
The Training Agents with Foundation Models Workshop at RLC 2024

Transformers Learn Temporal Difference Methods
for In-Context Reinforcement Learning

Jiuqi Wang∗

University of Virginia
jiuqi@email.virginia.edu

Ethan Blaser∗

University of Virginia
blaser@email.virginia.edu

Hadi Daneshmand
MIT LIDS/Boston University
hdanesh@mit.edu

Shangtong Zhang
University of Virginia
shangtong@virginia.edu

Abstract

In-context learning refers to the learning ability of a model during inference time
without adapting its parameters. The input (i.e., prompt) to the model (e.g.,
transformers) consists of both a context (i.e., instance-label pairs) and a query
instance. The model is then able to output a label for the query instance according
to the context during inference. A possible explanation for in-context learning is
that the forward pass of (linear) transformers implements iterations of gradient
descent on the instance-label pairs in the context. In this paper, we prove by
construction that transformers can also implement temporal difference (TD) learning
in the forward pass, a phenomenon we refer to as in-context TD. We demonstrate
the emergence of in-context TD after training the transformer with a multi-task
TD algorithm, accompanied by theoretical analysis. Furthermore, we prove that
transformers are expressive enough to implement many other policy evaluation
algorithms in the forward pass, including residual gradient, TD with eligibility trace,
and average-reward TD.

1 Introduction

In-context learning has emerged as one of the most remarkable abilities of large language models
(Brown et al., 2020; Lieber et al., 2021; Rae et al., 2021; Black et al., 2022). In in-context learning,
the input (i.e., prompt) to the model consists of both a context (i.e., instance-label pairs) and a
query instance. The model then outputs a label for the query instance during inference (i.e., the
forward pass). An example of the model input and output could be

5→ number; a→ letter; 6→︸ ︷︷ ︸
input

number︸ ︷︷ ︸
output

, (1)

where “5 → number; a → letter” is the context consisting of two instance-label pairs and “6” is
the query instance. Based on the context, the model (e.g., Team et al. (2023); Touvron et al.
(2023); Achiam et al. (2023)) infers the label “number” for the query “6”. Remarkably, this entire
process occurs during the model’s inference time without any adjustment to the model’s parameters.
Understanding the mechanism behind in-context learning has recently garnered significant attention
(Garg et al., 2022; Akyürek et al., 2023; von Oswald et al., 2023; Ahn et al., 2024).

The example in (1) illustrates a supervised learning problem. In the canonical machine learning
framework (Bishop, 2006), this supervised learning problem is typically solved by first training a

∗Equal contribution. The order is determined by tossing a fair coin.

The Training Agents with Foundation Models Workshop at RLC 2024

classifier based on the instance-label pairs in the context using methods such as gradient descent,
and then asking the classifier to predict the label for the query instance. Remarkably, Akyürek et al.
(2023); von Oswald et al. (2023); Ahn et al. (2024) show that transformers are able to implement
this gradient descent training process in their forward pass without adapting any of their parameters,
providing a possible explanation for in-context learning.

Beyond supervised learning, intelligence involves sequential decision-making, where Reinforcement
Learning (RL, Sutton & Barto (2018)) has emerged as a successful paradigm. Can transformers
preform in-context RL during inference, and how? To address these questions, we start with a simple
evaluation problem in a Markov Reward Process (MRP, Puterman (2014)). In an MRP, an agent
transitions from state to state at every time step. We denote the sequence of states that the agent
visits by (S0, S1, S2, . . .). At each state, the agent receives a reward. We denote the sequence of
rewards that the agent receives along the way as (r(S0), r(S1), r(S2), . . .). The evaluation problem
is to estimate the value function v, which computes for each state the expected total (discounted)
rewards the agent will receive in the future. An example of the desired input-output could be

S0 → r(S0);S1 → r(S1);S2 → r(S2); s→︸ ︷︷ ︸
input

v(s)︸︷︷︸
output

. (2)

Remarkably, the above task is fundamentally different from supervised learning as the goal is to
predict the value v(s) and not the immediate reward r(s). Moreover, the query state s is arbitrary
and does not have to be S3. Temporal Difference learning (TD, Sutton (1988)) is the most widely
used RL algorithm for solving such evaluation problems in (2). And it is well known that TD is not
gradient descent (Sutton & Barto, 2018).

In this work, we make three main contributions. First, we prove by construction that transformers
are expressive enough to implement TD in the forward pass, a phenomenon we refer to as in-context
TD. In other words, transformers can solve problem (2) during inference time via in-context TD.
Beyond the most straightforward TD, transformers can also implement many other policy evaluation
algorithms, including residual gradient (Baird, 1995), TD with eligibility trace (Sutton, 1988),
and average-reward TD (Tsitsiklis & Roy, 1999). In particular, to implement average-reward TD,
transformers require the use of multi-head attention and over-parameterized prompts, e.g.,

S0 → r(S0)□;S1 → r(S1)□;S2 → r(S2)□; s→︸ ︷︷ ︸
input

v(s)︸︷︷︸
output

.

Here, “□” acts as a dummy placeholder that the transformers will use as “memory” during inference.
Second, we empirically demonstrate that by training transformers with TD on multiple randomly
generated evaluation problems, in-context TD emerges. In other words, the learned transformer
parameters closely match our construction in proofs. We call this training scheme multi-task TD.
Third, we bridge the gap between our theories and empirical results by showing that for a single
layer transformer, the transformer parameters required in the proof to implement in-context TD is in
a subset of the invariant set of the training algorithm multi-task TD.

2 Background

Transformers and Linear Self-Attention. All vectors in this paper are column vectors. We
denote the identity matrix in Rn by In and an m × n all-zero matrix by 0m×n. We use Z⊤ to
denote transpose of Z and use both ⟨x, y⟩ and x⊤y to denote the inner product. Given a prompt
Z ∈ Rd×n, standard single-head self-attention (Vaswani et al., 2017) processes the prompt by
AttnWk,Wq,Wv

(Z) .= WvZ softmax
(
Z⊤W⊤

k WqZ
)
, where Wv ∈ Rd×d,Wk ∈ Rm×d, and Wq ∈ Rm×d

represent the value, key and query weight matrices, respectively. The softmax function is applied
to each row. Linear attention has recently drawn more attention (Schlag et al., 2021; von Oswald
et al., 2023; Ahn et al., 2024), where the softmax function is replaced by an identity function. Given
a prompt Z ∈ R(2d+1)×(n+1), we follow Ahn et al. (2024) and define linear self-attention as

LinAttn(Z;P,Q) .= PZM(Z⊤QZ), (3)

The Training Agents with Foundation Models Workshop at RLC 2024

where P ∈ R(2d+1)×(2d+1) and Q ∈ R(2d+1)×(2d+1) are parameters and M ∈ R(n+1)×(n+1) is a fixed
mask of the input matrix Z, defined as

M
.=
[
In 0n×1

01×n 0

]
. (4)

Note that we can view P and Q as reparameterizations of the original weight matrices for simplifying
presentation. The mask M is introduced for in-context learning, following Ahn et al. (2024), to
designate the last column of Z as the query and the first n columns as the context. We use this
fixed mask in most of this work. However, the linear self-attention mechanism can be altered using
a different mask M ′, when necessary, by defining LinAttn(Z;P,Q,M ′) = PZM ′(Z⊤QZ). In an
L-layer transformer with parameters {(Pl, Ql)}l=0,...,L−1, the input Z0 evolves layer by layer as

Zl+1
.= Zl + 1

n LinAttnPl,Ql
(Zl) = Zl + 1

nPlZlM(Z⊤
l QlZl). (5)

Here 1
n is a normalization factor simplifying presentation. We follow the convention in von Oswald

et al. (2023); Ahn et al. (2024) and use

TFL(Z0; {Pl, Ql}l=0,1,...L−1) .= −ZL[2d+ 1, n+ 1] (6)

to denote the output of the L-layer transformer, given an input Z0. Note that Zl[2d+ 1, n+ 1] is the
bottom-right element of Zl.

In-Context Supervised Learning as Gradient Descent. A linear regression task can be
represented by an instance distribution dX and a ground truth weight w∗. A training set {(x(i) ∈
R2d, y(i) ∈ R)}i=1,...,n is usually constructed by sampling n instances {x(i)} from dX in an i.i.d.
manner and constructing the targets as y(i) .= w⊤

∗ x
(i). For a new instance x(n+1) sampled from dX ,

the goal is to predict the correct target y(n+1). To demonstrate in-context learning, one constructs

a prompt matrix as Z0
.=
[
x(1) . . . x(n) x(n+1)

y(1) . . . y(n) 0

]
, where the bottom right zero reflects that the

target for x(n+1) is unknown. The L-layer transformer is trained via gradient descent to minimize
the following in-context loss

E(dX ,w∗)∼dtask,Z0∼dX [(TFL(Z0; {Pl, Ql}l=0,1,...,L−1)− w⊤
∗ x

(n+1))2], (7)

where we have assumed that there is a distribution dtask over such regression tasks. When a new
regression task (dtest

X , wtest
∗) is sampled from dtask and a new input Ztest

0 is constructed, the trained
transformer, using Ztest

0 as input, approximates the target
〈
x(n+1),test, wtest

∗
〉
. This is a form of

meta-learning (Vilalta & Drissi, 2002). Surprisingly, the transformer’s ability to achieve this stems
from its implementation of gradient descent within its forward pass. As proved by Ahn et al. (2024),
by minimizing the in-context loss in (7), we may end up with a transformer parameterized by, say
{(P ∗

l , Q
∗
l)}l=0,...,L−1, that has the following remarkable effect. Feeding the prompt Z0 into this

L-layer transformer, we get Z1, . . . , ZL following (5). We denote the right bottom element of Zl

as y(n+1)
l . Ahn et al. (2024) then prove that for l = 0, 1, . . . , L, we have y(n+1)

l = −w⊤
l x

(n+1),
where wl+1

.= wl + 1
n

∑n
i=1(y(i) − w⊤

l x
(i))x(i) with w0 = 0. This sequence {wl} mirrors that

produced by running gradient descent on the demonstrations {(x(i), y(i))} to minimize the squared
loss 1

n

∑n
i=1(y(i) − w⊤x(i))2. In other words, unrolling this transformer layer by layer is equivalent

to performing gradient descent iteration by iteration.

Reinforcement Learning. We consider an infinite horizon Markov Decision Process (MDP,
Puterman (2014)) with a finite state space S, a finite action space A, a reward function rMDP :
S×A → R, a transition function pMDP : S×S×A → [0, 1], a discount factor γ ∈ [0, 1), and an initial
distribution p0 : S → [0, 1]. An initial state S0 is sampled from p0. At a time t, an agent at a state
St takes an action At ∼ π(·|St), where π : A× S → [0, 1] is the policy being followed by the agent,
receives a reward Rt+1

.= rMDP(St, At), and transitions to a successor state St+1 ∼ pMDP(·|St, At).
If the policy π is fixed, the MDP can be simplified to a Markov Reward Process (MRP) where

The Training Agents with Foundation Models Workshop at RLC 2024

transitions and rewards are determined solely by the current state:St+1 ∼ p(·|St) with Rt+1
.= r(St).

Here p(s′|s) .=
∑

a π(a|s)pMDP(s′|s, a) and r(s) .=
∑

a π(a|s)rMDP(s, a). In this work, we consider
the policy evaluation problem where the policy π is fixed. So it suffices to consider only an MRP
represented by the tuple (p0, p, r), and trajectories (S0, R1, S1, R2, . . .) sampled from it. The value
function of this MRP is defined as v(s) .= E

[∑∞
i=t+1 γ

i−t−1Ri|St = s
]
. Estimating the value function

v is one of the fundamental tasks in RL. To this end, one can consider a linear architecture. Let
ϕ : S → Rd be the feature function. The goal is then to find a weight vector w ∈ Rd such that
for each s, the estimated value v̂(s;w) .= w⊤ϕ(s) approximates v(s). TD is a prevalent method for
learning this weight vector, which updates w iteratively as

wt+1 =wt + αt (Rt+1 + γv̂ (St+1;wt)− v̂ (St;wt))∇v̂ (St;wt)
=wt + αt

(
Rt+1 + γw⊤

t ϕ(St+1)− w⊤
t ϕ(St)

)
ϕ(St), (8)

where {αt} is a sequence of learning rates. Notably, TD is not a gradient descent algorithm. It is
instead considered as a semi-gradient algorithm because the gradient is only taken with respect to
v̂ (St;wt) and does not include the dependence on v̂ (St+1;wt) (Sutton & Barto, 2018). Including
this dependency modifies the update to

wt+1 = wt + αt

(
Rt+1 + γw⊤

t ϕ(St+1)− w⊤
t ϕ(St)

)
(ϕ(St)− γϕ(St+1)) , (9)

known as the (naive version of) residual gradient method (Baird, 1995).1 The update in (8) is also
called TD(0) – a special case of the TD(λ) algorithm (Sutton, 1988). TD(λ) employs an eligibility
trace that accumulates the gradients as e−1

.= 0, et
.= γλet−1 + ϕ(St) and updates w iteratively as

wt+1 = wt + αt(Rt+1 + γw⊤
t ϕ(St+1)− w⊤

t ϕ(St))et.

The hyperparameter λ controls the decay rate of the trace. If λ = 0, we recover (8). On the other
end with λ = 1, it is known that TD(λ) recovers Monte Carlo (Sutton, 1988). Another important
setting in RL is the average-reward setting (Puterman, 2014; Sutton & Barto, 2018), focusing on
the rate of receiving rewards, without using a discount factor γ. The average reward r̄ is defined as
r̄
.= limT →∞

1
T

∑T
t=1 E[Rt]. Similar to the value function in the discounted setting, a differential value

function v̄(s) is defined for the average-reward setting as v̄(s) .= E
[∑∞

i=t+1(Ri − r̄)|St = s
]
. One

can similarly estimate v̄(s) using a linear architecture with a vector w as w⊤ϕ(s). Average-reward
TD (Tsitsiklis & Roy, 1999) updates w iteratively as

wt+1 = wt + αt

(
Rt+1 − r̄t+1 + w⊤

t ϕ(St+1)− w⊤
t ϕ(St)

)
ϕ(St),

where r̄t
.= 1

t

∑t
i=1 Ri is the empirical average of the received reward.

3 Transformers Can Implement In-Context TD(0)

In this section, we prove that transformers are expressive enough to implement TD(0) in its forward
pass. Given a trajectory (S0, R1, S1, R2, S3, R4, . . . , Sn) sampled from an MRP, using as shorthand
ϕi

.= ϕ(Si), we define for l = 0, 1, . . . , L− 1

Z0 =

 ϕ0 . . . ϕn−1 ϕn

γϕ1 . . . γϕn 0
R1 . . . Rn 0

, PTD
l

.=
[
02d×2d 02d×1
01×2d 1

]
, QTD

l
.=

−C⊤
l C⊤

l 0d×1
0d×d 0d×d 0d×1
01×d 01×d 0

. (10)

Here Z0 ∈ R(2d+1)×(n+1) is the prompt matrix, Cl ∈ Rd×d is an arbitrary matrix, and{
(PTD

l , QTD
l)

}
l=0,1,...,L−1 are the parameters of the L-layer transformer. We then have

1This is a naive version because the update does not account for the double sampling issue. We refer the reader to
Chapter 11 of Sutton & Barto (2018) for detailed discussion.

The Training Agents with Foundation Models Workshop at RLC 2024

Theorem 1 (Forward pass as TD(0)). Consider the L-layer linear transformer following (5), using
the mask (4), parameterized by

{
PTD

l , QTD
l

}
l=0,...,L−1 in (10). Let y(n+1)

l be the bottom right element
of the l-th layer’s output, i.e., y(n+1)

l

.= Zl[2d + 1, n + 1]. Then, it holds that y(n+1)
l = −⟨ϕn, wl⟩,

where {wl} is defined as w0 = 0 and

wl+1 = wl + 1
nCl

∑n−1
j=0

(
Rj+1 + γw⊤

l ϕj+1 − w⊤
l ϕj

)
ϕj . (11)

The proof is in Appendix B.1 and with numerical verification in Appendix F as a sanity check.
Notably, Theorem 1 holds for any Cl. In particular, if Cl = αlI, then the update (11) becomes a
batch version of TD(0) in (8). For a general Cl, the update (11) can be regarded as preconditioned
batch TD(0) (Yao & Liu, 2008). Theorem 1 precisely demonstrates that transformers are expressive
enough to implement iterations of TD in its forward pass. We call this in-context TD. It should be
noted that although the construction of Z0 in (10) uses ϕn as the query state for conceptual clarity,
any arbitrary state s ∈ S can serve as the query state and Theorem 1 still holds. In other words, by
replacing ϕn with ϕ(s), the transformer will then estimate v(s). Notably, if the transformer has only
one layer, i.e., L = 1, there are other parameter configurations that can also implement in-context
TD(0).

Corollary 1. Consider the 1-layer linear transformer following (5), using the mask (4). Consider
the following parameters

PTD
0

.=
[
02d×2d 02d×1
01×2d 1

]
, QTD

0
.=

−C⊤
l 0d×d 0d×1

0d×d 0d×d 0d×1
01×d 01×d 0

 (12)

Then, it holds that y(n+1)
1 = −⟨ϕn, w1⟩, where w1 is defined as

w1 = w0 + 1
nCl

∑n−1
j=0

(
Rj+1 + γw⊤

0 ϕj+1 − w⊤
0 ϕj

)
ϕj with w0 = 0.

