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1 DISCUSSIONS
Contribution andNovelty. To tackle the inconsistent multi-entity
representation (IMR) challenge, we initially conducted thorough
analyses of the diffusion process and attention mechanisms. Our
findings suggest that the challenges associated with IMR predom-
inantly arise from cross-attention mechanisms. Based on these
analyses, we developed the entity guidance generation mechanism,
which preserves the integrity of the original diffusion model param-
eters by integrating auxiliary plug-in networks. We have enhanced
the stable diffusion model by decomposing complex prompts into
separate entity-specific prompts, each defined within its bounding
boxes. This approach facilitates a shift from multi-entity to single-
entity generation within the cross-attention layers. Crucially, we
have implemented entity-centric cross-attention layers that con-
centrate on individual entities to maintain their distinctiveness and
precision. Alongside this, global entity alignment layers are utilized
to refine the cross-attention maps, employing multi-entity priors
for accurate positioning and attribute detail. Moreover, we incor-
porate a linear attenuation module that gradually diminishes the
influence of these layers during inference to avoid oversaturation
and maintain the fidelity of the generated images. Our extensive
experiments show that this entity guidance generation improves
the capability of existing text-to-image models to produce detailed,
multi-entity images.
Limitations. While our approach is innovative and improves multi-
entity generation, there remain several limitations, primarily due to
the base model’s inherent capabilities. One challenge is generating
detailed entities, including textures and finer details. This difficulty
largely arises from our method’s focus on contour structure due
to the integration of multi-centric prior information, which often
overlooks these specific aspects. This reflects the base diffusion
model’s limitations in accurately rendering such details. Perhaps
opting for a more robust model like SDXL could address these short-
comings. Additionally, accurately capturing complex relationships,
such as overlaps and interactions between entities, continues to
pose challenges. For instance, generating intricate hand interactions
during a dance sequence proves difficult. These complex and dy-
namic scenarios necessitate further enhancements and refinements
in our approach to effectively depict and embody such complex
relationships.
Future Work. Building on our current achievements, we identify
two key areas for future development in text-based multi-entity
image generation:

• Enhancing Model Capacity: To enhance our model’s ca-
pacity, we plan to integrate the SDXL-base model and enrich
our dataset with a more diverse range of entities. This ex-
pansion will facilitate ongoing refinement, improving our
ability to accurately represent multiple entities.

• Complex Relationships:We aim to incorporate additional
multi-entity priors, such as depth perception and canny edge
detection, to enhance the detail and realism of generated
human figures. This initiative seeks to address the shortcom-
ings of relying solely on contour information and will better
capture the dynamic interactions between entities.

• Enhancing Model Efficiency: A challenge is integrating
GLIGEN’s placement strategy into the entity-centric cross-
attention layers, aiming to bypass the gated attention layers.
This adjustment is expected to streamline the model’s pro-
cessing efficiency and improve response times during image
generation tasks.

2 ETHICAL AND SOCIAL IMPACTS
Our research into text-based multi-entity generation raises sev-
eral ethical and social issues. The primary concern is the potential
for misuse. This technology could enable the creation of more so-
phisticated and believable scenarios for spreading misinformation.
Examples include fabricating images of crowds, events, or inter-
actions that never happened, which could then be used to bolster
false narratives or disseminate fake news. Additionally, generating
images that involve multiple entities poses significant questions
about consent and privacy. This is particularly problematic if the
entities resemble real individuals or replicate their interactions.
As a result, it is crucial to establish clear guidelines for ethically
creating fictional scenarios, especially those that might depict con-
troversial or damaging situations. In conclusion, while our method
for multi-entity generation offers possibilities for innovative and in-
clusive image creation, it necessitates a firm commitment to ethical
practices to mitigate potential harm.

