
Under review as a conference paper at ICLR 2024

A Proofs

Proof of Theorem 2.3 We first prove the existence of a solution x 2 Rn to the equation
x = �(Ax + b) if �pf < 1. Since � satisfies Assumption (2.1), we have that for t � 1, the
picard iteration

xt+1 = �(Axt + b), x0 = 0, t = 0, 1, · · ·
satisfies

|xt+1 � xt| = |�(Axt + b)� �(Axt�1 + b)|
 |A(xt � xt�1)|  |A||xt � xt�1|
 |A|t|x1 � x0|.

Hence, for every t, ⌧ � 1, we have

|xt+⌧ � xt| =

�����

t+⌧X

i=t+1

(xi � xi�1)

����� 
t+⌧X

k=t

|A|k|x1 � x0|

 |A|t
⌧X

k=0

|A|k|x1 � x0|  |A|t
1X

k=0

|A|k|x1 � x0|

= |A|t(I � |A|)�1|x1 � x0|.

The inverse of I � |A| exists as �pf(|A|) < 1. Since limt!1 |A|t = 0, we have

0  lim
t!1

|xt+⌧ � xt|  lim
t!1

|A|t(I � |A|)�1|x1 � x0| = 0.

We obtain that xt is a Cauchy sequence, and thus the sequence converges to some limit
point, x1, which by continuity of � can be obtained by x1 = �(Ax1 + b), thus establishes
the existence of a solution to x = �(Ax+ b).

For uniqueness, consider two solutions xa, xb 2 Rn
+ to the equation, the following inequality

holds,
0  |xa � xb|  |A||xa � xb|  |A|k|xa � xb|.

As k ! 1, we have that |A|k ! 0, and it follows that xa = xb, which establishes the unicity
of the solution.

Proof of Theorem 2.4 Consider a neural network N in its equivalent implicit form
(AN , BN , CN , DN ,�), since the matrix |AN | is strictly upper triangular, all of its eigenvalues
are zeros, automatically satisfying the PF su�cient condition for well-posedness. From the
Collatz-Wielandt formula (Meyer, 2000), the PF eigenvalue of a well-posed implicit model
can be represented as

�pf(|A|) = inf
s>0

��diag(s)|A|diag(s)�1
��
1 .

The scaling factor s such that
��diag(s)|A|diag(s)�1

��
1 < 1 can be obtained by solving

si = 1 +
nX

j=i+1

|Ai,j |sj , i 2 [n],

which can then be solved by backward substitution. The new model matrices
(A0, B0, C 0, D0,�), are obtained by

A0 B0

C 0 D0

!
=

SAS�1 SB

CS�1 D

!

where S = diag(s), with s > 0 a PF eigenvalue of |A|. More generally, provided that
�pf(|A|) < 1, we simply set s = (I � |A|)�1

1, which can be obtained as the limit point of
fixed-point iterations.

14

Under review as a conference paper at ICLR 2024

B More on Parallel Training

Data structure. Fitting all the weight matrices into memory requires a substantial amount
of storage space. However, we can leverage the high-sparsity property of the problem to
reduce the memory consumption when storing the weight matrices. In the high-sparsity
regime, schemes known from high-performance computing such as compressed sparse row
(CSR) and compressed sparse column (CSC) can store indices of matrices, respectively. Since
in this problem, we operate in a row-wise fashion, we choose to store the weight matrices in
CSR format. CSR represents the indices in an n = nr ⇥ nc matrix using row and column
index arrays. The row array is of length nr and store the o↵sets of each row in the value
array in dlog2 me bits, where m is the number of non-zero elements. The column array is of
length m and stores the column indices of each value in dlog2 nce bits. The total storage
space required is therefore nr ⇥ dlog2 me+m⇥ dlog2 nce.

Multiprocessing. Given state matrices from a neural network, the basis pursuit problem
of (8) and (9) can be paralleled, each involving a single or a block of rows. Each block
is trained independently by a child processor with an auxiliary objective, and returns the
solutions back to the main processor. We implement our parallel training algorithm with
the multiprocessing package using Python. The multiprocessing package5 supports
spawning processes and o↵ers both local and remote concurrency. In Python, its Global
Interpreter Lock (GIL) only allows one thread to be run at a time under the interpreter,
which means we are unable to leverage the benefit of multi-threading. However, with
multiprocessing, each process has its own interpreter and the instructions are executed by
its own interpreter, which allows multiple processes to be run in parallel, side-stepping
the GIL by using sub-processes instead of threads. In multiprocessing, a process is a
program loaded into memory to run and does not share its memory with other processes.
The decomposability of the training problem can be viewed as data parallelism where the
execution of a function, i.e. solving the convex optimization problem, is parallelized, and
the input values are distributed across processes. We use the Pool object to o↵er a means
of defining a function in a module so that child processes can each import the module and
execute it independently.