The proof is in Appendix B.2. An observant reader may notice that this corollary holds primarily
because w0 = 0, making it a unique result for L = 1. Nevertheless, this special case helps understand
a few empirical and theoretical results below. We also prove that transformers can implement residual
gradient, TD(λ), and average-reward TD in the forward pass. Due to the page limit, the exact
construction is deferred to Appendix A.

4 Transformers Do Implement In-Context TD(0)

It has been observed that in-context gradient descent emerges during the minimization of the in-
context regression loss (7) via gradient descent. In this section, we demonstrate the emergence of
in-context TD both theoretically and empirically.

Multi-Task Temporal Difference Learning. The in-context regression loss essentially trains the
transformer with multiple regression tasks. Inspired by this, we propose to train the transformer with
multiple evaluation tasks from multiple MRPs. Recall, an MRP is defined by the tuple (p0, p, r). For
the evaluation problem, the feature function ϕ also matters. We therefore define an evaluation task
to be the tuple (p0, p, r, ϕ). Assuming a distribution dtask over these tuples, we sample evaluation
tasks from this distribution. For each sampled task, we apply TD to train the transformer to
solve the corresponding evaluation problem, as described in the following multi-task TD algorithm

The Training Agents with Foundation Models Workshop at RLC 2024

(Algorithm 1).
Algorithm 1: Multi-Task Temporal Difference Learning

1: Input: context length n, MRP sample length τ , number of training MRPs k, learning rate α,
discount factor γ, transformer parameters θ .= {Pl, Ql}l=0,1,...L−1

2: for i← 1 to k do
3: Sample (p0, p, r, ϕ) from dtask // see, e.g., Algorithm 2 in Appendix C
4: Sample (S0, R1, S1, R2, . . . , Sτ , Rτ+1, Sτ+1) from the MRP (p0, p, r)
5: for t = 0, . . . , τ − n− 1 do

6: Z0 ←

 ϕt · · · ϕt+n−1 ϕt+n+1
γϕt+1 · · · γϕt+n 0
Rt+1 · · · Rt+n 0

, Z ′
0 ←

 ϕt+1 · · · ϕt+n ϕt+n+2
γϕt+2 · · · γϕt+n+1 0
Rt+2 · · · Rt+n+1 0

7: θ ← θ + α(Rt+n+2 + γTFL(Z ′

0; θ)− TFL(Z0; θ))∇θTFL(Z0; θ) // TD
8: end for
9: end for

Recall that TFL(Z0; θ) and TFL(Z ′
0; θ) are intended to estimate v(St+n+1) and v(St+n+2) respectively.

So Algorithm 1 essentially applies TD using (St+n+1, Rt+n+2, St+n+2) to train the transformer.
Ideally, when a new prompt Ztest is constructed using a trajectory from a new evaluation task
(p0, p, r, ϕ)test ∼ dtask(·), we would like the predicted value TFL(Ztest; θ) with θ from Algorithm 1 to
be close to the value of the query state in Ztest. This problem is a multi-task meta-learning problem,
a well-explored area with many existing methodologies (Beck et al., 2023). However, the unique
and significant aspect of our work is the demonstration that in-context TD emerges in the learned
transformer, providing a novel explanation for how the model solves the problem.

Theoretical Analysis. The problem that Algorithm 1 aims to solve is highly non-convex and
non-linear (the linear transformer is still a nonlinear function). We analyze a simplified version of
Algorithm 1 and leave the treatment to the full version for future work. In particular, we study the
single layer case with L = 1 and let θ .= (P0, Q0) be the parameters of the single-layer transformer.
We consider expected updates, i.e.,

θk+1 =θk + αk∆(θk) with ∆(θ) .= E [(R+ γTF1(Z ′
0, θ)− TF1(Z0, θ))∇TF1(Z0, θ)] . (13)

Here the expectation integrates both the randomness in sampling (p0, p, r, ϕ) from dtask and the
randomness in constructing (R,Z0, Z

′
0) thereafter. We sample (S0, R1, S1, . . . , Sn+1, Rn+2, Sn+2)

following (p0, p, r) and construct using shorthand ϕi
.= ϕ(Si)

Z0
.=

 ϕ0 . . . ϕn−1 ϕn+1
γϕ1 . . . γϕn 0
R1 . . . Rn 0

, Z ′
0
.=

 ϕ1 . . . ϕn ϕn+2
γϕ2 . . . γϕn+1 0
R2 . . . Rn+1 0

, R .= Rn+2. (14)

The structure of Z0 and Z ′
0 is similar to those in Algorithm 1. The main difference is that we do not

use the sliding window. We recall that (p0, p, r, ϕ) are random variables with joint distribution dtask.
Here, ϕ is essentially a random matrix taking value in Rd×|S|, represented as, ϕ = [ϕ(s)]s∈S . We use
≜ to denote “equal in distribution" and make the following assumptions.
Assumption 4.1. The random matrix ϕ is independent of (p0, p, r).
Assumption 4.2. Πϕ ≜ ϕ,Λϕ ≜ ϕ, where Π is any d-dimensional permutation matrix and Λ is any
diagonal matrix in Rd where each diagonal element of Λ can only be −1 or 1.

Those assumptions are easy to satisfy. For example, as long as the elements of the random matrix ϕ
are i.i.d. from a symmetric distribution centered at zero, e.g., a uniform distribution on [−1, 1], then
both assumptions hold. We say a set Θ is an invariant set of (13) if for any k, θk ∈ Θ =⇒ θk+1 ∈ Θ.
Define

θ∗(η, c, c′) .=

P0 =
[
02d×2d 02d×1
01×2d η

]
, Q0 =

 cId 0d×d 0d×1
c′Id 0d×d 0d×1
01×d 01×d 0

 .

The Training Agents with Foundation Models Workshop at RLC 2024

Theorem 2. Let Assumptions 4.1 and 4.2 hold. For the (14) construction of (R,Z0, Z
′
0), then

Θ∗
.= {θ∗(η, c, c′)|η, c, c′ ∈ R} is an invariant set of (13).

The proof is in Appendix B.3. Theorem 2 demonstrates that once θk enters Θ∗ at some k, it can never
leave, i.e., Θ∗ is a candidate set that the update (13) can possibly converge to. Consider a subset
Θ′

∗ ⊂ Θ∗ with a stricter constraint c′ = 0, i.e., Θ′
∗
.= {θ∗(η, c, 0)|η, c ∈ R}. Corollary 1 then confirms

that all parameters in Θ′
∗ implement in-context TD. That being said, whether (13) is guaranteed to

converge to Θ∗, or further to Θ′
∗, is left for future work.

Empirical Analysis. We now empirically study Algorithm 1. To this end, we construct dtask based
on Boyan’s chain (Boyan, 1999), a canonical environment for diagnosing RL algorithms. We keep the
structure of Boyan’s chain but randomly generate initial distributions p0, transition probabilities
p, reward functions r, and the feature function ϕ. Details of this random generation process are
provided in Algorithm 2 with Figure 2 visualizing Boyan’s chain, both in Appendix C.

For the linear transformer specified in (5), we first consider the autoregressive case following (Akyürek
et al., 2023; von Oswald et al., 2023), where all the transformer layers share the same parameters,
i.e., Pl ≡ P0 and Ql ≡ Q0 for l = 0, 1, . . . , L − 1. We consider a three layer transformer (L = 3).
Importantly, all elements of P0 and Q0 are equally trainable – we did not force any element of P0
and Q0 to be 0. We then run Algorithm 1 with Boyan’s chain based evaluation tasks (i.e., dtask) to
train this autoregressive transformer. The dimension of the feature is d = 4 (i.e., ϕ(s) ∈ R4). Other
hyperparameters of Algorithm 1 are specified in Appendix D.1.

Figure 1a visualizes the final learned P0 and Q0 by Algorithm 1 after 4000 MRPs (i.e., k = 4000),
which closely match our specifications PTD and QTD in (10) with Cl = Id. In Figure 1b, we visualize
the element-wise learning progress of P0 and Q0. We observe that the bottom right element of
P0 increases (the P0[−1,−1] curve) while the average absolute value of all other elements remain
close to zero (the “Avg Abs Others” curve), closely aligning with PTD up to some scaling factor.
Furthermore, the trace of the upper left d× d block of Q0 approaches −d (the tr(Q0[: d, : d]) curve),
and the trace of the upper right block (excluding the last column) approaches d (the tr(Q0[: d, d : 2d])
curve). Meanwhile, the average absolute value of all the other elements in Q0 remain near zero,
aligning with QTD using Cl = Id up to some scaling factor.

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

Final P0
0 1 2 3 4 5 6 7 8

Final Q0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(a) Learned P0 and Q0 after 4000 MRPs

0 1000 2000 3000 4000

MRPs

0.0

0.5

1.0

1.5

2.0
P0 Metrics

P0[−1, − 1]

Avg Abs Others

0 1000 2000 3000 4000

MRPs

−4

−2

0

2

4
Q0 Metrics

tr(Q0[: d, : d])

tr(Q0[: d, d : 2d])

Avg Abs Others

(b) Element-wise learning progress of P0 and Q0

Figure 1: Visualization of the learned transformers and the learning progress. Both (a) and (b) are
averaged across 30 seeds and the shaded region in (b) denotes the standard errors. Since P0 and Q0
are in the same product in (3), the algorithm can rescale both or flip the sign of both, but still end
up with exactly the same transformer. Therefore, to make sure the visualization are informative, we
rescale P0 and Q0 properly first before visualization. See Appendix D.1.1 for details.

More empirical analysis is provided in the Appendix. In particular, besides showing the parameter-
wise convergence in Figure 1, we also use other metrics including value difference, implicit weight
similarity, and sensitivity similarity, inspired by von Oswald et al. (2023); Akyürek et al. (2023),
to examine the learned transformer. We also study normal transformers without parameter
sharing (Appendix D.3), as well as different choices of hyperparameters in Algorithm 1.
Furthermore, we empirically investigate the original softmax-based transformers (Appendix
E). The overall conclusion is the same – in-context TD emerges in the transformers learned by

The Training Agents with Foundation Models Workshop at RLC 2024

Algorithm 1. Notably, Theorem 1 and Corollary 1 suggests that for L = 1, there are two distinct ways
to implement in-context TD (i.e., (10) v.s. (12)). Our empirical results in Appendix D.2 show that
Algorithm 1 ends up with (12) in Corollary 1 for L = 1, aligning well with Theorem 2. For L = 2, 3, 4,
Algorithm 1 always ends up with (10) in Theorem 1, as shown in Figure 3 in Appendix D.2. We also
empirically observed that for in-context TD to emerge, the task distribution dtask has to be “difficult”
enough. For example, if (p0, p) or ϕ are always fixed, we did not observe the emergence of in-context
TD.

5 Related Works

In-Context Learning. Understanding in-context learning empirically and theoretically has recently
emerged as an active research area (Garg et al., 2022; Müller et al., 2022; Akyürek et al., 2023; von
Oswald et al., 2023; Zhao et al., 2023; Allen-Zhu & Li, 2023; Zhang et al., 2023; Mahankali et al.,
2023; Ahn et al., 2024), building on prior research demonstrating that neural networks are able to
implement algorithms (Siegelmann & Sontag, 1992; Graves et al., 2014; Jastrzębski et al., 2017) and
achieve meta learning from the inputs (Hochreiter et al., 2001). This work advances this line of
research by demonstrating how transformers implement in-context TD, accompanied by a
theoretical understanding of its emergence.

In-Context Reinforcement Learning. Existing research on in-context RL predominantly adopts
a policy-based approach, often relying on supervised pre-training (Laskin et al., 2022; Raparthy et al.,
2023; Sinii et al., 2023; Zisman et al., 2023; Krishnamurthy et al., 2024). Transformers are trained to
output the action, instead of the value, for the query state. Correspondingly, the prompts used in
this setup consist of previous trajectories from an MDP

S0A0R1S1A2R2 . . . St−1At−1︸ ︷︷ ︸
prompt

St︸︷︷︸
query

→ At︸︷︷︸
output

.

The dataset usually consists of multiple such prompt-query-output pairs, where maximum likelihood
estimation is essentially used to train the transformers. Notably, the prompt can be generated by
following multiple policies. The prompt can also be offline data containing all trajectories generated
during prior RL algorithm training across multiple episodes. This line of research is closely related
to offline policy distillation, the goal of which is to learn a policy from offline data using transformers
(Chen et al., 2021; Janner et al., 2021; Lee et al., 2022; Reed et al., 2022; Kirsch et al., 2023). Despite
that empirical successes observed in the work above, theoretical analysis is often missing. Lin et al.
(2023) provide theoretical analysis for this policy-based supervised pre-training approach and show
that the transformers can approximate a few RL algorithms, including LinUCB (Chu et al., 2011)
and Thompson sampling (Russo et al., 2018) for linear bandits (Lattimore & Szepesvári, 2020) and
UCB-VI (Azar et al., 2017) for MDPs. Specifically, Lin et al. (2023) prove the inference process
of the learned transformers behaves similarly to those aforementioned RL algorithms in terms of
action selection probabilities, regret, and other metrics. This behavioral similarity is also investigated
in Lee et al. (2024). However, the underlying mechanisms within the learned transformers that
induce this similarity remains unclear. In contrast, we go beyond behavioral similarity and
prove that transformers can exactly implement a few RL algorithms in its forward
pass. Moreover, we do not use the supervised pre-training paradigm, which is centered on maximum
likelihood estimation. As shown in Algorithm 1, we instead use RL pre-training predicated on TD, a
value-based method. Park et al. (2024) concurrently use a regret-based loss for training transformers
in online learning. Brooks et al. (2024) implement policy iteration, a value-based strategy, with
transformers, but perform the required arg max operation outside the transformers. Despite the
observed empirical success, Brooks et al. (2024) also lack a theoretical analysis of their approach.

Meta-Learning of RL algorithms. Our Algorithm 1 can be regarded as a meta RL algorithm
(Beck et al., 2023), where dtask is the task distribution in the meta RL framework. The learned
transformers can be regarded as a learned algorithm, which is used to solve new evaluation tasks from
the task distribution. Such meta learning of RL algorithms has been explored in Duan et al. (2016);

The Training Agents with Foundation Models Workshop at RLC 2024

Wang et al. (2016); Finn et al. (2017); Kirsch et al. (2019); Oh et al. (2020); Lu et al. (2022); Kirsch
et al. (2022); Lu et al. (2023). However, those discovered algorithms lack interpretability – it is not
clear how the neural network implements the discovered algorithms. By contrast, the discovered
transformer from Algorithm 1 is well explained.

6 Conclusion

This work demonstrates that transformers can and do learn to implement temporal difference
methods for in-context policy evaluation in the forward pass. We further provide a theoretical
explanation of how in-context TD emerges by characterizing an invariant set of the multi-task TD
algorithm used in pre-training, bridging the gap between “can” and “do”. However, there are a
few limitations. First, this work is focused on policy evaluation, with control algorithms deferred
to future research. Second, the analysis is largely theoretical – we leave the large-scale verification
of the multi-task TD pre-training paradigm for future work. Third, the theoretical analysis of
the pre-training paradigm is confined to single-layer linear transformers, leaving the exploration of
multi-layer softmax transformers for future studies.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. Advances in Neural Information Processing
Systems, 36, 2024.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. The Eleventh International
Conference on Learning Representations, 2023.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, context-free grammar. arXiv
preprint arXiv:2305.13673, 2023.

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will
Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael
Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos,
Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Christian
Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo, Phil
Tillet, Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren Zhou,
Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. PyTorch 2: Faster
Machine Learning Through Dynamic Python Bytecode Transformation and Graph Compilation.
In 29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’24). ACM, April 2024. doi: 10.1145/3620665.3640366.
URL https://pytorch.org/assets/pytorch2-2.pdf.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforcement
learning. In International conference on machine learning, pp. 263–272. PMLR, 2017.

Leemon C. Baird. Residual algorithms: Reinforcement learning with function approximation. In
Proceedings of the International Conference on Machine Learning, 1995.

Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shimon
Whiteson. A survey of meta-reinforcement learning. arXiv preprint arXiv:2301.08028, 2023.

https://pytorch.org/assets/pytorch2-2.pdf

The Training Agents with Foundation Models Workshop at RLC 2024

Christopher M Bishop. Pattern recognition and machine learning. Springer google schola, 2:1122–1128,
2006.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, et al. Gpt-neox-20b: An open-source autoregressive
language model. arXiv preprint arXiv:2204.06745, 2022.

Justin A. Boyan. Least-squares temporal difference learning. In Proceedings of the International
Conference on Machine Learning, 1999.

Ethan Brooks, Logan Walls, Richard L Lewis, and Satinder Singh. Large language models can
implement policy iteration. Advances in Neural Information Processing Systems, 36, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff
functions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pp. 208–214. JMLR Workshop and Conference Proceedings, 2011.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2:
nforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

John D. Garrett. garrettj403/SciencePlots. September 2021. doi: 10.5281/zenodo.4106649. URL
http://doi.org/10.5281/zenodo.4106649.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint arXiv:1410.5401,
2014.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2. URL
https://doi.org/10.1038/s41586-020-2649-2.

