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A Pseudo-Code of Adversarial Teacher-Student Representation Learning

We provide the pseudo-code of our Adversarial Teacher-Student Representation Learning in Algo-
rithm 1.

Algorithm 1: Adversarial Teacher-Student Representation Learning
Input: Number of iterations Niter, number of warm up iterations Nwarm, learning rate γ,

Teacher FT , Student FS , novel-domain augmenter G and classifier C
Data: N source domains Dtr = {D1,D2, ...,DN}
Output: Teacher FT

1 for i in 1 : Niter do
2 Randomly sample a minibatch (x, y) from source domains ;
3 if i <Nwarm then
4 Update FT and C with Lce(C(FT (x)), y);
5 else
6 Domain Generalized Representation Learning
7 x̃ = G(x);
8 z = FT (x), z̃ = FS(x̃);
9 Compute LF

dis (Eq.1) and Lce(C(z̃), y);

10 Update FS via back propagation. θS ← θS − γ
∂(LF

dis(z,z̃)+Lce(C(z̃),y))
∂θS

(Eq.2);
11 Update FT via EMA. θT ← τθT + (1− τ)θS , where τ ∈ [0, 1) (Eq.3);
12 Novel Domain Augmentation
13 Compute LG

dis (Eq.4) and Lce(C(z̃), y);

14 Update G via back propagation. θg ← θg − γ
∂(−LG

dis(z,z̃)+Lce(C(z̃),y))
∂θg

(Eq.5);
15 end
16 end

B Further Quantitative Comparisons

For multiple source domain generalization, in addition to PACS, Office-Home, and DomainNet
datasets included in main paper, we further evaluate the effectiveness of our approach on two
benchmark datasets, Digits-DG and VLCS.
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Table 1: Comparisons to existing methods on Digits-DG in leave-one-domain-out settings. Bold
denotes the best result.

Target DeepAll CCSA MMD- CrossGrad DDAIG L2A-OT MixStyle Ours
(baseline) [8] AAE [9] [10] [7] [11] [12]

MNIST 95.3 95.2 96.5 96.7 96.6 96.7 96.5 97.9 ± 0.1
MNIST-M 61.1 58.2 58.4 61.1 64.1 63.9 63.5 62.7 ± 0.3
SVHN 62.3 65.5 65.0 65.3 68.6 68.6 64.7 69.3 ± 0.1
SYN 79.5 79.1 78.4 80.2 81.0 83.2 81.2 83.7 ± 0.2
Average 74.5 74.5 74.6 75.8 77.6 78.1 76.5 78.4

Table 2: Comparisons to existing methods on VLCS using AlexNet in leave-one-domain-out settings.
Bold denotes the best result.

Target DeepAll MMD- MLDG Epi- JiGen MASF MetaVIB EISNet RSC Ours
(baseline) AAE [9] [13] FCR [14] [15] [16] [17] [18] [19]

PASCAL 66.3 67.7 67.7 67.1 70.6 69.1 70.3 69.8 73.9 76.9 ± 0.4
LabelMe 61.4 62.6 61.3 64.3 60.9 64.9 62.7 63.5 61.9 62.9 ± 0.7
Caltech 97.2 94.4 94.4 94.1 96.9 94.8 97.4 97.3 97.6 97.2 ± 0.1
Sun 68.1 64.4 64.4 65.9 64.3 67.6 67.9 68.0 68.3 69.6 ± 0.3
Average 73.3 72.3 72.3 72.9 73.2 74.1 74.5 74.7 75.4 76.1

B.1 Datasets

Digits-DG consists of four domains, MNIST [1], MNIST-M [2], SVHN [3] and SYN [2], with digit
images of varying font styles and background colors. Each domain contains 10 categories, with 6000
images in total. Images are divided into the training split and the validation split at a ratio of 8:2.
VLCS [4] is a domain generalized visual classification benchmark, which includes five categories
from four domains (PASCAL VOC 2007, LabelMe, Caltech, and Sun datasets), with the domain gap
mainly from camera viewpoints, types of camera, or illumination conditions, etc. Images are divided
into the training split and the validation split at a ratio of 9:1.

B.2 Implementation Details and Results

For Digits-DG, input images are resized to 32 × 32 pixels, and the backbone of FT and FS consists
of four convolution layers, with the kernel size 3 and channel size 64. Each convolution layer is
followed by a ReLU and a maxpooling layer with the kernel size 2. Classifier C is realized by a
fully-connected layer, and maps a flattened feature vector to a 10 dimensional output. FS is trained
with SGD, initial learning rate of 0.05 and batch size of 128 for 60 epochs. For VLCS, input images
are resized to 224 × 224 pixels, and we use AlexNet [5] pre-trained on ImageNet [6] as the backbone
of our teacher and student networks. FS is trained with the SGD optimizer, with an initial learning
rate of 0.0005, and a batch size of 32 for 60 epochs. The learning rate is decayed by 0.1 after 30
epochs. For both Digits-DG and VLCS, FT is updated via EMA with the momentum coefficient τ of
0.999 by default. Our novel-domain augmenter G is realized by a fully convolutional network similar
to the generator’s architecture in [7] and trained with the SGD optimizer.