Memory sharing. In multiprocessing, data in the arguments are pickled and passed
to the child processors by default. In the basis pursuit problem, the state matrix X and the
input data matrix U remain unchanged during task execution across all the processors, and
thus only need read-only access to X and U . Passing X and U to each processor whenever
a new task is scheduled consumes a significant amount of memory space and increases the
communication time. As a result, instead of treating them as data input to the function, we
put X and U into a shared memory, providing direct access of the shared resources across
processes.

Ray. We also implement our parallel algorithm using Ray6, an open-source and general-
purpose distributed compute framework for machine learning and deep learning applications.
By transforming the execution of the convex training problems into ray actors, we are
able to distribute the input values to multiple ray actors to run on multiple ray nodes.
Similar to the memory sharing in the multiprocessing approach, we use ray.put() to save
objects into the ray object store, saving memory bandwidth by only passing the object ids
around. We run our experiments on the Cori clusters7 hosted by National Energy Research
Scientific Computing (NERSC) Center and use the slurm-ray-cluster scripts8 for running
multi-nodes.

Performance benchmark. Figure 5 show the run-time for our serial and parallel im-
plementation using both multiprocessing and Ray. We observe that multiprocessing

5https://docs.python.org/3/library/multiprocessing.html
6https://www.ray.io/
7https://docs.nersc.gov/systems/cori/
8https://github.com/NERSC/slurm-ray-cluster

15

https://docs.python.org/3/library/multiprocessing.html
https://www.ray.io/
https://docs.nersc.gov/systems/cori/
https://github.com/NERSC/slurm-ray-cluster

Under review as a conference paper at ICLR 2024

provides the best speedup as compared to Ray. We hypothesize that since Ray is a general-
purpose distributed compute framework, it contains more overhead than solving the training
problem directly using multiprocessing.

Figure 5: Performance benchmark for serial, multiprocessing (parallel), and Ray (parallel)
implementation on FashionMNIST dataset using 8 processors.

C More on Numerical Experiments

Table 2 and Table 3 shows the number of training samples, hyper-parameters, and adversarial
test accuracy for perspective relaxation and `1-norm objective functions with state and
outputs matching penalties as in problem (7). For perceptive relaxation, we solve the
following problem:

min
M,t,s

↵
X

ij

sij + �1 kZ � (AX +BU)k2F (10a)

+ �2

���Ŷ � (CX +DU)
���
2

F
(10b)

s.t. (2d), tij 2 [0, 1],M2
ij  sij · tij , sij � 0. (10c)

For the `1-norm problem, we solve the following problem:

min
M

�
X

ij

|Mij |+ �1 kZ � (AX +BU)k2F (11a)

+ �2

���Ŷ � (CX +DU)
���
2

F
: (2d), (11b)

where � controls the degree of regularizing for robustness.

Table 2: Experimental settings for perspective relaxation on Fashion-MNIST.

Test Acc. (%)

Train Samples Sparsity (%) �1 �2 ↵ ✏ = 0.004 ✏ = 0.008

700 15 0.1 0.1 0.01 78.7 75.4
500 23 0.1 0.1 0.01 77.3 73.8
400 28 0.1 0.1 0.01 76.6 72.8
300 36 0.1 0.1 0.01 74.9 72.4
200 54 0.1 0.1 0.01 73.7 70.1
100 77 0.1 0.1 0.01 57.2 49.5

16

Under review as a conference paper at ICLR 2024

Table 3: Experimental settings for `1-norm on Fashion-MNIST.

Test Acc. (%)

Train Samples Sparsity (%) �1 �2 � ✏ = 0.004 ✏ = 0.008

600 20 0.1 0.1 0.001 79.6 76.2
1000 47 0.01 0.01 0.001 79.3 76.2
500 26 0.01 0.01 0.01 78.3 75.0
2000 6 0.01 0.01 0.01 77.6 74.6
900 65 0.01 0.01 0.001 74.9 69.9
400 76 0.01 0.01 0.001 72.3 68.4

17