Sepp Hochreiter, A. Steven Younger, and Peter R. Conwell. Learning to learn using gradient descent.
In Georg Dorffner, Horst Bischof, and Kurt Hornik (eds.), Artificial Neural Networks — ICANN
2001, pp. 87–94, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://doi.org/10.5281/zenodo.4106649
https://doi.org/10.1038/s41586-020-2649-2

The Training Agents with Foundation Models Workshop at RLC 2024

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):
90–95, 2007. doi: 10.1109/MCSE.2007.55.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Stanisław Jastrzębski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong Che, and Yoshua Bengio.
Residual connections encourage iterative inference. arXiv preprint arXiv:1710.04773, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
the International Conference on Learning Representations, 2015.

Louis Kirsch, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Improving generalization in meta
reinforcement learning using learned objectives. arXiv preprint arXiv:1910.04098, 2019.

Louis Kirsch, Sebastian Flennerhag, Hado van Hasselt, Abram Friesen, Junhyuk Oh, and Yutian
Chen. Introducing symmetries to black box meta reinforcement learning. Proceedings of the AAAI
Conference on Artificial Intelligence, 36(7):7202–7210, Jun. 2022.

Louis Kirsch, James Harrison, C. Freeman, Jascha Sohl-Dickstein, and Jürgen Schmidhuber. Towards
general-purpose in-context learning agents. In NeurIPS 2023 Foundation Models for Decision
Making Workshop, 2023. URL https://openreview.net/forum?id=zDTqQVGgzH.

Akshay Krishnamurthy, Keegan Harris, Dylan J Foster, Cyril Zhang, and Aleksandrs Slivkins. Can
large language models explore in-context? arXiv preprint arXiv:2403.15371, 2024.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, et al. In-context reinforcement learning
with algorithm distillation. arXiv preprint arXiv:2210.14215, 2022.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma
Brunskill. Supervised pretraining can learn in-context reinforcement learning. Advances in Neural
Information Processing Systems, 36, 2024.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio Guadarrama,
Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision transformers.
Advances in Neural Information Processing Systems, 35:27921–27936, 2022.

Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham. Jurassic-1: Technical details and evaluation.
White Paper. AI21 Labs, 1:9, 2021.

Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforcement
learning via supervised pretraining. arXiv preprint arXiv:2310.08566, 2023.

Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, and Jakob
Foerster. Discovered policy optimisation. Advances in Neural Information Processing Systems, 35:
16455–16468, 2022.

Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and
Feryal Behbahani. Structured state space models for in-context reinforcement learning. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 47016–47031. Curran Associates, Inc., 2023.

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is
provably the optimal in-context learner with one layer of linear self-attention. arXiv preprint
arXiv:2307.03576, 2023.

https://openreview.net/forum?id=zDTqQVGgzH

The Training Agents with Foundation Models Workshop at RLC 2024

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter.
Transformers can do bayesian inference. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=KSugKcbNf9.

Junhyuk Oh, Matteo Hessel, Wojciech M Czarnecki, Zhongwen Xu, Hado P van Hasselt, Satinder
Singh, and David Silver. Discovering reinforcement learning algorithms. Advances in Neural
Information Processing Systems, 33:1060–1070, 2020.

Chanwoo Park, Xiangyu Liu, Asuman Ozdaglar, and Kaiqing Zhang. Do llm agents have regret? a
case study in online learning and games. arXiv preprint arXiv:2403.16843, 2024.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song,
John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Sharath Chandra Raparthy, Eric Hambro, Robert Kirk, Mikael Henaff, and Roberta Raileanu.
Generalization to new sequential decision making tasks with in-context learning. arXiv preprint
arXiv:2312.03801, 2023.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al. A generalist
agent. arXiv preprint arXiv:2205.06175, 2022.

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on
thompson sampling. Foundations and Trends® in Machine Learning, 11(1):1–96, 2018.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning, pp. 9355–9366. PMLR, 2021.

Hava T Siegelmann and Eduardo D Sontag. On the computational power of neural nets. In Proceedings
of the fifth annual workshop on Computational learning theory, pp. 440–449, 1992.

Viacheslav Sinii, Alexander Nikulin, Vladislav Kurenkov, Ilya Zisman, and Sergey Kolesnikov.
In-context reinforcement learning for variable action spaces. arXiv preprint arXiv:2312.13327,
2023.

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
1988.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction (2nd Edition).
MIT press, 2018.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

John N. Tsitsiklis and Benjamin Van Roy. Average cost temporal-difference learning. Automatica,
1999.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,

https://openreview.net/forum?id=KSugKcbNf9

The Training Agents with Foundation Models Workshop at RLC 2024

U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial
intelligence review, 18:77–95, 2002.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent,
2023.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016.

Hengshuai Yao and Zhi-Qiang Liu. Preconditioned temporal difference learning. In Proceedings of
the 25th international conference on Machine learning, pp. 1208–1215, 2008.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
arXiv preprint arXiv:2306.09927, 2023.

Shangtong Zhang, Wendelin Boehmer, and Shimon Whiteson. Deep residual reinforcement learning.
In Proceedings of the International Conference on Autonomous Agents and Multiagent Systems,
2020.

Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse while
predicting the masked word? arXiv preprint arXiv:2303.08117, 2023.

Ilya Zisman, Vladislav Kurenkov, Alexander Nikulin, Viacheslav Sinii, and Sergey Kolesnikov. Emer-
gence of in-context reinforcement learning from noise distillation. arXiv preprint arXiv:2312.12275,
2023.

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

The Training Agents with Foundation Models Workshop at RLC 2024

A Transformers Can Implement More RL Algorithms

In this section, we prove that transformers are expressive enough to implement three additional well-
known RL algorithms in the forward pass. We warm up with the (naive version of) residual gradient
(RG). We then move to the more difficult TD(λ). This section culminates with average-reward TD,
which requires multi-head linear attention and memory within the prompt. We do note that whether
those three RL algorithms will emerge after training is left for future work.

Residual Gradient. The construction of RG is an easy extension of Theorem 1. We define

PRG
l = PTD

l , QRG
l

.=

−C⊤
l C⊤

l 0d×1
C⊤

l −C⊤
l 0d×1

01×d 01×d 0

 ∈ R(2d+1)×(2d+1). (15)

Corollary 2 (Forward pass as Residual Gradient). Consider the L-layer linear transformer following
(5), using the mask (4), parameterized by

{
PRG

l , QRG
l

}
l=0,...,L−1 in (15). Define y(n+1)

l

.= Zl[2d +
1, n+ 1]. Then, it holds that y(n+1)

l = −⟨ϕn, wl⟩, where {wl} is defined as w0 = 0 and

wl+1 = wl + 1
nCl

∑n−1
j=0

(
Rj+1 + γw⊤

l ϕj+1 − w⊤
l ϕj

)
(ϕj − γϕj+1). (16)

The proof is in B.4 with numerical verification in Appendix F as a sanity check. Again, if Cl
.= αlId,

then (16) can be regarded as a batch version of (9). For a general Cl, it is then preconditioned batch
RG. Notably, Figure 1 empirically demonstrates that Algorithm 1 eventually ends up with in-context
TD instead of in-context RG. This matches the conventional wisdom in the RL community that TD
is usually superior to the naive RG (see, e.g., Zhang et al. (2020) and references therein).

TD(λ). Incorporating eligibility traces is an important extension of TD(0). We now demonstrate
that by using a different mask, transformers are able to implement in-context TD(λ). We define

MTD(λ) .=

1 0 0 0 · · · 0 0
λ 1 0 0 · · · 0 0
...

...
...

...
. . .

...
...

λn−1 λn−2 λn−3 λn−4 · · · 1 0
0 0 0 0 · · · 0 0

 ∈ R(n+1)×(n+1). (17)

Notably, if λ = 0, the above mask for TD(λ) recovers the mask for TD(0) in (4).
Corollary 3 (Forward pass as TD(λ)). Consider the L-layer linear transformer parameterized by{
PTD

l , QTD
l

}
l=0,...,L−1 as specified in (10) with the input mask used in (5) being MTD(λ) in (17).

Define y(n+1)
l

.= Zl[2d+ 1, n+ 1]. Then, it holds that y(n+1)
l = −⟨ϕn, wl⟩ where {wl} is defined with

w0 = 0, e0 = 0, ej = λej−1 + ϕj, and

wk+1 = wk + 1
nCk

∑n−1
i=0

(
ri+1 + γw⊤

k ϕi+1 − w⊤
k ϕi

)
ei.

The proof is in B.5 with numerical verification in Appendix F as a sanity check.

Average-Reward TD. We now demonstrate that transformers are expressive enough to implement
in-context average-reward TD. Different from TD(0), average-reward TD exhibits additional challenges
in that it updates two estimates (i.e., wt and r̄t) in parallel. To account for this challenge, we use
two additional mechanisms beyond the naive single-head linear transformer. Namely, we allow
additional “memory” in the prompt and consider two-head linear transformers. Given a trajectory
(S0, R1, S1, R2, S3, R4, . . . , Sn) sampled from an MRP, we construct the prompt matrix Z0 as

Z0 =

ϕ0 . . . ϕn−1 ϕn

ϕ1 . . . ϕn 0
R1 . . . Rn 0
0 . . . 0 0

 ∈ R(2d+2)×(n+1).

The Training Agents with Foundation Models Workshop at RLC 2024

Notably, the last row of zeros is the “memory”, which is used by the transformer to store some
intermediate quantities during the inference time. We then define the transformer parameters and
masks as

P
TD,(1)
l

.=

02d×2d 02d×1 02d×1
01×2d 1 0
01×2d 0 0

, PTD,(2)
l

.=

02d×2d 02d×1 02d×1
01×2d 0 0
01×2d 0 1

, (18)

QTD
l

.=

−C⊤
l C⊤

l 0d×2
0d×d 0d×d 0d×2
02×d 02×d 02×2

,Wl
.=
[
02d×2d 02d×1 02d×(2d+2) 02d×1
01×2d 1 01×(2d+2) 1

]
, (19)

MTD,(2) .=
[
In 0n×1

01×n 0

]
, MTD,(1) .=

(
In+1 − Un+1diag

([
1 1

2 . . . 1
n+1

]))
MTD,(2), (20)

where Cl ∈ Rd×d is again an arbitrary matrix, Un+1 is the (n+ 1)× (n+ 1) upper triangle matrix
where all the nonzero elements are 1, and diag(x) constructs a diagonal matrix with the diagonal entry
being x. Here,

{
P

TD,(1)
l , QTD

l

}
are the parameters of the first attention heads, with the input mask

being MTD,(1).
{
P

TD,(2)
l , QTD

l

}
are the parameters of the second attention heads, with the input

mask being MTD,(2). The two heads coincide on some parameters. Wl is the affine transformation
that combines the embeddings from the two attention heads. Define the two-head linear-attention as

TwoHead(Z;P,Q,M,P ′, Q′,M ′,W) .= W

[
LinAttn(Z;P,Q,M)

LinAttn(Z;P ′, Q′,M ′)

]
.

The L-layer transformer we are interested in is then given by

Zl+1
.= Zl + 1

n TwoHead(Zl;PTD,(1)
l , QTD

l ,MTD,(1), P
TD,(2)
l , QTD

l ,MTD,(2),Wl). (21)

Theorem 3 (Forward pass as average-reward TD). Consider the L-layer transformer in (21). Let
h

(n+1)
l be the bottom-right element of the l-th layer output, i.e., h(n+1)

l

.= Zl[2d+ 2, n+ 1]. Then, it
holds that h(n+1)

l = −⟨ϕn, wl⟩ where {wl} is defined as w0 = 0,

wl+1 = wl + 1
nCl

∑n
j=1

(
Rj − r̄j + w⊤

l ϕj − w⊤
l ϕj−1

)
ϕj−1

for l = 0, . . . , L− 1, where r̄j
.= 1

j

∑j
k=1 Rk.

The proof is in B.6 with numerical verification in Appendix F as a sanity check.

B Proofs

B.1 Proof of Theorem 1

Proof. We recall from (5) that the embedding evolves according to

Zl+1 = Zl + 1
n
PlZlM(Z⊤

l QlZl).

We first express Zl using elements of Z0. To this end, it is convenient to give elements of Zl different
names, in particular, we refer to the elements in Zl as

{
(x(i)

l , y
(i)
l)
}

i=1,...,n+1
in the following way

Zl =
[
x

(1)
l . . . x

(n)
l x

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l

]
,

The Training Agents with Foundation Models Workshop at RLC 2024

where we recall that Zl ∈ R(2d+1)×(n+1), x
(i)
l ∈ R2d, y

(i)
l ∈ R. Sometimes it is more convenient to

refer to the first half and second half of x(i)
l separately, by, e.g., ν(i)

l ∈ Rd, ξ
(i)
l ∈ Rd, i.e., x(i)

l =
[
ν

(i)
l

ξ
(i)
l

]
.

Then we have

Zl =

ν
(1)
l . . . ν

(n)
l ν

(n+1)
l

ξ
(1)
l . . . ξ

(n)
l ξ

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l

.
We utilize the shorthands

Xl =
[
x

(1)
l . . . x

(n)
l

]
∈ R2d×n,

Yl =
[
y

(1)
l . . . y

(n)
l

]
∈ R1×n.

Then we have

Zl =
[
Xl x

(n+1)
l

Yl y
(n+1)
l

]
.

For the input Z0, we assume ξ(n+1)
0 = 0, y(n+1)

0 = 0 but all other entries of Z0 are arbitrary. We
recall our definition of M in (4) and

{
PTD

l , QTD
l

}
l=0,...,L−1 in (10). In particular, we can express

QTD
l in a more compact way as

M1
.=
[
−Id Id

0d×d 0d×d

]
∈ R2d×2d,

Bl
.=
[
C⊤

l 0d×d

0d×d 0d×d

]
∈ R2d×2d,

Al
.=BlM1 =

[
−C⊤

l C⊤
l

0d×d 0d×d

]
∈ R2d×2d,

QTD
l

.=
[
Al 02d×1

01×2d 0

]
∈ R(2d+1)×(2d+1).

We now proceed with the following claims.

Claim 1. Xl ≡ X0, x
(n+1)
l ≡ x(n+1)

0 ,∀l.

Recall that PTD
l

.=
[
02d×2d 02d×1
01×2d 1

]
∈ R(2d+1)×(2d+1). Let

Wl
.= ZlM

(
Z⊤

l Q
TD
l Zl

)
∈ R(2d+1)×(n+1).

The embedding evolution can then be expressed as

Zl+1 = Zl + 1
n
PTD

l Wl.

By simple matrix arithmetic, we get

PTD
l Wl =

[
02d×(n+1)
Wl(2d+ 1)

]
,

where Wl(2d+ 1) denotes the (2d+ 1)-th row of Wl. Therefore, we have Xl+1 = Xl, x
(n+1)
l+1 = x

(n+1)
l .

By induction, we get Xl ≡ X0 and x
(n+1)
l ≡ x(n+1)

0 for all l = [0, . . . , L− 1].

The Training Agents with Foundation Models Workshop at RLC 2024

In light of this, we drop all the subscripts of Xl, as well as subscripts of x(i)
l for i = 1, . . . , n+ 1.

Claim 2.

Yl+1 = Yl + 1
n
YlX

⊤AlX

y
(n+1)
l+1 = y

(n+1)
l + 1

n
YlX

⊤Alx
(n+1).

The easier way to show why this claim holds is to factor the embedding evolution into the product of
PTD

l ZlM and Z⊤
l Q

TD
l Zl. Firstly, we have

PTD
l Zl =

[
02d×n 02d×1

Yl y
(n+1)
l

]
.

Applying the mask, we get

PTD
l ZlM =

[
02d×n 02d×1
Yl 0

]
.

Then, we analyze Z⊤
l Q

TD
l Zl. Applying the block matrix notations, we get

Z⊤
l Q

TD
l Zl =

[
X⊤ Y ⊤

l

x(n+1)⊤
y

(n+1)
l

][
Al 02d×1

01×2d 0

][
X x(n+1)

Yl y
(n+1)
l

]
=
[

X⊤Al 0n×1

x(n+1)⊤
Al 0

][
X x(n+1)

Yl y
(n+1)
l

]
=
[

X⊤AlX X⊤Alx
(n+1)

x(n+1)⊤
AlX x(n+1)⊤

Alx
(n+1)

]
.

Combining the two, we get

PTD
l ZlM

(
Z⊤

l Q
TD
l Zl

)
=
[
02d×n 02d×1
Yl 0

][
X⊤AlX X⊤Alx

(n+1)

x(n+1)⊤
AlX x(n+1)⊤

Alx
(n+1)

]
=
[

02d×n 02d×1
YlX

⊤AlX YlX
⊤Alx

(n+1)

]
.

Hence, according to our update rule in (5), we get

Yl+1 = Yl + 1
n
YlX

⊤AlX

y
(n+1)
l+1 = y

(n+1)
l + 1

n
YlX

⊤Alx
(n+1).

Claim 3.

y
(i)
l+1 = y

(i)
0 +

〈
M1x

(i),
1
n

l∑
j=0

B⊤
j M2XY

⊤
j

〉
,

for i = 1, . . . , n+ 1, where M2 =
[
Id 0d×d

0d×d 0d×d

]
.

