for reference.

19

	Additional Results
	Ablation Study
	Video Demo
	Real Dataset Results
	Additional Qualitative Results
	PL-DiVER
	Geometric Extraction
	Comparison with Less Samples

	Volume Rendering: Walkthrough of Piecewise Constant Derivation from maxetal:DFU:2010:2709
	Volume Rendering: Our Piecewise Linear Derivation
	Generalized form for Pi.
	Evaluating (s) for s [si, si+1].
	Transmittance T(si)
	Probability of interval [si, si+1]
	Our Precision Importance Sampling
	Evaluating -skx(u)du.
	Bounding = k2 + 2(k+1 - k)(T(sk) - (T(sk) - (u-ck)))(sk+1-sk)
	Proof for T(sk)(u-ck)
	The solution for sample u:

	Piecewise Quadratic and Higher Order Polynomials
	Derivation: Computing T(s)
	Derivation: Computing and Integrating (s) on Intervals
	Piecewise Quadratic Problem 1: Negative Interpolated Opacity
	Piecewise Quadratic Problem 2: Instability from Sample Proximity
	Piecewise Quadratic Problem 3: Importance Sampling

	Experiment details, Reproducibility and Compute
	Implementation Details
	Computational complexity under different number of samples
	Convergence plots under different number of samples

	Limitations
	Broader Impact