3 DETAILED IMPLEMENTATION
Implementation Details. As described in the main text, during
training, we use the AdamW optimizer [3] with a fixed learning rate
of 0.00001 and weight decay of 0.01 for 10 epochs, and we set 𝜆 = 10
for loss control. In the inference stage, we adopt DDIM sampler [4]
with 50 steps and set the guidance scale to 7.5. All experiments are
performed on 8 × Nvidia Tesla V100 GPUs. The detailed parameters
are listed in the following Table 1.
Structure Details. The total trainable parameters are the three-
layer MLP from the proposed ECA layers and the four-layer CNN
network (Three convolution layers plus one SE Net layer) in GEA.
At the same time, ECA and GEA modules are exclusively imple-
mented at resolutions of 8 × 8 and 16 × 16. The detailed implemen-
tations are shown in Table 2.

4 DETAILS OF LLMS
Given a complex multi-entity prompt, GPT-4-Vision can identify
the entities and their attributes, leading to the generation of a
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Table 1: List of implementation settings for both training
and inference stages.

Implementation Setting

Training Noise Schedular DDPM [1]
Epoch 10
Batch size per GPU 8
Optimizer Adam
Learning rate 0.00001
weight decay 0.01
loss ratio 𝜆 10
Training timestamp 1000
Training image size 512 × 512
Training HED image size 512 × 512

Sampling Noise Schedular DDIM [4]
Inference step 50
guidance scale 7.5
Inference image size 512 × 512

Table 2: Details of each network in ECA and GEA. "Linear
layer: 𝑑𝑖" denotes a linear layer with 𝑑𝑖 output channels;
"Conv: 5 × 5 c128 s1" refers to a convolutional layer with
a kernel size of 5 × 5, 128 output channels, and a stride of 1.

MLP (ECA) CNN (GEA)

Linear layer: 𝑑𝑖 Conv: 5 × 5 c128 s1
SiLU BatchNorm + SiLU

Linear layer: 𝑑𝑖 Conv: 5 × 5 c128 s1
SiLU BatchNorm + SiLU

Linear layer: 𝑑𝑖 SE Net [2]
Conv: 5 × 5 c8 s1

reorganized global prompt and individual entity prompts. Moreover,
it assigns bounding box attributes to each entity, predicted by the
language model after evaluating the image’s overall layout. Below,
we outline the steps for effectively utilizing GPT-4-Vision with
prompting engineering:
1). Task Specification: You will be provided with a complex prompt
that includes multiple entities. Your tasks include:

• Describing each entity with a specific phrase.
• Predicting bounding boxes for each entity mentioned in the
prompt.

• Using a phrase to describe the background scene.
• Combining entity prompts using "and" along with the back-
ground prompt to form the global prompt.

• You may make appropriate assumptions to supplement miss-
ing information.

2). Supporting details:
• Image Dimensions: The images are 512 × 512 pixels.
• Coordinates: The top-left corner is at [0, 0], and the bottom-
right corner is at [511, 511].

3). Output formats:: Format your outputs as follows:

• Each entity should be in a dictionary format:
{ "Entity name": Entity prompt,
"box": [top-left x, top-left y, width, height] }

• The background scene should be formatted as:

{”𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑” : 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝑝𝑟𝑜𝑚𝑝𝑡}

• The global prompt should be formatted as:

{”𝑔𝑙𝑜𝑏𝑎𝑙𝑝𝑟𝑜𝑚𝑝𝑡” : 𝐺𝑙𝑜𝑏𝑎𝑙𝑝𝑟𝑜𝑚𝑝𝑡}

• Combine all the returned information into a JSON file.

4). Example:
Caption: "A golden dog on the left and a black cat on the right

are playing in the yard."
Returns:

{
"object 1": {"dog": "a golden dog", \\

"box": [0, 150, 236, 250]},
"object 2": {"cat": "a black dog", \\

"box": [280, 150, 232, 250]},
"background": "a green yard",
"global prompt": "a golden dog and a black dog

in the green yard"
}

5). Input caption: Provide your input caption here.