Following Claim 2, we can unroll Yl+1 as

Yl+1 = Yl + 1
n
YlX

⊤AlX

Yl = Yl−1 + 1
n
Yl−1X

⊤Al−1X

The Training Agents with Foundation Models Workshop at RLC 2024

...

Y1 = Y0 + 1
n
Y0X

⊤A0X.

We can then compactly express Yl+1 as

Yl+1 = Y0 + 1
n

l∑
j=0

YjX
⊤AjX.

Recall that we define Aj = BjM1. Then, we can rewrite Yl+1 as

Yl+1 = Y0 + 1
n

l∑
j=0

YjX
⊤M2BjM1X.

The introduction of M2 here does not break the equivalence because Bj = M2Bj . However, it will
help make our proof steps easier to comprehend later.

With the identical procedure, we can easily rewrite y(n+1)
l+1 as

y
(n+1)
l+1 = y

(n+1)
0 + 1

n

l∑
j=0

YjX
⊤M2BjM1x

(n+1).

In light of this, we define ψ0
.= 0 and for l = 0, . . .

ψl+1
.= 1
n

l∑
j=0

B⊤
j M2XY

⊤
j ∈ R2d. (22)

Then we can write

y
(i)
l+1 = y

(i)
0 +

〈
M1x

(i), ψl+1

〉
, (23)

for i = 1, . . . , n+ 1, which is the claim we made. In particular, since we assume y(n+1)
0 = 0, we have

y
(n+1)
l+1 =

〈
M1x

(n+1), ψl+1

〉
.

Claim 4. The bottom d elements of ψl are always 0, i.e., there exists a sequence
{
wl ∈ Rd

}
such

that we can express ψl as

ψl =
[
wl

0d×1

]
. (24)

for all l = 0, 1, . . . , L.

We prove the claim by induction. The base case holds trivially since ψ0
.= 0. Suppose that for some

l, (24) holds. It can be easily verified from the definition of ψl+1 in (22) that

ψl+1 = ψl + 1
n
B⊤

l M2XY
⊤

l . (25)

If we let

Nl = 1
n
M2XY

⊤
l ∈ R2d×1,

The Training Agents with Foundation Models Workshop at RLC 2024

the evolution of ψl+1 can then be compactly expressed as,

ψl+1 = ψl +B⊤
l Nl.

By matrix arithmetic, we have

B⊤
l Nl =

[
C⊤

l 0d×d

0d×d 0d×d

]⊤[
Nl(1 : d)
Nl(d : 2d)

]
=
[
ClNl(1 : d)

0d×1

]
where Nl(1 : d) ∈ Rd and Nl(d : 2d) ∈ Rd represent the first d and second d elements of Nl respectively.
Substituting in our inductive hypothesis into (25), we have:

ψl+1 =
[
wl

0d×1

]
+
[
ClNl(1 : d)

0d×1

]
,

=
[
wl + ClNl(1 : d)

0d×1

]
if we let wl+1 = wl + ClNl(1 : d), we can see that the property holds for ψl+1, thereby verifying
Claim 4.

Given all the claims above, we can then compute that〈
ψl+1,M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉

+ 1
n

〈
B⊤

l M2XY
⊤

l ,M1x
(n+1)

〉
(By (25))

=
〈
ψl,M1x

(n+1)
〉

+ 1
n

n∑
i=1

〈
B⊤

l M2x
(i)y

(i)
l ,M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉

+ 1
n

n∑
i=1

〈
B⊤

l M2x
(i)
(〈
ψl,M1x

(i)
〉

+ y
(i)
0

)
,M1x

(n+1)
〉

(By (23))

=
〈
ψl,M1x

(n+1)
〉

+ 1
n

n∑
i=1

〈
B⊤

l

[
ν(i)

0d×1

](〈
ψl,

[
−ν(i) + ξ(i)

0d×1

]〉
+ y

(i)
0

)
,M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉

+ 1
n

n∑
i=1

〈[
Clν

(i)

0d×1

](
y

(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
,M1x

(n+1)
〉

(By Claim 4)

=
〈
ψl,M1x

(n+1)
〉

+ 1
n

n∑
i=1

〈[
Clν

(i)
(
y

(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)

0d×1

]
,M1x

(n+1)

〉

This means〈
wl+1, ν

(n+1)
〉

=
〈
wl, ν

(n+1)
〉

+ 1
n

n∑
i=1

〈
Clν

(i)
(
y

(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
, ν(n+1)

〉
.

Since the choice of the query ν(n+1) is arbitrary, we get

wl+1 = wl + 1
n

n∑
i=1

Cl

(
y

(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
ν(i).

In particular, when we construct Z0 such that ν(i) = ϕi−1, ξ(i) = γϕi and y
(i)
0 = Ri, we get

wl+1 = wl + 1
n

n∑
i=1

Cl

(
Ri + γw⊤

l ϕi − w⊤
l ϕi−1

)
ϕi−1

The Training Agents with Foundation Models Workshop at RLC 2024

which is the update rule for pre-conditioned TD learning. We also have

y
(n+1)
l =

〈
ψl,M1x

(n+1)
〉

= −
〈
wl, ϕ

(n+1)
〉
.

This concludes our proof.

B.2 Proof of Corollary 1

Proof. The proof presented here closely mirrors the methodology and notation established in Theorem
1. Since we are only considering a 1-layer transformer in this Corollary, we can recall the embedding
evolution from (5) and write

Z1 = Z0 + 1
n
P0Z0M(Z⊤

0 Q0Z0).

We once again refer to the elements in Zl as
{

(x(i)
l , y

(i)
l)
}

i=1,...,n+1
in the following way

Zl =
[
x

(1)
l . . . x

(n)
l x

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l

]
,

where we recall that Zl ∈ R(2d+1)×(n+1), x
(i)
l ∈ R2d, y

(i)
l ∈ R. We utilize, ν(i)

l ∈ Rd, ξ
(i)
l ∈ Rd, to refer

to the first half and second half of x(i)
l i.e., x(i)

l =
[
ν

(i)
l

ξ
(i)
l

]
. Then we have

Zl =

ν
(1)
l . . . ν

(n)
l ν

(n+1)
l

ξ
(1)
l . . . ξ

(n)
l ξ

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l

.
We further define as shorthands

Xl =
[
x

(1)
l . . . x

(n)
l

]
∈ R2d×n, Yl =

[
y

(1)
l . . . y

(n)
l

]
∈ R1×n.

Then the blockwise structure of Zl can be succinctly expressed as:

Zl =
[
Xl x

(n+1)
l

Yl y
(n+1)
l

]
.

For the input Z0, we assume ξ(n+1)
0 = 0, y(n+1)

0 = 0 but all other entries of Z0 are arbitrary. We
recall our definition of M in (4) and {P0, Q0} in (10). In particular, we can express Q0 in a more
compact way as

M1
.=
[
−Id 0d×d

0d×d 0d×d

]
∈ R2d×2d, B0

.=
[
C⊤

0 0d×d

0d×d 0d×d

]
∈ R2d×2d,

A0
.=B0M1 =

[
−C⊤

0 0d×d

0d×d 0d×d

]
∈ R2d×2d,

Q0
.=
[
A0 02d×1

01×2d 0

]
∈ R(2d+1)×(2d+1).

We will proceed with the following claims.

Claim 1. X1 ≡ X0, x
(n+1)
1 ≡ x(n+1)

0

Because we are considering the special case of L = 1 and because we utilize the same definition of P0
as in Theorem 1, the argument proving Claim 1 in Theorem 1 holds here as well. As a result, we
drop all the subscripts of X1, as well as subscripts of x(i)

1 for i = 1, . . . , n+ 1.

The Training Agents with Foundation Models Workshop at RLC 2024

Claim 2.

Y1 = Y0 + 1
n
Y0X

⊤A0X

y
(n+1)
1 = y

(n+1)
0 + 1

n
Y0X

⊤A0x
(n+1).

This claim is a special case of Claim 2 from the proof of Theorem 1 in Appendix B.1, where L = 1.
Our block-wise construction of Q0 matches that in the proof of Theorem 1. Although our A0 here
differs from the specific form of A0 in the proof of Theorem 1, this specific form is not utilized in the
proof of Claim 2. Therefore, the proof of Claim 2 in Appendix B.1 applies here, and we omit the
steps to avoid redundancy.

Claim 3.

y
(i)
1 = y

(i)
0 +

〈
M1x

(i),
1
n
B⊤

0 M2XY
⊤

0

〉
,

for i = 1, . . . , n+ 1, where M2 =
[
Id 0d×d

0d×d 0d×d

]
.

This claim once again is the L = 1 case of Claim 3 from the proof of Theorem 1 in Appendix B.1.
The specific form of M1 is not utilized in the proof of Claim 3 from Appendix B.1, so it applies here.

We can then define ψ0
.= 0 and,

ψ1
.= 1
n
B⊤

0 M2XY
⊤

0 ∈ R2d. (26)

Then we can write

y
(i)
1 = y

(i)
0 +

〈
M1x

(i), ψ1

〉
,

for i = 1, . . . , n+ 1, which is the claim we made. In particular, since we assume y(n+1)
0 = 0, we have

y
(n+1)
1 =

〈
M1x

(n+1), ψ1

〉
.

Claim 4. The bottom d elements of ψ1 are always 0, i.e., there exists w1 ∈ Rd such that we can
express ψ1 as

ψ1 =
[
w1

0d×1

]
.

Since our B0 here is identical to that in the proof of Theorem 1 in B.1, Claim 4 holds for the same
reason. We therefore omit the proof details to avoid repetition.

Given all the claims above, we can then compute that〈
ψ1,M1x

(n+1)
〉

= 1
n

〈
B⊤

0 M2XY
⊤

0 ,M1x
(n+1)

〉
(By (26))

= 1
n

n∑
i=1

〈
B⊤

0 M2x
(i)y

(i)
0 ,M1x

(n+1)
〉

= 1
n

n∑
i=1

〈
B⊤

0

[
ν(i)

0d×1

](
y

(i)
0

)
,M1x

(n+1)
〉

= 1
n

n∑
i=1

〈[
C0ν

(i)

0d×1

](
y

(i)
0

)
,M1x

(n+1)
〉

(By Claim 4)

The Training Agents with Foundation Models Workshop at RLC 2024

= 1
n

n∑
i=1

〈[
C0ν

(i)y
(i)
0

0d×1

]
,M1x

(n+1)
〉

This means 〈
w1, ν

(n+1)
〉

= 1
n

n∑
i=1

〈
C0ν

(i)y
(i)
0 , ν(n+1)

〉
.

Since the choice of the query ν(n+1) is arbitrary, we get

w1 = 1
n

n∑
i=1

C0y
(i)
0 ν(i).

In particular, when we construct Z0 such that ν(i) = ϕi−1 and y
(i)
0 = Ri, we get

w1 = 1
n

n∑
i=1

C0Riϕi−1

which is the update rule for a single step of TD(0) with w0 = 0. We also have

y
(n+1)
1 =

〈
ψ1,M1x

(n+1)
〉

= −
〈
w1, ϕ

(n+1)
〉
.

This concludes our proof.

B.3 Proof of Theorem 2

Preliminaries Before we present the proof, we first introduce notations convenient for our analysis.
We decompose P0 and Q0 as

P0 =
[
P ∈ R2d×(2d+1)

p ∈ R1×(2d+1)

]
, Q0 =

Qa ∈ Rd×d Qb ∈ Rd×d qc ∈ Rd×1

Q′
a ∈ Rd×d Q′

b ∈ Rd×d q′
c ∈ Rd×1

qa ∈ R1×d qb ∈ R1×d q′′
c ∈ R

.
One can readily check that TF1 is independent of P,Qb, Q

′
b, qb, qc, q

′
c, q

′′
c . Thus, we can assume that

these matrices are zero. Let z(i) be the i-th column of Z0. Indeed, TF1 can be written as

TF1(Z0, {P0, Q0}) = −Z1[2d+ 1, n+ 1] (By (6))

= − 1
n
p⊤

(
n∑

i=1
z(i)z(i)⊤

)
Q0z

(n+1)

= − 1
n

n∑
i=1

〈
p, z(i)

〉
z(i)⊤

Q0z
(n+1)

= − 1
n

n∑
i=1

〈
p, z(i)

〉(
ϕ⊤

i−1Qaϕn+1 + γϕ⊤
i Q

′
aϕn+1 +Riϕ

⊤
n+1qa

)
(27)

= − 1
n

n∑
i=1

〈p[1:d], ϕi−1
〉

+ γ
〈
p[d+1:2d], ϕi

〉
+ p[2d+1]Ri︸ ︷︷ ︸

αi(Z0,P0)

·

ϕ⊤
i−1Qaϕn+1 + γ(ϕi)⊤Q′

aϕn+1 +Riϕ
⊤
n+1qa︸ ︷︷ ︸

βi(Z0,Q0)

.

The Training Agents with Foundation Models Workshop at RLC 2024

We prepare the following gradient computations for future use:

∇p[1:d]TF1(Z0, {P0, Q0}) = − 1
n

n∑
i=1

βi(Z0, Q0)ϕi−1

∇p[d+1:2d]TF1(Z0, {P0, Q0}) = −γ
n

n∑
i=1

βi(Z0, Q0)ϕi

∇QaTF1(Z0, {P0, Q0}) = − 1
n

n∑
i=1

αi(Z0, P0)ϕi−1ϕ
⊤
n+1

∇Q′
a
TF1(Z0, {P0, Q0}) = −γ

n

n∑
i=1

αi(Z0, P0)ϕiϕ
⊤
n+1

∇qaTF1(Z0, {P0, Q0}) = − 1
n

n∑
i=1

Riαi(Z0, P0)ϕn+1.

(28)

We will also reference the following two lemmas in our main proof.
Lemma B.3.1. Let Λ be a diagonal matrix whose diagonal elements are i.i.d Rademacher random
variables 2 ζ1, . . . ζd. For any matrix K ∈ Rd×d, we have that EΛ[ΛKΛ] = diag(K).

Proof. First, we can write ΛKΛ explicitly as

ΛKΛ =

ζ1 0 . . . 0
0 ζ2 . . . 0
...

...
. . .

...
0 0 . . . ζd

k11 k12 . . . k1d

k21 k22 . . . k2d

...
...

. . .
...

kd1 kd2 . . . kdd

ζ1 0 . . . 0
0 ζ2 . . . 0
...

...
. . .

...
0 0 . . . ζd

.

Using (ΛKΛ)ij to denote the element in the i-th row at column j of ΛKΛ, from elementary matrix
multiplication we have

(ΛKΛ)ij = ζikijζj .

When i ̸= j, E[ζiζj] = E[ζi]E[ζj] = 0 becasue ζi and ζj are independent. For i = j, E[ζiζj] = E[ζ2
i] = 1.

We can then compute the expectation

EΛ[(ΛKΛ)]ij =
{
kij i = j

0 i ̸= j.

Consequently,

EΛ[ΛKΛ] = diag(K).

Lemma B.3.2. Let Π ∈ Rd×d be a random permutation matrix uniformly distributed over all d× d
permutation matrices and L ∈ Rd×d be a diagonal matrix. Then, it holds that

EΠ
[
ΠLΠ⊤] = 1

d
tr(L)Id.

Proof. By definition,

[ΠLΠ⊤]ij =
d∑

k=1
ΠikLkkΠjk.

2A Rademacher random variable takes values 1 or −1, each with an equal probability of 0.5.

The Training Agents with Foundation Models Workshop at RLC 2024

We note that each row of Π is a standard basis. Given the orthogonality of standard bases, we get

[ΠLΠ⊤]ij =
{

0 i ̸= j

Lqiqi
i = j

,

where qi is the unique index such that Πiqi = 1. If the distribution of Π is uniform, then [ΠLΠ⊤]ii
is equal to one of L11, . . . , Ldd with the same probability. Thus, the expected value [ΠLΠ⊤]ii is
1
d tr(L).

Now, we start with the proof of the theorem statement.

Proof. We recall the definition of the set Θ∗ as

Θ∗ .= ∪η,c,c′∈R

P =
[
02d×2d 02d×1
01×2d η

]
, Q =

 cId 0d×d 0d×1
c′Id 0d×d 0d×1
01×d 01×d 0

.
Suppose θk ∈ Θ∗, then by (27) and (28), we get

TF1(Z0, θk) = −ηk

n

n∑
i=1

Ri

(
ckϕ

⊤
i−1ϕn+1 + c′

kγϕ
⊤
i ϕn+1

)
(29)

TF1(Z ′
0, θk) = −ηk

n

n∑
i=1

Ri+1
(
ckϕ

⊤
i ϕn+2 + c′

kγϕ
⊤
i+1ϕn+2

)
∇p[1:d]TF1(Z0, θk) = − 1

n

n∑
i=1

(
ckϕ

⊤
i−1ϕn+1 + c′

kγϕ
⊤
i ϕn+1

)
ϕi−1

∇p[d+1:2d]TF1(Z0, θk) = −γ
n

n∑
i=1

(
ckϕ

⊤
i−1ϕn+1 + c′

kγϕ
⊤
i ϕn+1

)
ϕi

∇Qa
TF1(Z0, θk) = −ηk

n

n∑
i=1

Riϕi−1ϕ
⊤
n+1

∇Q′
a
TF1(Z0, θk) = −γηk

n

n∑
i=1

Riϕiϕ
⊤
n+1

∇qaTF1(Z0, θk) = −ηk

n

n∑
i=1

R2
iϕn+1

Recall the definition of ∆(θ) in (13). With a slight abuse of notation, we define ∆(p[1:d]) to be the
p[1:d] component of ∆(θ), i.e.,

∆(p[1:d])
.= E

[
(R+ γTF1(Z ′

0, θ)− TF1(Z0, θ))
∂TF1(Z0, θ)

∂p[1:d]

]
.