Tables 1 and 2 show the quantitative comparisons with existing DG methods on Digit-DG and VLCS,
respectively. Our approach still achieved satisfactory performance over the state-of-the-art models
on all domains, with the reported highest average accuracy on both Digits-DG (78.4%) and VLCS
(76.1%). The above experimental results further support the effectiveness and robustness of our
method to tackle domain generalized visual classification tasks.

B.3 Generalization from A Single Source Domain

We conduct additional experiments with the ResNet-50 backbone on PACS using Art painting,
Cartoon, and Sketch, respectively, as the single source domain to further confirm the use of our
method to deal with such a challenging setting. As shown in Tables 3, 4, and 5, our approach
performed favorably against the baseline (DeepAll) and the existing DG methods regardless of the
source domain we selected. The above quantitative experiments thus confirmed the effectiveness and
the domain generalization ability of our proposed model.
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Table 3: Single source domain generalization on PACS using ResNet-50 as the backbone. Note that
Art painting of PACS is selected as the single source domain for training.

PACS-A Photo Cartoon Sketch Average
DeepAll 96.9 57.0 42.8 65.6
JiGen [15] 96.3 61.4 52.7 70.1
CrossGrad [10] 97.3 62.5 45.9 68.6
DDAIG [7] 97.0 61.5 54.1 70.9
M-ADA [23] 97.2 63.7 47.0 69.3
Ours 97.4 ± 0.1 64.0 ± 0.4 56.1 ± 0.2 72.5

Table 4: Single source domain generalization on PACS using ResNet-50 as the backbone. Note that
Cartoon of PACS is selected as the single source domain for training.

PACS-C Photo Art painting Sketch Average
DeepAll 87.0 64.0 55.8 68.9
JiGen [15] 87.1 65.3 66.3 72.9
CrossGrad [10] 86.8 66.4 65.4 72.9
DDAIG [7] 86.8 68.5 65.9 73.7
M-ADA [23] 87.7 67.7 63.1 72.8
Ours 87.6 ± 0.2 70.0 ± 0.1 68.4 ± 0.8 75.3

Table 5: Single source domain generalization on PACS using ResNet-50 as the backbone. Note that
Sketch of PACS is selected as the single source domain for training.

PACS-S Photo Art painting Cartoon Average
DeepAll 25.1 21.0 43.7 29.9
JiGen [15] 37.5 37.1 55.6 43.4
CrossGrad [10] 31.6 25.5 49.1 35.4
DDAIG [7] 28.6 30.0 59.3 39.3
M-ADA [23] 26.0 23.1 52.0 33.7
Ours 39.2 ± 0.2 31.0 ± 0.3 61.0 ± 0.2 43.7
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Figure 1: Impact of the epoch of warm-up stage on (a) PACS and (b) Office-Home using ResNet-50
as the backbone. Note that x and y axes denote the epoch of warm-up stage and top-1 classification
accuracy (%), respectively.

Moreover, we provide additional comparisons of single-source domain generalization on Digit
datasets. Following two very recent SOTAs of [20, 21] using MNIST [1] as the single source domain,
our method showed promising results 61.7%, 83.2%, 69.3%, and 87.4% on SVHN [3], MNIST-
M [2], SYN [2], and USPS [22], respectively. We achieved an average accuracy of 75.4% and
outperformed [20] and [21] which resulted in 74.8% and 61.3%, respectively. And, as discussed in
Section 2, PDEN [20] has a much larger memory requirement and a more complex model (i.e., more
hyperparameters to select). The above additional experiments further confirm the effectiveness of our
method for single-source domain generalization.
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B.4 Parameter Analysis

Impact of the Warm-up Stage In this sub-section, we conduct a detailed analysis of the impact of
our warm-up stage on both PACS and Office-Home with ResNet-50 as the backbone. As shown in
Fig. 1, the performance does not exhibit drastic fluctuations despite using different warm-up epochs,
further showing that our model is stable and robust and that the training epoch of warm-up stage is
not the most influential factor to the result. We eventually choose 10 epochs for warm-up training as
default in our experiments.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 2. All DG methods
share the same limitation which can generalize to unseen but similar target domains.

(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [No] The code
are proprietary. Nevertheless, we are happy to release it with the approval from our
collaborator.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4.2 and supplementary material

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See our Table 1-4 and 6

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4.2

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4.2
(b) Did you mention the license of the assets? [Yes] See Section 4.2
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

The code are proprietary. Nevertheless, we are happy to release it with the approval
from our collaborator.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] See Section 4.1. All datasets we used are public.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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