5 DETAILS OF USED PROMPTS
We also include the complete prompts used for Figures 1 and 7.

Figure 1 (a):
{

"object 1": {"rose": "a blue rose", \\
"box": [60, 260, 64, 64]},

"object 2": {"rose": "a red rose", \\
"box": [210, 310, 64, 64]},

"object 3": {"rose": "a yellow rose", \\
"box": [140, 410, 64, 64]},

"object 4": {"rose": "a white rose", \\
"box": [280, 410, 64, 64]},

"object 5": {"rose": "an orange rose", \\
"box": [360, 260, 64, 64]},

"object 6": {"rose": "a pink rose", \\
"box": [360, 410, 64, 64]},

"object 7": {"cloud": "a soft white cloud", \\
"box": [50, 50, 100, 100]},

"object 8": {"cloud": "a soft white cloud", \\
"box": [350, 50, 100, 100]},

"object 9": {"sky": "a clean blue sky", \\
"box": [0, 0, 511, 200]},

"background": "A green Garden",
"global prompt": "a blue rose and a red rose
and a yellow rose and a white rose
and an orange rose and a pink rose
and a soft white cloud and a soft white cloud
and a clean blue sky in a green garden."

}

Figure 1 (b):
2024-04-19 12:44. Page 2 of 1–4.
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Prompt: a red car and a pink elephant in a grey empty street.

GliGen

21

Figure 1: An example of failure case. While our model successfully generated the target entities with the correct color attributes,
it failed to produce a realistic elephant in the intended pink color.

{
"object 1": {"style": "a cartoon style", \\

"box": [0, 0, 511, 511]},
"object 2": {"dog": "a golden dog", \\

"box": [0, 300, 200, 200]},
"object 3": {"cat": "a black dog", \\

"box": [300, 300, 200, 200]},
"object 4": {"house": "a red house", \\

"box": [100, 0, 310, 250]},
"object 5": {"tree": "a green tree", \\

"box": [0, 0, 100, 250]},
"object 6": {"tree": "a green tree", \\

"box": [410, 0, 100, 250]},
"background": "a green grass scene",
"global prompt": "a cartoon style
and a golden dog and a black cat
and a red house and a green tree
and a green tree in a green grass scene"

}

Figure 7 motorcycle:
{

"object 1": {"motorcycle": "a blue motorcycle", \\
"box": [250, 100, 200, 250]},

"object 2": {"car": "a red car", \\
"box": [0, 100, 200, 200]},

"background": "a gray parking lot",
"global prompt": "a blue motorcycle and a red car

in a gray parking lot"
}

Figure 7 truck:
{

"object 1": {"car": "a red car", \\
"box": [250, 150, 200, 200]},

"object 2": {"truck": "a black truck", \\

"box": [0, 100, 200, 300]},
"background": "a gray parking lot",
"global prompt": "a red car and a black truck

in a gray parking lot"
}

6 ADDITIONAL RESULTS
Due to space constraints in the main paper, we only included a
portion of the results. In this section, we will present further results
and additional analyses.

6.1 An Example of Failure Case
In this subsection, we delve into a specific failure case encountered
during our experiments to gain a deeper understanding of the
limitations inherent in our methodology and to identify potential
areas for improvement. The failure occurred while processing the
prompt "a red car and a pink elephant in a grey empty street", as
shown in Figure 1. This prompt was chosen to assess the system’s
capability to generate a pink elephant, which does not naturally
exist. This incident highlights the critical need for diverse datasets
and the model’s capacity to generalize across complex prompts that
blend various elements of reality.

6.2 Other Visualizations in T2I Comp-Bench
In this subsection, we expand upon additional visualizations derived
from the T2I Comp-Bench, which were not included in the main
paper due to space constraints. The results are shown in Figure 2.
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Figure 2: Additional qualitative comparison with baseline method in T2I Comp-Bench. Our method demonstrates a substantial
enhancement in handling complex multi-entity prompts, providing a promising avenue for future research in advanced image
synthesis. 2024-04-19 12:44. Page 4 of 1–4.
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