Same goes for ∆(p[d+1:2d]),∆(Qa),∆(Q′
a), and ∆(qa).

We will prove that

(a) ∆(p[1:d]) = ∆(p[d+1:2d]) = ∆(qa) = 0 for ∆(θk);

(b) ∆(Qa) = δId and ∆(Q′
a) = δ′Id for some δ, δ′ ∈ R for ∆(θk)

using Assumptions 4.1 and 4.2. We can see that the combination of (a) and (b) are sufficient for
proving the theorem. Recall that Z0 and Z ′

0 are sampled from (p0, p, r, ϕ). We make the following
claims to assist our proof of (a) and (b).

The Training Agents with Foundation Models Workshop at RLC 2024

Claim 1. Let ζ be a Rademacher random variable. We denote Zζ and Z ′
ζ as the prompts sampled

from (p0, p, r, ζϕ). We then have Z0 ≜ Zζ and Z ′
0 ≜ Z ′

ζ . To show this is true, we notice that for any
realization of ζ, denoted as ζ̄ ∈ {1,−1}, we have

Pr(p0, p, r, ϕ) = Pr(p0, p, r) Pr(ϕ) (Assumption 4.1)
= Pr(p0, p, r) Pr

(
ζ̄Idϕ

)
(Assumption 4.2)

= Pr
(
p0, p, r, ζ̄ϕ

)
. (Assumption 4.1)

It then follows that

Pr(p0, p, r, ϕ) = Pr(p0, p, r, ϕ)
∑

ζ̄∈{1,−1}

Pr
(
ζ = ζ̄

)
=

∑
ζ̄∈{1,−1}

Pr(p0, p, r, ϕ) Pr
(
ζ = ζ̄

)
=

∑
ζ̄∈{1,−1}

Pr
(
p0, p, r, ζ̄ϕ

)
Pr
(
ζ = ζ̄

)
= Pr(p0, p, r, ζϕ).

This implies Claim 1 holds.

Claim 2. Define Λ as the diagonal matrix whose diagonal elements are i.i.d. Rademacher random
variables ζ1, . . . , ζd. We denote ZΛ and Z ′

Λ as the prompts sampled from (p0, p, r,Λϕ), where Λϕ
means [Λϕ(s)]s∈S . We then have Z0 ≜ ZΛ and Z ′

0 ≜ Z ′
Λ. The proof follows the same procedures as

Claim 1.

Claim 3. Let Π be a random permutation matrix uniformly distributed over all d× d permutation
matrices. We denote ZΠ and Z ′

Π as the prompts sampled from (p0, p, r,Πϕ), where Πϕ means
[Πϕ(s)]s∈S . We then have Z0 ≜ ZΠ and Z ′

0 ≜ Z ′
Π. The proof follows the same procedures as Claim 1.

Proof of (a) using Claim 1 It is easy to check by (29) that

TF1(Zζ , θk) = −ηk

n

n∑
i=1

Ri

(
ckζ

2ϕ⊤
i−1ϕn+1 + c′

kγζ
2ϕ⊤

i ϕn+1
)

= ζ2︸︷︷︸
=1

TF1(Z0, θk)

= TF1(Z0, θk). (30)

Similarly, one can check that TF1(Z ′
ζ , θk) = TF1(Z ′

0, θk).

Furthermore,

∇p[1:d]TF1(Zζ , θk) =− 1
n

n∑
i=1

ck ζ2︸︷︷︸
=1

ϕ⊤
i−1ϕn+1 + c′

kγ ζ2︸︷︷︸
=1

ϕ⊤
i ϕn+1

ζϕi−1

=− ζ

n

n∑
i=1

(
ckϕ

⊤
i−1ϕn+1 + c′

kγϕ
⊤
i ϕn+1

)
ϕi−1

=ζ∇p[1:d]TF1(Z0, θk). (31)

Then, from (13), we get

∆(p[1:d])
=E
[
(Rn+2 + γTF1(Z ′

0, θk)− TF1(Z0, θk))∇p[1:d]TF1(Z0, θk)
]

The Training Agents with Foundation Models Workshop at RLC 2024

=E
[(
Rn+2 + γTF1(Z ′

ζ , θk)− TF1(Zζ , θk)
)
∇p[1:d]TF1(Zζ , θk)

]
(By Claim 1)

=Eζ

[
E
[(
Rn+2 + γTF1(Z ′

ζ , θk)− TF1(Zζ , θk)
)
∇p[1:d]TF1(Zζ , θk) | ζ

]]
=Eζ

[
E
[
(Rn+2 + γTF1(Z ′

0, θk)− TF1(Z0, θk))ζ∇p[1:d]TF1(Z0, θk) | ζ
]]

(By (30), (31))
=Eζ

[
ζE
[
(Rn+2 + γTF1(Z ′

0, θk)− TF1(Z0, θk))∇p[1:d]TF1(Z0, θk) | ζ
]]

=Eζ

[
ζE
[
(Rn+2 + γTF1(Z ′

0, θk)− TF1(Z0, θk))∇p[1:d]TF1(Z0, θk)
]]

=Eζ [ζ]E
[
(Rn+2 + γTF1(Z ′

0, θk)− TF1(Z0, θk))∇p[1:d]TF1(Z0, θk)
]

=0.

The proof is analogous for ∆(p[d+1:2d]) = 0, and ∆(qa) = 0.

Proof of (b) using Claims 2 and 3 We first show that ∆(Qa) is a diagonal matrix. Similar to
(a), we have

TF1(ZΛ, θk) = − 1
n

n∑
i=1

ηkRi

(
ckϕ

⊤
i−1 Λ2︸︷︷︸

=I

ϕn+1 + c′
kγϕ

⊤
i Λ2︸︷︷︸

=I

ϕn+1

)
(32)

= TF1(Z0, θk).

Similarly, we get TF1(Z ′
Λ, θk) = TF1(Z ′

0, θk). Additionally, we have

∇Qa
TF1(ZΛ, θk) = − 1

n

n∑
i=1

ηkRiΛϕi−1ϕ
⊤
n+1Λ⊤ = Λ∇Qa

TF1(Z0, θk)Λ. (33)

By (13) again, we get

∆(Qa)
=E[(Rn+2 + γTF1(Z ′

0, θk)− TF1(Z0, θk))∇Qa
TF1(Z0, θk)]

=E[(Rn+2 + γTF1(Z ′
Λ, θk)− TF1(ZΛ, θk))∇Qa

TF1(ZΛ, θk)] (By Claim 2)
=EΛ[E[(Rn+2 + γTF1(Z ′

Λ, θk)− TF1(ZΛ, θk))∇Qa
TF1(ZΛ, θk) | Λ]]

=EΛ[E[(Rn+2 + γTF1(Z ′
0, θk)− TF1(Z0, θk))Λ∇Qa

TF1(Z0, θk)Λ | Λ]] (By (32), (33))
=EΛ[ΛE[(Rn+2 + γTF1(Z ′

0, θk)− TF1(Z0, θk))∇Qa
TF1(Z0, θk) | Λ]Λ]

=EΛ[ΛE[(Rn+2 + γTF1(Z ′
0, θk)− TF1(Z0, θk))∇Qa

TF1(Z0, θk)]Λ]
=diag(E[(Rn+2 + γTF1(Z ′

0, θk)− TF1(Z0, θk))∇Qa
TF1(Z0, θk)]) (By Lemma B.3.1)

=diag(∆(Qa)).

The last equation holds if and only if ∆(Qa) is diagonal. We have proven this claim.

Now, we prove that ∆(Qa) = δId for some δ ∈ R using Claim 3 and Lemma B.3.2. Let Π be a random
permutation matrix uniformly distributed over all permutation matrices. Recall the definition of ZΠ
and Z ′

Π in Claim 3. We have

TF1(ZΠ, θk) = − 1
n

n∑
i=1

ηkRi

(
ckϕ

⊤
i−1 Π⊤Π︸ ︷︷ ︸

=I

ϕn+1 + c′
kγϕ

⊤
i Π⊤Π︸ ︷︷ ︸

=I

ϕn+1

)
= TF1(Z0, θk). (34)

Analogously, we get TF1(Z ′
Π, θk) = TF1(Z ′

0, θk). Furthermore, we have

∇Qa
TF1(ZΠ, θk) = − 1

n

n∑
i=1

ηkRiΠϕi−1ϕ
⊤
n+1Π⊤ = Π∇Qa

TF1(Z0, θk)Π⊤. (35)

By (13), we are ready to show that

∆(Qa)

The Training Agents with Foundation Models Workshop at RLC 2024

=E[(Rn+2 + γTF1(Z ′
0, θk)− TF1(Z0, θk))∇Qa

TF1(Z0, θk)]
=E[(Rn+2 + γTF1(Z ′

Π, θk)− TF1(ZΠ, θk))∇Qa
TF1(ZΠ, θk)] (By Claim 3)

=EΠ[E[(Rn+2 + γTF1(Z ′
Π, θk)− TF1(ZΠ, θk))∇Qa

TF1(ZΠ, θk) | Π]]
=EΠ

[
E
[
(Rn+2 + γTF1(Z ′

0, θk)− TF1(Z0, θk))Π∇Qa
TF1(Z0, θk)Π⊤ | Π

]]
(By (34), (35))

=EΠ
[
ΠE[(Rn+2 + γTF1(Z ′

0, θk)− TF1(Z0, θk))∇QaTF1(Z0, θk) | Π]Π⊤]
=EΠ

[
ΠE[(Rn+2 + γTF1(Z ′

0, θk)− TF1(Z0, θk))∇QaTF1(Z0, θk)]Π⊤]
=EΠ

[
Πdiag(∆(Qa))Π⊤]

=1
d

tr(∆(Qa))Id (By Lemma B.3.2)

=δId.

The proof is analogous for ∆(Q′
a) = δ′Id for some δ′ ∈ R.

Suppose that ∆(p[2d+1]) = ρ ∈ R, we now can conclude that

∆(θk) =

∆(P0) =
[
02d×2d 02d×1
01×2d ρ

]
,∆(Q0) =

 δId 0d×d 0d×1
δ′Id 0d×d 0d×1
01×d 01×d 0

.
Therefore, according to (13), we get

θk+1

=θk + αk∆(θk)

=

[
02d×2d 02d×1
01×2d ηk + αkρ

]
,

 ck + αkδId 0d×d 0d×1
c′

k + αkδ
′Id 0d×d 0d×1

01×d 01×d 0

 ∈ Θ∗.

B.4 Proof of Corollary 2

Proof. We recall from (5) that the embedding evolves according to

Zl+1 = Zl + 1
n
PlZlM(Z⊤

l QlZl).

We again refer to the elements in Zl as
{

(x(i)
l , y

(i)
l)
}

i=1,...,n+1
in the following way

Zl =
[
x

(1)
l . . . x

(n)
l x

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l

]
,

where we recall that Zl ∈ R(2d+1)×(n+1), x
(i)
l ∈ R2d, y

(i)
l ∈ R. Sometimes, it is more convenient to

refer to the first half and second half of x(i)
l separately, by, e.g., ν(i)

l ∈ Rd, ξ
(i)
l ∈ Rd, i.e., x(i)

l =
[
ν

(i)
l

ξ
(i)
l

]
.

Then, we have

Zl =

ν
(1)
l . . . ν

(n)
l ν

(n+1)
l

ξ
(1)
l . . . ξ

(n)
l ξ

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l

.
We utilize the shorthands

Xl =
[
x

(1)
l . . . x

(n)
l

]
∈ R2d×n,

The Training Agents with Foundation Models Workshop at RLC 2024

Yl =
[
y

(1)
l . . . y

(n)
l

]
∈ R1×n.

Then we have

Zl =
[
Xl x

(n+1)
l

Yl y
(n+1)
l

]
.

For the input Z0, we assume ξ(n+1)
0 = 0, y(n+1)

0 = 0 but all other entries of Z0 are arbitrary. We
recall our definition of M in (4) and

{
PRG

l , QRG
l

}
in (15). In particular, we can express QRG

l in a
more compact way as

M1
.=
[
−Id Id

0d×d 0d×d

]
∈ R2d×2d,

M2
.=−M1

Bl
.=
[
C⊤

l 0d×d

0d×d 0d×d

]
∈ R2d×2d,

Al
.=M⊤

2 BlM1 =
[
−C⊤

l C⊤
l

C⊤
l −C⊤

l

]
∈ R2d×2d,

QRG
l

.=
[
Al 02d×1

01×2d 0

]
∈ R(2d+1)×(2d+1).

We then verify the following claims.

Claim 1. Xl ≡ X0, x
(n+1)
l ≡ x(n+1)

0 ,∀l.

We note that PRG
l is the key reason Claim 1 holds and is the same as the TD(0) case. Referring to

B.1, we omit the proof of Claim 1 here.

Claim 2.

Yl+1 = Yl + 1
n
YlX

⊤AlX

y
(n+1)
l+1 = y

(n+1)
l + 1

n
YlX

⊤Alx
(n+1).

Since the only difference between the true residual gradient and TD(0) configurations is the internal
structure of Al, we argue that it’s irrelevant to Claim 2. We therefore again refer the readers to B.1
for a detailed proof.

Claim 3.

y
(i)
l+1 = y

(i)
0 +

〈
M1x

(i),
1
n

l∑
j=0

B⊤
j M2XY

⊤
j

〉
,

for i = 1, . . . , n+ 1.

By Claim 2, we can unroll Yl+1 as

Yl+1 = Yl + 1
n
YlX

⊤AlX

Yl = Yl−1 + 1
n
Yl−1X

⊤Al−1X

...

Y1 = Y0 + 1
n
Y0X

⊤A0X.

The Training Agents with Foundation Models Workshop at RLC 2024

We can then compactly express Yl+1 as

Yl+1 = Y0 + 1
n

l∑
j=0

YjX
⊤AjX.

Recall that we define Aj = M⊤
2 BjM1. Then, we can rewrite Yl+1 as

Yl+1 = Y0 + 1
n

l∑
j=0

YjX
⊤M⊤

2 BjM1X.

With the identical procedure, we can easily rewrite y(n+1)
l+1 as

y
(n+1)
l+1 = y

(n+1)
0 + 1

n

l∑
j=0

YjX
⊤M⊤

2 BjM1x
(n+1).

In light of this, we define ψ0
.= 0 and for l = 0, . . .

ψl+1
.= 1
n

l∑
j=0

B⊤
j M2XY

⊤
j ∈ R2d

=ψl + 1
n
B⊤

l M2XY
⊤

l (36)

Then we can write

y
(i)
l+1 = y

(i)
0 +

〈
M1x

(i), ψl+1

〉
, (37)

for i = 1, . . . , n+ 1, which is the claim we made. In particular, since we assume y(n+1)
0 = 0, we have

y
(n+1)
l+1 =

〈
M1x

(n+1), ψl+1

〉
.

Claim 4. The bottom d elements of ψl are always 0, i.e., there exists a sequence
{
wl ∈ Rd

}
such

that we can express ψl as

ψl =
[
wl

0d×1

]
.

for all l = 0, 1, . . . , L.

Since Bl is the key reason Claim 4 holds and is identical to the TD(0) case, we refer the reader to
B.1 for detailed proof.

Given all the claims above, we can then compute that〈
ψl+1,M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉

+ 1
n

〈
B⊤

l M2XY
⊤

l ,M1x
(n+1)

〉
(By (36))

=
〈
ψl,M1x

(n+1)
〉

+ 1
n

n∑
i=1

〈
B⊤

l M2x
(i)y

(i)
l ,M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉

+ 1
n

n∑
i=1

〈
B⊤

l M2x
(i)
(〈
ψl,M1x

(i)
〉

+ y
(i)
0

)
,M1x

(n+1)
〉

(By (37))

The Training Agents with Foundation Models Workshop at RLC 2024

=
〈
ψl,M1x

(n+1)
〉

+ 1
n

n∑
i=1

〈
B⊤

l

[
ν(i) − ξ(i)

0d×1

](〈
ψl,

[
−ν(i) + ξ(i)

0d×1

]〉
+ y

(i)
0

)
,M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉

+ 1
n

n∑
i=1

〈[
Cl

(
ν(i) − ξ(i))

0d×1

](
y

(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
,M1x

(n+1)
〉

(By Claim 4)

=
〈
ψl,M1x

(n+1)
〉

+ 1
n

n∑
i=1

〈[
Cl

(
ν(i) − ξ(i))(y(i)

0 + w⊤
l ξ

(i) − w⊤
l ν

(i)
)

0d×1

]
,M1x

(n+1)

〉

This means〈
wl+1, ν

(n+1)
〉

=
〈
wl, ν

(n+1)
〉

+ 1
n

n∑
i=1

〈
Cl

(
ν(i) − ξ(i)

)(
y

(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
, ν(n+1)

〉
.

Since the choice of the query ν(n+1) is arbitrary, we get

wl+1 = wl + 1
n

n∑
i=1

Cl

(
y

(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)(
ν(i) − ξ(i)

)
.

In particular, when we construct Z0 such that ν(i) = ϕi−1, ξ(i) = γϕi and y
(i)
0 = Ri, we get

wl+1 = wl + 1
n

n∑
i=1

Cl

(
Ri + γw⊤

l ϕi − w⊤
l ϕi−1

)
(ϕi−1 − γϕi)

which is the update rule for pre-conditioned residual gradient learning. We also have

y
(n+1)
l =

〈
ψl,M1x

(n+1)
〉

= −
〈
wl, ϕ

(n+1)
〉
.

This concludes our proof.

B.5 Proof of Corollary 3

Proof. The proof presented here closely mirrors the methodology and notation established in the
proof of Theorem 1 from Appendix B.1. We begin by recalling the embedding evolution from (5) as,

Zl+1 = Zl + 1
n
PlZlM

TD(λ)(Z⊤
l QlZl).

where we have substituted the original mask defined in (4) with the TD(λ) mask in (17). We once
again refer to the elements in Zl as

{
(x(i)

l , y
(i)
l)
}

i=1,...,n+1
in the following way

Zl =
[
x

(1)
l . . . x

(n)
l x

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l

]
,

where we recall that Zl ∈ R(2d+1)×(n+1), x
(i)
l ∈ R2d, y

(i)
l ∈ R. We utilize, ν(i)

l ∈ Rd, ξ
(i)
l ∈ Rd, to refer

to the first half and second half of x(i)
l i.e., x(i)

l =
[
ν

(i)
l

ξ
(i)
l

]
.

Then we have

Zl =

ν
(1)
l . . . ν

(n)
l ν

(n+1)
l

ξ
(1)
l . . . ξ

(n)
l ξ

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l

.

The Training Agents with Foundation Models Workshop at RLC 2024

We further define as shorthands,

Xl =
[
x

(1)
l . . . x

(n)
l

]
∈ R2d×n,

Yl =
[
y

(1)
l . . . y

(n)
l

]
∈ R1×n.

Then the blockwise structure of Zl can be succinctly expressed as:

Zl =
[
Xl x

(n+1)
l

Yl y
(n+1)
l

]
.

We proceed to the formal arguments by paralleling those in Theorem 1. As in the theorem, we
assume that certain initial conditions, such as ξ(n+1)

0 = 0 and y
(n+1)
0 = 0, hold, but other entries of

Z0 are arbitrary. We recall our definition of MTD(λ) in (17) and
{
PTD

l , QTD
l

}
l=0,...,L−1 in (10). In

particular, we can express QTD
l in a more compact way as

M1
.=
[
−Id Id

0d×d 0d×d

]
∈ R2d×2d,

Bl
.=
[
C⊤

l 0d×d

0d×d 0d×d

]
∈ R2d×2d,

Al
.=BlM1 =

[
−C⊤

l C⊤
l

0d×d 0d×d

]
∈ R2d×2d,

QTD
l

.=
[
Al 02d×1

01×2d 0

]
∈ R(2d+1)×(2d+1),

We now proceed with the following claims.

In subsequent steps, it sometimes is useful to refer to the matrix MTD(λ)Z⊤ in block form. Therefore,
we will define H⊤ ∈ R(n×2d) as the first n rows of MTD(λ)Z

⊤ except for the last column, which we
define as Y (λ)

l ∈ Rn.

MTD(λ)Z⊤
l =

[
H⊤ Y

(λ)
l

01×2d 0

]
∈ R(n+1)×(2d+1)

Let h(i) denote i-th column of H.

We proceed with the following claims.

Claim 1. Xl ≡ X0, x
(n+1)
l ≡ x(n+1)

0 ,∀l.

Because we utilize the same definition of PTD
l as in Theorem 1, the argument proving Claim 1 in

Theorem 1 holds here as well. As a result, we drop all the subscripts of Xl, as well as subscripts of
x

(i)
l for i = 1, . . . , n+ 1.

Claim 2. Let H ∈ R(2d×n), where the i-th column of H is,

h(i) =
i∑

k=1
λi−kx(i) ∈ R2d.

Then we can write the updates for Yl+1, and y
(n+1)
l+1 as,

Yl+1 = Yl + 1
n
YlH

⊤AlX,

y
(n+1)
l+1 = y

(n+1)
l + 1

n
YlH

⊤Alx
(n+1).

The Training Agents with Foundation Models Workshop at RLC 2024

We will show this by factoring the embedding evolution into the product of PTD
l Zl and MTD(λ)Z⊤

l ,
and QTD

l Zl. Firstly, we have

PTD
l Zl =

[
02d×n 02d×1

Yl y
(n+1)
l

]
.

Next we analyze MTD(λ)Z⊤
l . From basic matrix algebra we have,

MTD(λ)Z⊤ =

1 0 0 0 · · · 0 0
λ 1 0 0 · · · 0 0
λ2 λ 1 0 · · · 0 0
λ3 λ2 λ 1 · · · 0 0
...

...
...

...
. . .

...
...

λn−1 λn−2 λn−3 λn−4 · · · 1 0
0 0 0 0 · · · 0 0

x(1)⊤
y(1)

x(2)⊤
y(2)

x(3)⊤
y(3)

...
...

x(n)⊤
y(n)

x(n+1)⊤ 0

=

x(1)⊤

y
(1)
l

x(2)⊤ + λx(1)⊤
y

(2)
l + λy

(2)
l

...
...∑n

i=1 λ
n−ix⊤

i

∑n
i=1 λ

n−iy
(i)
l

01×2d 0

,

=

h(1)⊤

y
(1)
l

h(2)⊤
y

(2)
l + λy

(1)
l

...
...

h(n)⊤ ∑n
i=1 λ

n−iy
(n)
l

01×2d 0

=
[
H⊤ K

(λ)
l

01×2d 0

]
,

where K(λ)
l ∈ Rd is introduced for notation simplicity.

Then, we analyze MTD(λ)Z⊤
l Q

TD
l Zl. Applying the block matrix notations, we get

(
MTD(λ)Z⊤

l

)
QTD

l Zl =
[
H⊤ K

(λ)
l

01×2d 0

][
Al 02d×1

01×2d 0

][
X x(n+1)

Yl y
(n+1)
l

]
=
[
H⊤Al 0n×1
01×2d 0

][
X x(n+1)

Yl y
(n+1)
l

]
=
[
H⊤AlX H⊤Alx

(n+1)

01×2d 0

]
.

Combining the two, we get

PTD
l Zl

(
MTD(λ)Z⊤

l Q
TD
l Zl

)
=
[
02d×n 02d×1

Yl y
(n+1)
l

][
H⊤AlX H⊤Alx

(n+1)

01×2d 0

]
=
[

02d×n 02d×1
YlH

⊤AlX YlH
⊤Alx

(n+1)

]
.

Hence, according to our update rule in (5), we get

Yl+1 = Yl + 1
n
YlH

⊤AlX

The Training Agents with Foundation Models Workshop at RLC 2024

y
(n+1)
l+1 = y

(n+1)
l + 1

n
YlH

⊤Alx
(n+1).

Claim 3.

y
(i)
l+1 = y

(i)
0 +

〈
M1x

(i),
1
n

l∑
i=0

B⊤
i M2XY

⊤
i

〉
,

for i = 1, . . . , n+ 1, where M2 =
[
Id 0d×d

0d×d 0d×d

]
.

Following Claim 2, we can unroll the recursive definition of Yl+1 and express it compactly as,

Yl+1 = Y0 + 1
n

l∑
i=0

YiH
⊤AiX.

Recall that we define Ai = BiM1. Then, we can rewrite Yl+1 as

Yl+1 = Y0 + 1
n

l∑
i=0

YiH
⊤M2BiM1X.

The introduction of M2 here does not break the equivalence because Bi = M2Bi. However, it will
help make our proof steps easier to comprehend later.

With the identical recursive unrolling procedure, we can rewrite y(n+1)
l+1 as

y
(n+1)
l+1 = y

(n+1)
0 + 1

n

l∑
i=0

YiH
⊤M2BiM1x

(n+1).

In light of this, we define ψ0
.= 0 and for l = 0, . . .

ψl+1
.= 1
n

l∑
i=0

B⊤
i M2HY

⊤
i ∈ R2d. (38)

Then we can write

y
(i)
l+1 = y

(i)
0 +

〈
M1x

(i), ψl+1

〉
, (39)

for i = 1, . . . , n+ 1, which is the claim we made. In particular, since we assume y(n+1)
0 = 0, we have

y
(n+1)
l+1 =

〈
M1x

(n+1), ψl+1

〉
.

Claim 4. The bottom d elements of ψl are always 0, i.e., there exists a sequence
{
wl ∈ Rd

}
such

that we can express ψl as

ψl =
[
wl

0d×1

]
.

for all l = 0, 1, . . . , L.

Because we utilize the same definition of Bl as in Theorem 1 when defining ψl+1, the argument
proving Claim 4 in Theorem 1 holds here as well. We omit the steps to avoid redundancy.

Given all the claims above, we can then compute that〈
ψl+1,M1x

(n+1)
〉

The Training Agents with Foundation Models Workshop at RLC 2024

=
〈
ψl,M1x

(n+1)
〉

+ 1
n

〈
B⊤

l M2HY
⊤

l ,M1x
(n+1)

〉
(By (38))

=
〈
ψl,M1x

(n+1)
〉

+ 1
n

n∑
i=1

〈
B⊤

l M2h
(i)y

(i)
l ,M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉

+ 1
n

n∑
i=1

〈
B⊤

l M2h
(i)
(〈
ψl,M1x

(i)
〉

+ y
(i)
0

)
,M1x

(n+1)
〉

(By (39))

=
〈
ψl,M1x

(n+1)
〉

+ 1
n

n∑
i=1

〈
B⊤

l

[(∑i
k=1 λ

i−kν(i)
)

0d×1

](〈
ψl,

[
−ν(i) + ξ(i)

0d×1

]〉
+ y

(i)
0

)
,M1x

(n+1)

〉

=
〈
ψl,M1x

(n+1)
〉

+ 1
n

n∑
i=1

〈[
Cl

(∑i
k=1 λ

i−kν(i)
)

0d×1

](
y

(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
,M1x

(n+1)

〉
(By Claim 4)

=
〈
ψl,M1x

(n+1)
〉

+ 1
n

n∑
i=1

〈[
Cl

(
y

(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)(∑i

k=1 λ
i−kν(i)

)
0d×1

]
,M1x

(n+1)

〉

This means〈
wl+1, ν

(n+1)
〉

=
〈
wl, ν

(n+1)
〉

+ 1
n

n∑
i=1

〈
Cl

(
y

(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)(i∑

k=1
λi−kν(i)

)
, ν(n+1)

〉
.

Since the choice of the query ν(n+1) is arbitrary, we get

wl+1 = wl + 1
n

n∑
i=1

Cl

(
y

(i)
0 + w⊤

l ξ
(i) − w⊤

l ν
(i)
)(i∑

k=1
λi−kν(i)

)
.

In particular, when we construct Z0 such that ν(i) = ϕi−1, ξ(i) = γϕi and y
(i)
0 = Ri, we get

wl+1 = wl + 1
n

n∑
i=1

Cl

(
Ri + γw⊤

l ϕi − w⊤
l ϕi−1

)
ei−1

where

ei =
i∑

k=1
λi−kϕk. ∈ Rd

which is the update rule for pre-conditioned TD(λ). We also have

y
(n+1)
l =

〈
ψl,M1x

(n+1)
〉

= −
〈
wl, ϕ

(n+1)
〉
.

This concludes our proof.

B.6 Proof of Theorem 3

Proof. We recall from (21) that the embedding evolves according to

Zl+1 = Zl + 1
n

TwoHead(Zl;PTD,(1)
l , QTD

l ,MTD,(1), P
TD,(2)
l , QTD

l ,MTD,(2),Wl)

= Zl + 1
n
Wl

[
LinAttn(Zl;PTD,(1)

l , QTD
l ,MTD,(1))

LinAttn(Zl;PTD,(2)
l , QTD

l ,MTD,(2))

]

The Training Agents with Foundation Models Workshop at RLC 2024

In this configuration, we refer to the elements in Zl as
{

(x(i)
l , y

(i)
l , h

(i)
l)
}

i=1,...,n+1
in the following

way,

Zl =

x
(1)
l . . . x

(n)
l x

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l

h
(1)
l . . . h

(n)
l h

(n+1)
l

,
where we recall that Zl ∈ R(2d+2)×(n+1), x

(i)
l ∈ R2d, y

(i)
l ∈ R and h

(i)
l ∈ R.

Sometimes, it is more convenient to refer to the first half and second half of x(i)
l separately, by, e.g.,

ν
(i)
l ∈ Rd, ξ

(i)
l ∈ Rd, i.e., x(i)

l =
[
ν

(i)
l

ξ
(i)
l

]
. Then we have

Zl =

ν

(1)
l . . . ν

(n)
l ν

(n+1)
l

ξ
(1)
l . . . ξ

(n)
l ξ

(n+1)
l

y
(1)
l . . . y

(n)
l y

(n+1)
l

h
(1)
l . . . h

(n)
l h

(n+1)
l

.
We further define as shorthands

Xl
.=
[
x

(1)
l . . . x

(n)
l

]
∈ R2d×n,

Yl
.=
[
y

(1)
l . . . y

(n)
l

]
∈ R1×n,

Hl
.=
[
h

(1)
l . . . h

(n)
l

]
∈ R1×n.

Then we can express Zl as

Zl =

Xl x
(n+1)
l

Yl y
(n+1)
l

Hl h
(n+1)
l

.
For the input Z0, we assume ξ(n+1)

0 = 0 and h(i)
0 = 0 for i = 1, . . . , n+ 1. All other entries of Z0 are

arbitrary. We recall our definition of MTD,(1),MTD,(2) in (20),
{
P

TD,(1)
l , P

TD,(2)
l , QTD

l ,Wl

}
in (18)

and (19). We again express QTD
l as

M1
.=
[
−Id Id

0d×d 0d×d

]
∈ R2d×2d,

Bl
.=
[
C⊤

l 0d×d

0d×d 0d×d

]
∈ R2d×2d,

Al
.=BlM1 =

[
−C⊤

l C⊤
l

0d×d 0d×d

]
∈ R2d×2d,

QTD
l

.=
[
Al 02d×2

02×2d 02×2

]
∈ R(2d+2)×(2d+2).

We now proceed with the following claims that assist in proving our main theorem.

Claim 1. Xl ≡ X0, x
(n+1)
l ≡ x(n+1)

0 , Yl ≡ Y0, y
(n+1)
l = y

(n+1)
0 ,∀l.

We define

V
(1)

l

.= P
TD,(1)
l ZlM

TD,(1)
(
Z⊤

l Q
TD
l Zl

)
∈ R(2d+2)×(n+1)

V
(2)

l

.= P
TD,(2)
l ZlM

TD,(2)
(
Z⊤

l Q
TD
l Zl

)
∈ R(2d+2)×(n+1).

The Training Agents with Foundation Models Workshop at RLC 2024

Then the evolution of the embedding can be written as

Zl+1 = Zl + 1
n
Wl

[
V

(1)
l

V
(2)

l

]
.

By simple matrix arithmetic, we realize Wl is merely summing up the (2d+ 1)-th row of V (1)
l and

the (2d+ 2)-th row of V (2)
l and putting the result on its bottom row. Thus, we have

Wl

[
V

(1)
l

V
(2)

l

]
=
[

0(2d+1)×(n+1)

V
(1)

l (2d+ 1) + V
(2)

l (2d+ 2)

]
∈ R(2d+2)×(n+1),

where V (1)
l (2d+1) and V (2)

l (2d+2) respectively indicate the (2d+1)-th row of V (1)
l and the (2d+2)-th

row of V (2)
l . It clearly holds according to the update rule that

Zl+1(1 : 2d+ 1) = Zl(1 : 2d+ 1)
=⇒ Xl+1 = Xl;

x
(n+1)
l+1 = x

(n+1)
l ;

Yl+1 = Yl;

y
(n+1)
l+1 = y

(n+1)
l .

Then, we can easily arrive at our claim by a simple induction. In light of this, we drop the subscripts
of Xl, x

(i)
l , Yl and y

(i)
l for all i = 1, . . . , n+ 1 and write Zl as

Zl =

X x(n+1)

Y y(n+1)

Hl h
(n+1)
l

.
Claim 2.

Hl+1 = Hl + 1
n

(Hl + Y − Ȳ)X⊤AlX

h
(n+1)
l+1 = h

(n+1)
l + 1

n
(Hl + Y − Ȳ)X⊤Alx

(n+1),

where ȳ(i) .=
∑i

k=1
y(k)

i and Ȳ
.=
[
ȳ(1), ȳ(2), . . . , ȳ(n)] ∈ R1×n.

We show how this claim holds by investigating the function of each attention head in our formulation.
The first attention head, corresponding to V (1)

l in claim 1, has the form

P
TD,(1)
l ZlM

TD,(1)
(
Z⊤

l Q
TD
l Zl

)
.

We first analyze PTD,(1)
l ZlM

TD,(1). It should be clear that PTD,(1)Zl selects out the (2d+ 1)-th row
of Zl and gives us

P
TD,(1)
l =

02d×n 02d×1
Y y(n+1)

01×n 0

.
The matrix MTD,(1) is essentially computing Y − Ȳ and filtering out the (n + 1)-th entry when
applied to PTD,(1)

l Zl. We break down the steps here:

P
TD,(1)
l ZlM

TD,(1)

The Training Agents with Foundation Models Workshop at RLC 2024

=PTD,(1)
l Zl

(
In+1 − Un+1diag

([
1 1

2 . . . 1
n

]))
MTD,(2)

=PTD,(1)
l ZlM

TD,(2) − PTD,(1)
l ZlUn+1diag

([
1 1

2 . . . 1
n

])
MTD,(2)

=

02d×n 02d×1
Y 0

01×n 0

−
02d×1 02d×1 · · · 02d×1 02d×1
y(1) 1

2
(
y(1) + y(2)) · · · 1

n

∑n
i=1 y

(i) 1
n+1

∑n+1
i=1 y

(i)

0 0 · · · 0 0

MTD,(2)

=

02d×n 02d×1
Y 0

01×n 0

−
02d×n 02d×1

Ȳ 0
01×n 0

=

 02d×n 02d×1
Y − Ȳ 0
01×n 0

.
We then analyze the remaining product Z⊤

l Q
TD
l Zl.

Z⊤
l Q

TD
l Zl

=
[

X⊤ Y ⊤ H⊤
l

x(n+1)⊤
y(n+1)⊤

h
(n+1)⊤

l

] Al 02d×1 02d×1
01×2d 0 0
01×2d 0 0

X x(n+1)

Y y(n+1)

Hl h
(n+1)
l

=
[

X⊤Al 0n×1 0n×1

x(n+1)⊤
Al 0 0

]X x(n+1)

Y y(n+1)

Hl h
(n+1)
l

=
[

X⊤AlX X⊤Alx
(n+1)

x(n+1)⊤
AlX x(n+1)⊤

Alx
(n+1)

]
.

Putting them together, we get

P
TD,(1)
l ZlM

TD,(1)
(
Z⊤

l Q
TD
l Zl

)
=

 02d×n 02d×1
Y − Ȳ 0
01×n 0

[X⊤AlX X⊤Alx
(n+1)

x(n+1)⊤
AlX x(n+1)⊤

Alx
(n+1)

]

=

 02d×n 02d×1(
Y − Ȳ

)
X⊤AlX

(
Y − Ȳ

)
X⊤Alx

(n+1)

01×n 0

.
The second attention head, corresponding to V (2)

l in claim 1, has the form

P
TD,(2)
l ZlM

TD,(2)
(
Z⊤

l Q
TD
l Zl

)
.

It’s obvious that PTD,(2)
l selects out the (2d+ 2)-th row of Zl as

P
TD,(2)
l Zl =

[
0(2d+1)×n 0(2d+1)×1

Hl h
(n+1)
l

]
.

Applying the mask MTD,(2), we get

P
TD,(2)
l ZlM

TD,(2) =
[
0(2d+1)×n 0(2d+1)×1

Hl 0

]
.

The product Z⊤
l Q

TD
l Zl is identical to the first attention head. Hence, we see the computation of the

second attention head gives us

P
TD,(2)
l ZlM

TD,(2)
(
Z⊤

l Q
TD
l Zl

)

The Training Agents with Foundation Models Workshop at RLC 2024

=
[
0(2d+1)×n 0(2d+1)×1

Hl 0

][
X⊤AlX X⊤Alx

(n+1)

x(n+1)⊤
AlX x(n+1)⊤

Alx
(n+1)

]
=
[

0(2d+1)×n 0(2d+1)×1
HlX

⊤AlX HlX
⊤Alx

(n+1)

]
.

Lastly, the matrix Wl combines the output from the two heads and gives us

Wl

PTD,(1)
l ZlM

TD,(1)
(
Z⊤

l Q
TD
l Zl

)
P

TD,(2)
l ZlM

TD,(2)
(
Z⊤

l Q
TD
l Zl

) =
[

0(2d+1)×n 0(2d+1)×1(
Hl + Y − Ȳ

)
X⊤AlX

(
Hl + Y − Ȳ

)
X⊤Alx

(n+1)

]
.

Hence, we obtain the update rule for Hl and h
(n+1)
l as

Hl+1 = Hl + 1
n

(Hl + Y − Ȳ)X⊤AlX

h
(n+1)
l+1 = h

(n+1)
l + 1

n
(Hl + Y − Ȳ)X⊤Alx

(n+1)

and claim 2 has been verified.

Claim 3.

h
(i)
l+1 =

〈
M1x

(i),
1
n

l∑
j=0

B⊤
i M2X(Hj + Y − Ȳ)⊤

〉
,

for i = 1, . . . , n+ 1, where M2 =
[
Id 0d×d

0d×d 0d×d

]
.

Following claim 2, we unroll Hl+1 as

Hl+1 = Hl + 1
n

(Hl + Y − Ȳ)X⊤AlX

Hl = Hl−1 + 1
n

(Hl−1 + Y − Ȳ)X⊤Al−1X

...

H1 = H0 + 1
n

(H0 + Y − Ȳ)X⊤A0X.

We therefore can express Hl+1 as

Hl+1 = H0 + 1
n

l∑
j=0

(Hj + Y − Ȳ)X⊤AjX.

Recall that we have defined Aj
.= BjM1 and assumed H0 = 0. Then, we have

Hl+1 = 1
n

l∑
j=0

(Hj + Y − Ȳ)X⊤M2BjM1X.

Note that the introduction of M2 here does not break the equivalence because Bj = M2Bj . We
include it in our expression for the convenience of the main proof later.

With the identical procedure, we can easily rewrite h(n+1)
l+1 as

h
(n+1)
l+1 = 1

n

l∑
j=0

(Hj + Y − Ȳ)X⊤M2BjM1x
(n+1).

The Training Agents with Foundation Models Workshop at RLC 2024

In light of this, we define ψ0
.= 0, and for l = 0, . . .

ψl+1 = 1
n

l∑
j=0

B⊤
j M2X(Hj + Y − Ȳ)⊤ ∈ R2d.

We then can write

h
(i)
l+1 =

〈
M1x

(i), ψl+1

〉
(40)

for i = 1, . . . , n+ 1, which is the claim we made.

Claim 4. The bottom d elements of ψl are always 0, i.e., there exists a sequence
{
wl ∈ Rd

}
such

that we can express ψl as

ψl =
[
wl

0d×1

]
.

for all l = 0, 1, . . . , L.

Since our Bj here is identical to the proof of Theorem 1 in B.1 for j = 0, 1, . . . , Claim 4 holds for the
same reason. We therefore omit the proof details to avoid repetition.

Given all the claims above, we proceed to prove our main theorem.〈
ψl+1,M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉

+ 1
n

〈
B⊤

l M2X(Hl + Y − Ȳ)⊤,M1x
(n+1)

〉
=
〈
ψl,M1x

(n+1)
〉

+ 1
n

n∑
i=1

〈
B⊤

l M2x
(i)(h(i)

l + y(i) − ȳ(i)),M1x
(n+1)

〉
=
〈
ψl,M1x

(n+1)
〉

+ 1
n

n∑
i=1

〈
B⊤

l M2x
(i)
(〈
ψl,M1x

(i)
〉

+ y(i) − ȳ(i)
)
,M1x

(n+1)
〉

(By (40))

=
〈
ψl,M1x

(n+1)
〉

+ 1
n

n∑
i=1

〈
B⊤

l

[
ν(i)

0d×1

](〈
ψl,

[
−ν(i) + ξ(i)

0d×1

]〉
+ y(i) − ȳ(i)

)
,M1x

(n+1)
〉

=
〈
ψl,M1x

(n+1)
〉

+ 1
n

n∑
i=1

〈[
Clν

(i)

0d×1

](
y(i) − ȳ(i) + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
,M1x

(n+1)
〉

(By Claim 4)

=
〈
ψl,M1x

(n+1)
〉

+ 1
n

n∑
i=1

〈[
Clν

(i)(y(i) − ȳ(i) + w⊤
l ξ

(i) − w⊤
l ν

(i))
0d×1

]
,M1x

(n+1)
〉

This means〈
wl+1, ν

(n+1)
〉

=
〈
wl, ν

(n+1)
〉

+ 1
n

n∑
i=1

〈
Clν

(i)
(
y(i) − ȳ(i) + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
, ν(n+1)

〉
.

Since the choice of the query ν(n+1) is arbitrary, we get

wl+1 = wl + 1
n

n∑
i=1

Cl

(
y(i) − ȳ(i) + w⊤

l ξ
(i) − w⊤

l ν
(i)
)
ν(i).

In particular, when we construct Z0 such that ν(i) = ϕi−1, ξ
(i) = ϕi and y(i) = Ri, we get

wl+1 = wl + 1
n

n∑
i=1

Cl

(
Ri − r̄i + w⊤

l ϕi − w⊤
l ϕi−1

)
ϕi−1

The Training Agents with Foundation Models Workshop at RLC 2024

which is the update rule for pre-conditioned average reward TD learning. We also have

h
(n+1)
l =

〈
ψl,M1x

(n+1)
〉

= −
〈
wl, ϕ

(n+1)
〉
.

This concludes our proof.

C Evaluation Task Generation

To generate the evaluation tasks used to meta-train our transformer in Algorithm 1, we utilize
Boyan’s chain, detailed in Figure 2. Notably, we make some minor adjustments to the original
Boyan’s chain in Boyan (1999) to make it an infinite horizon chain.

Recall that an evaluation task is defined by the tuple (p0, p, r, ϕ). We consider Boyan’s chain MRPs
with m states. To construct p0, we first sample a m-dimensional random vector uniformly in [0, 1]m
and then normalize it to a probability distribution. To construct p, we keep the structure of Boyan’s
chain but randomize the transition probabilities. In particular, the transition function p can be
regarded as a random matrix taking value in Rm×m. For simplifying presentation, we use both p(s, s′)
and p(s′|s) to denote probability of transitioning to s′ from s. In particular, for i = 1, . . . ,m− 2, we
set p(i, i+ 1) = ϵ and p(i, i+ 2) = 1− ϵ, with ϵ sampled uniformly from (0, 1). For the last two states,
we have p(m|m − 1) = 1 and p(·|m) is a random distribution over all states. Each element of the
vector r ∈ Rm and the matrix ϕ ∈ Rd×m are sampled i.i.d. from a uniform distribution over [−1, 1].
The overall task generation process is summarized in Algorithm 2. Almost surely, no task will be
generated twice. In our experiments in the main text, we use Boyan Chain MRPs which consist of
m = 10 states each with feature dimension d = 4.

1 2 3 m-1 m

Figure 2: Boyan’s Chain of m States

Representable Value Function. With the above sampling procedure, there is no guarantee that
the true value function v is always representable by the features. In other words, there is no guarantee
that there exists a w ∈ Rd satisfying v(s) = ⟨w, ϕ(s)⟩ for all s ∈ S. Most of our experiments use this
setup. It is, however, also beneficial sometimes to work with evaluation tasks where the true value
function is guaranteed to be representable. Algorithm 3 achieves this by randomly generating a w∗
first and compute v(s) .= ⟨w∗, ϕ(s)⟩. The reward is then analytically computed as r .= (Im − γp)v.
We recall that in the above we regard p as a matrix in Rm×m.

The Training Agents with Foundation Models Workshop at RLC 2024

Algorithm 2: Boyan Chain MRP and Feature Generation (Non-Representable)
1: Input: state space size m = |S|, feature dimension d
2: for s ∈ S do
3: ϕ(s) ∼ Uniform

[
(−1, 1)d

]
// feature

4: end for
5: p0 ∼ Uniform [(0, 1)m] // initial distribution
6: p0 ← p0/

∑
s p0(s)

7: r ∼ Uniform [(−1, 1)m] // reward function
8: p← 0m×m // transition function
9: for i = 1, . . . ,m− 2 do

10: ϵ ∼ Uniform [(0, 1)]
11: p(i, i+ 1) ← ϵ
12: p(i, i+ 2) ← 1− ϵ
13: end for
14: p(m− 1,m) ← 1
15: z ← Uniform [(0, 1)m]
16: z ← z/

∑
s z(s)

17: p(m, 1 : m) ← z
18: Output: MRP (p0, p, r) and feature map ϕ

Algorithm 3: Boyan Chain MRP and Feature Generation (Representable)
1: Input: state space size m = |S|, feature dimension d, discount factor γ
2: w∗ ∼ Uniform

[
(−1, 1)d

]
// ground-truth weight

3: for s ∈ S do
4: ϕ(s) ∼ Uniform

[
(−1, 1)d

]
// feature

5: v(s)← ⟨w∗, ϕ(s)⟩ // ground-truth value function
6: end for
7: p0 ∼ Uniform [(0, 1)m] // initial distribution
8: p0 ← p0/

∑
s p0(s)

9: p← 0m×m // transition function
10: for i = 1, . . . ,m− 2 do
11: ϵ ∼ Uniform [(0, 1)]
12: p(i, i+ 1) ← ϵ
13: p(i, i+ 2) ← 1− ϵ
14: end for
15: p(m− 1,m) ← 1
16: z ← Uniform [(0, 1)m]
17: z ← z/

∑
s z(s)

18: p(m, 1 : m) ← z
19: r ← (Im − γp)v // reward function
20: Output: MRP (p0, p, r) and feature map ϕ

D Additional Experiments with Linear Transformers

D.1 Experiment Setup

We use Algorithm 2 as dtask for the experiments in the main text with Boyan’s chain of 10 states. In
particular, we consider a context of length n = 30, feature dimension d = 4, and utilize a discount
factor γ = 0.9. In Section 4, we consider a 3-layer transformer (L = 3), but additional analyses on
the sensitivity to the number of transformer layers (L) and results from a larger scale experiment

The Training Agents with Foundation Models Workshop at RLC 2024

with d = 8, n = 60, and |S| = 20 are presented in D.2. We also explore non-autoregressive (i.e.,
"sequential") layer configurations in D.3.

When training our transformer, we utilize an Adam optimizer (Kingma & Ba, 2015) with an initial
learning rate of α = 0.001, and weight decay rate of 1×10−6. P0 and Q0 are randomly initialized using
Xavier initialization with a gain of 0.1. We trained our transformer on k = 4000 different evaluation
tasks. For each task, we generated a trajectory of length τ = 347, resulting in τ − n − 2 = 320
transformer parameter updates.

Since the models in these experiments are small (∼ 10 KB), we did not use any GPU’s during our
experiments. We trained our transformers on a standard Intel i9-12900-HK CPU and training each
transformer took ∼ 20 minutes.

For implementation3, we used NumPy (Harris et al., 2020) to process the data and construct Boyan’s
chain, PyTorch (Ansel et al., 2024) to define and train our models, and Matplotlib (Hunter, 2007)
plus SciencePlots (Garrett, 2021) to generate our figures.

D.1.1 Trained Transformer Element-wise Convergence Metrics

To visualize the parameters of the linear transformer trained by Algorithm 1, we report element-wise
metrics. For P0, we report the value of its bottom-right entry, which, as noted in (10), should
approach one if the transformer is learning to implement TD. The other entries of P0 should remain
close to zero. Additionally, we report the average absolute value of the elements of P0, excluding the
bottom-right entry, to check if these elements stay near zero during training.

For Q0, we recall from (10) that if the transformer learned to implement normal batch TD, the
upper-left d× d block of the matrix should converge to some −Id, while the upper-right d× d block
(excluding the last column) should converge to Id. To visualize this, we report the trace of the
upper-left d× d block, and the trace of the upper-right d× d block (excluding the last column). The
rest of the elements of Q0 should remain close to 0, and to verify this, we report the average absolute
value of the entries of Q0, excluding the entries that were utilized in computing the traces.

Since, P0 and Q0 are in the same product in (3) we sometimes observe during training that P0
converges to −PTD

0 and Q0 converges to −QTD
0 simultaneously. When visualizing the matrices, we

negate both P0 and Q0 when this occurs.

It’s also worth noting that in Theorem 1 we prove a L-layer transformer parameterized as in (10)
with C0 = Id implements L steps of batch TD exactly with a fixed update rate of one. However,
the transformer trained using Algorithm 1 could learn to perform TD with an arbitrary learning
rate (α in (8)). Therefore, even if the final trained P0 and Q0 differ from their constructions in (10)
by some scaling factor, the resulting algorithm implemented by the trained transformer will still be
implementing TD. In light of this, we rescale P0 and Q0 before visualization. In particular, we divide
P0 and Q0 by the maximum of the absolute values of their entries respectively, such that they both
stay in the range [−1, 1] after rescaling.

D.1.2 Trained Transformer and Batch TD Comparison Metrics

To compare the transformers with batch TD we report several metrics following von Oswald et al.
(2023); Akyürek et al. (2023). Given a context C ∈ R(2d+1)×n and a query ϕ ∈ Rd, we construct the
prompt as

Z(ϕ,C) .=

C
 ϕ

0d×1
0

.
We will suppress the context C in subscript when it does not confuse. We use Z(s) .= Z(ϕ(s)) as
shorthand. We use dp to denote the stationary distribution of the MRP with transition function

3The code will be made publicly available upon publication.

The Training Agents with Foundation Models Workshop at RLC 2024

p and assume the context C is constructed based on trajectories sampled from this MRP. Then,
we can define vθ ∈ R|S|, where vθ(s) .= TFL(Z(s)

0 ; θ) for each s ∈ S. Notably, vθ is then the value
function estimation induced by the transformer parameterized by θ .= {(Pl, Ql)} given the context C.
In the rest of the appendix, we will use θTF as the learned parameter from Algorithm 1. As a result,
vTF

.= vθTF denotes the learned value function.

We define θTD
.=
{

(PTD
l , QTD

l)
}

l=0,...,L−1 with Cl = αI (see (10)) and

vTD(s) .= TFL(Z(s)
0 ; θTD).

In light of Theorem 1, vTD is then the value function estimation obtained by running the batch TD
algorithm (11) on the context C for L iterations, using a constant learning rate α.

We would like to compare the two functions vTF and vTD to future examine the behavior of the
learned transformers. However, vTD is not well-defined yet because it still has a free parameter
α, the learning rate. von Oswald et al. (2023) resolve a similar issue in the in-context regression
setting via using a line search to find the (empirically) optimal α. Inspired by von Oswald et al.
(2023), we also aim to find the empirically optimal α for vTD. We recall that vTD is essentially the
transformer TFL(Z(s)

0 ; θTD) with only 1 single free parameter α. We then train this transformer
with Algorithm 1. We observe that α quickly converges and use the converged α to complete the
definition of vTD. We are now ready to present different metrics to compare vTF and vTD. We recall
that both are dependent on the context C.

Value Difference (VD). First for a given context C, we compute the Value Difference (VD) to
measure the difference between the value function approximated by the trained transformer and the
value function learned by batch TD, weighted by the stationary distribution. To this end, we define,

VD(vTF, vTD) .= ∥vTF − vTD∥2
dp
,

We recall that dp ∈ R|S| is the stationary distribution of the MRP and the weighted ℓ2 norm is
defined as ∥v∥d

.=
√∑

s v(s)2d(s).

Implicit Weight Similarity (IWS). We recall that vTD is a linear function, i.e., vTD(s) = ⟨wL, ϕ(s)⟩
with wL defined in Theorem 1. We refer to this wL as wTD for clarity. The learned value function
vTF is, however, not linear even with linear transformer. Following Akyürek et al. (2023), we compute
the best linear approximation of vTF. In particular, given a context C, we define

wTF
.= arg min

w
∥Φw − vTF∥dp

.

Here Φ ∈ R|S|×d is the feature matrix, each of which is ϕ(s)⊤. Such a wTF is referred to as implicit
weight in Akyürek et al. (2023). Following Akyürek et al. (2023), we define

IWS(vTF, vTD) .= dcos(wTF, wTD)

to measure the similarity between wTF and wTD. Here dcos(·, ·) computes the cos similarity between
two vectors.

Sensitivity Similarity (SS). Recall that vTF(s) = TFL(Z(s)
0 ; θTF) and vTD(s) = TFL(Z(s)

0 ; θTD).
In other words, given a context C, both vTF(s) and vTD(s) are functions of ϕ(s). Following von
Oswald et al. (2023), we then measure the sensitivity of vTF(s) and vTD(s) w.r.t. ϕ(s). This similarity
is easily captured by gradients. In particular, we define

SS(vTF, vTD) .=
∑

s

dp(s)dcos

(
∇ϕTFL(Z(ϕ)

0 ; θTF)
∣∣∣∣
ϕ=ϕ(s)

, ∇ϕTFL(Z(ϕ)
0 ; θTD)

∣∣∣∣
ϕ=ϕ(s)

)
.

Notably, it trivially holds that

wTD = ∇ϕTFL(Z(ϕ)
0 ; θTD)

∣∣∣∣
ϕ=ϕ(s)

.

The Training Agents with Foundation Models Workshop at RLC 2024

We note that the element-wise converge of learned transformer parameters (e.g., Figure 1a) is the
most definite evidence for the emergence of in-context TD. The three metrics defined in this section
are only auxiliary when linear attention is concerned. That being said, the three metrics are
important when nonlinear attention is concerned.

D.2 Autoregressive Linear Transformers with L = 1, 2, 3, 4 Layers

In this section, we present the experimental results for autoregressive linear transformers with different
numbers of layers. In Figure 3, we present the element-wise convergence metrics for autoregressive
transformers with L = 1, 2, 4 layers. The plot with L = 3 is in Figure 1 in the main text. We can see
that for the L = 1 case, P0 and Q0 converge to the construction in Corollary 1, which, as proved,
implements TD(0) in the single layer case. For the L = 2, 4 cases, we see that P0 and Q0 converge to
the construction in Theorem 1. We also observe that as the number of transformer layers L increases,
the learned parameters are more aligned with the construction of PTD

0 and QTD
0 with C0 = I.

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

Final P0
0 1 2 3 4 5 6 7 8

Final Q0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(a) Learned P0 and Q0 with L = 1

0 1000 2000 3000 4000

MRPs

0.0

0.5

1.0

1.5

2.0
P0 Metrics

P0[−1, − 1]

Avg Abs Others

0 1000 2000 3000 4000

MRPs

−4

−3

−2

−1

0

Q0 Metrics

tr(Q0[: d, : d])

tr(Q0[: d, d : 2d])

Avg Abs Others

(b) Element-wise learning progress of P0 and Q0

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

Final P0
0 1 2 3 4 5 6 7 8

Final Q0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(c) Learned P0 and Q0 with L = 3

0 1000 2000 3000 4000

MRPs

0.0

0.5

1.0

1.5

2.0
P0 Metrics

P0[−1, − 1]

Avg Abs Others

0 1000 2000 3000 4000

MRPs

−4

−2

0

2

Q0 Metrics

tr(Q0[: d, : d])

tr(Q0[: d, d : 2d])

Avg Abs Others

(d) Element-wise learning progress of P0 and Q0

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

Final P0
0 1 2 3 4 5 6 7 8

Final Q0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(e) Learned P0 and Q0 with L = 4

0 1000 2000 3000 4000

MRPs

0.0

0.5

1.0

1.5

2.0
P0 Metrics

P0[−1, − 1]

Avg Abs Others

0 1000 2000 3000 4000

MRPs

−4

−2

0

2

Q0 Metrics

tr(Q0[: d, : d])

tr(Q0[: d, d : 2d])

Avg Abs Others

(f) Element-wise learning progress of P0 and Q0

Figure 3: Visualization of the learned autoregressive transformers and the learning progress.
Averaged across 30 seeds and the shaded region denotes the standard errors. See Appendix D.1.1 for
details about normalization of P0 and Q0 before visualization.

We also present the comparison of the learned transformer with batch TD according to the metrics
described in Appendix D.1.2. In Figure 4, we present the value difference, implicit weight similarity,
and sensitivity similarity. In Figures 4a – 4d, we present the results for different transformer layer
numbers L = 1, 2, 3, 4. In Figure 4e, we present the metrics for a 3-layer transformer, but we increase
the feature dimension to d = 8 and also the context length to n = 60.

The Training Agents with Foundation Models Workshop at RLC 2024

In all instances, we see strong similarity between the trained linear transformers and batch TD. We
see that the cosine similarities of the sensitivities are near one, as are the implicit weight similarities.
Additionally, the value difference approaches zero during training. This further demonstrates that
the autoregressive linear transformers trained according to Algorithm 1 learn to implement TD(0).

0 1000 2000 3000 4000

MRPs

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e

S
im

il
ar

it
y

Learned TF and Batch TD Comparison

0.00

0.05

0.10

0.15

0.20

0.25

0.30

V
al

u
e

D
if
fe

re
n
ce

SS

IWS

VD

(a) L = 1

0 1000 2000 3000 4000

MRPs

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e

S
im

il
ar

it
y

Learned TF and Batch TD Comparison

0.00

0.05

0.10

0.15

0.20

0.25

0.30

V
al

u
e

D
if
fe

re
n
ce

SS

IWS

VD

(b) L = 2

0 1000 2000 3000 4000

MRPs

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e

S
im

il
ar

it
y

Learned TF and Batch TD Comparison

0.00

0.05

0.10

0.15

0.20

0.25

0.30

V
al

u
e

D
if
fe

re
n
ce

SS

IWS

VD

(c) L = 3

0 1000 2000 3000 4000

MRPs

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e

S
im

il
ar

it
y

Learned TF and Batch TD Comparison

0.00

0.05

0.10

0.15

0.20

0.25

0.30

V
al

u
e

D
if
fe

re
n
ce

SS

IWS

VD

(d) L = 4

0 1000 2000 3000 4000

MRPs

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e

S
im

il
ar

it
y

Learned TF and Batch TD Comparison

0.00

0.05

0.10

0.15

0.20

0.25

0.30

V
al

u
e

D
if
fe

re
n
ce

SS

IWS

VD

(e) L = 3 (d = 8, n = 60)

Figure 4: Value difference (VD), implicit weight similarity (IWS), and sensitivity similarity (SS)
between the learned autoregressive transformers and batch TD with different layers. All curves are
averaged over 30 seeds and the shaded regions are the standard errors.

D.3 Sequential Transformers with L = 2, 3, 4 Layers

So far, we have been using linear transformers with one parametric attention layer applied repeatedly
for L steps to implement an L-layer transformer. Another natural architecture in contrast with the
autoregressive transformer is a sequential transformer with L distinct attention layers, where the
embedding passes over each layer exactly once during one pass of forward propagation.

In this section, we repeat the same experiments we conduct on the autoregressive transformer with
sequential transformers with L = 2, 3, 4 as their architectures coincide when L = 1. We compare the
sequential transformers with batch TD(0) and report the three metrics in Figure 5. We observe that
the implicit weight similarity and the sensitivity similarity grow drastically to near 1, and the value
difference drops considerably after a few hundred MRPs for all three layer numbers. It suggests that
sequential transformers trained via Algorithm 1 are functionally close to batch TD.

Figure 6 shows the visualization of the converged {Pl, Ql}l=0,1,2 of a 3-layer sequential linear
transformer and their element-wise convergence. Sequential transformers exhibit very special patterns
in their learned weights. We see that the input layer converges to a pattern very close to our
configuration in Theorem (1). However, the deeper the layer, we observe the more the diagonal
of Ql[1 : d, d + 1 : 2d] fades. The P matrices, on the other hand, follow our configuration closely,
especially for the final layer. We speculate this pattern emerges because sequential transformers
have more parametric attention layers and thus can assign a slightly different role to each layer but
together implement batch TD(0) as suggested by the black-box functional comparison in Figure 5.

The Training Agents with Foundation Models Workshop at RLC 2024

0 1000 2000 3000 4000

MRPs

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e

S
im

il
ar

it
y

Learned TF and Batch TD Comparison

0.00

0.05

0.10

0.15

0.20

0.25

0.30

V
al

u
e

D
if
fe

re
n
ce

SS

IWS

VD

(a) L = 2

0 1000 2000 3000 4000

MRPs

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e

S
im

il
ar

it
y

Learned TF and Batch TD Comparison

0.00

0.05

0.10

0.15

0.20

0.25

0.30

V
al

u
e

D
if
fe

re
n
ce

SS

IWS

VD

(b) L = 3

0 1000 2000 3000 4000

MRPs

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e

S
im

il
ar

it
y

Learned TF and Batch TD Comparison

0.00

0.05

0.10

0.15

0.20

0.25

0.30

V
al

u
e

D
if
fe

re
n
ce

SS

IWS

VD

(c) L = 4

Figure 5: Value difference (VD), implicit weight similarity (IWS), and sensitivity similarity (SS)
between the learned autoregressive transformers and batch TD with different layers. All curves are
averaged over 30 seeds and the shaded regions are the standard errors.

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

Final P0
0 1 2 3 4 5 6 7 8

Final Q0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(a) Learned P0 and Q0

0 1000 2000 3000 4000

MRPs

0.0

0.5

1.0

1.5

2.0
P0 Metrics

P0[−1, − 1]

Avg Abs Others

0 1000 2000 3000 4000

MRPs

−3

−2

−1

0

1

2

Q0 Metrics

tr(Q0[: d, : d])

tr(Q0[: d, d : 2d])

Avg Abs Others

(b) Element-wise learning progress of P0 and Q0

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

Final P1
0 1 2 3 4 5 6 7 8

Final Q1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(c) Learned P1 and Q1

0 1000 2000 3000 4000

MRPs

0.0

0.5

1.0

1.5

2.0
P1 Metrics

P1[−1, − 1]

Avg Abs Others

0 1000 2000 3000 4000

MRPs

−4

−2

0

2

Q1 Metrics

tr(Q1[: d, : d])

tr(Q1[: d, d : 2d])

Avg Abs Others

(d) Element-wise learning progress of P1 and Q1

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

Final P2
0 1 2 3 4 5 6 7 8

Final Q2

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(e) Learned P2 and Q2

0 1000 2000 3000 4000

MRPs

0.0

0.5

1.0

1.5

2.0
P2 Metrics

P2[−1, − 1]

Avg Abs Others

0 1000 2000 3000 4000

MRPs

−6

−4

−2

0

Q2 Metrics

tr(Q2[: d, : d])

tr(Q2[: d, d : 2d])

Avg Abs Others

(f) Element-wise learning progress of P2 and Q2

Figure 6: Visualization of the learned L = 3 sequential transformers and the learning progress.
Averaged across 30 seeds and the shaded region denotes the standard errors. See Appendix D.1.1 for
details about normalization of P0 and Q0 before visualization.

The Training Agents with Foundation Models Workshop at RLC 2024

0 1000 2000 3000 4000

MRPs

0.0

0.2

0.4

0.6

0.8

1.0

C
o
si

n
e

S
im

il
a
ri

ty

Learned TF and Batch TD Comparison

0.00

0.05

0.10

0.15

0.20

0.25

0.30

V
a
lu

e
D

if
fe

re
n
ce

SS

IWS

VD

(a) General Value Function

0 1000 2000 3000 4000

MRPs

0.0

0.2

0.4

0.6

0.8

1.0

C
o
si

n
e

S
im

il
a
ri

ty

Learned TF and Batch TD Comparison

0.0

0.5

1.0

1.5

2.0

2.5

3.0

V
al

u
e

D
if
fe

re
n
ce

SS

IWS

VD

(b) Representable Value Function

Figure 7: Value difference (VD), implicit weight similarity (IWS), and sensitivity similarity (SS)
between the learned softmax transformers and linear batch TD. All curves are averaged over 30 seeds
and the shaded regions are the standard errors.

E Nonlinear Attention

Until now, we have focused on only linear attention. In this section, we empirically investigate
original transformers with the softmax function. Given a matrix Z, we recall that self-attention
computes it embedding as

Attn(Z;P,Q) = PZMsoftmax
(
Z⊤QZ

)
.

Let Zl ∈ R(2d+1)×(n+1) denote the input to the l-th layer, the output of an L-layer transformer with
parameters {(Pl, Ql)}l=0,...,L−1 is then computed as

Zl+1 = Zl + 1
n Attn(Zl;Pl, Ql) = Zl + 1

nPZMsoftmax
(
Z⊤QZ

)
.

Analogous to the linear transformer, we define

T̃FL

(
Z0; {Pl, Ql}l=0,1...,L−1

)
.= −ZL[2d+ 1, n+ 1].

As a shorthand, we use T̃FL(Z0) to denote the output of the softmax transformers given prompt Z0.
We use the same training procedure (Algorithm 1) to train the softmax transformers. In particular,
we consider a 3-layer autoregressive softmax transformer.

Notably, the three metrics in Appendix D.1.2 apply to softmax transformers as well. We still compare
the learned softmax transformer with the linear batch TD in (11). In other words, the vTD related
quantities are the same, and we only recompute vTF related quantities in Appendix D.1.2. As shown
in Figure 7a, the value difference remains small and the implicit weight similarity increases. This
suggests that the learned softmax transformer behaves similarly to linear batch TD. The sensitivity
similarity, however, drops. This is expected. The learned softmax transformer T̃FL is unlikely to be
a linear function w.r.t. to the query while vTD is linear w.r.t. the query. So their gradients w.r.t.
the query are unlikely to match. To further investigate this hypothesis, we additionally consider
evaluation tasks where the true value function is guaranteed to be representable (Algorithm 3) and is
thus a linear function w.r.t. the state feature. This provides more incentives for the learned softmax
transformer to behave like a linear function. As shown in Figure 7b, the sensitivity similarity now
increases.

F Numerical Verification of Proofs

We provide numerical verification for our proofs by construction (Theorem 1, Corollary 2, Corollary 3,
and Theorem 3) as a sanity check. In particular, we plot log

∣∣−⟨ϕn, wl⟩ − yn+1
l

∣∣ against the number
of layers l. For example, for Theorem 1, we first randomly generate Z0 and {Cl}. Then y

(n+1)
l is

The Training Agents with Foundation Models Workshop at RLC 2024

0 5 10 15 20 25 30 35 40

Layers

−35

−30

−25

−20

−15

−10

log
∣∣∣−〈φn, wl〉 − y(n+1)

l

∣∣∣

TD(0)

Residual Gradient

TD(λ)

Avg Reward TD

Figure 8: Differences between transformer output and batch TD output. Curves are averaged over
30 random seeds with the (invisible) shaded region showing the standard errors.

computed by unrolling the transformer layer by layer following (5) while wl is computed iteration by
iteration following (11). We use double-precision floats and run for 30 seeds, each with a new prompt.
As shown in Figure 8, even after 40 layers / iterations, the difference is still in the order of 10−10. It
is not strictly 0 because of numerical errors. It sometimes increases because of the accumulation of
numerical errors.

