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ABSTRACT

Recent advances in self-supervised learning and the Transformer architecture have
significantly improved natural language processing (NLP), achieving remarkably
low perplexity. However, the growing size of NLP models introduces a memory
wall problem during the generation phase. To mitigate this issue, recent efforts
have focused on quantizing model weights to sub-4-bit precision while preserving
full precision for activations, resulting in practical speed-ups during inference on a
single GPU. However, these improvements primarily stem from reduced memory
movement, which necessitates a resource-intensive dequantization process rather
than actual computational reduction. In this paper, we introduce LUT-GEMM, an
efficient kernel for quantized matrix multiplication, which not only eliminates the
resource-intensive dequantization process but also reduces computational costs
compared to previous kernels for weight-only quantization. Furthermore, we pro-
posed group-wise quantization to offer a flexible trade-off between compression
ratio and accuracy. The impact of LUT-GEMM is facilitated by implementing high
compression ratios through low-bit quantization and efficient LUT-based opera-
tions. We show experimentally that when applied to the OPT-175B model with
3-bit quantization, LUT-GEMM substantially accelerates token generation latency,
achieving a remarkable 2.1× improvement on a single GPU when compared to
OPTQ, which relies on the costly dequantization process. The code is available at
https://github.com/naver-aics/lut-gemm

1 INTRODUCTION

Recent years have observed large-scale language models (LLMs) presenting state-of-the-art perfor-
mance on various natural language process (NLP) tasks. Such rapid progress in NLP performance has
been highly facilitated by the self-supervised learning methods, avoiding expensive manual labeling
(Devlin et al., 2019; Baevski et al., 2020; Chen et al., 2020). Leveraging extensive training datasets,
these models benefit from efficient sequence-to-sequence architectures like the Transformer model
(Vaswani et al., 2017), leading to notable increases in model parameters.

Previous studies (Brown et al., 2020; Kaplan et al., 2020; Hoffmann et al., 2022) have reported that
LLM performance follows a predictable power-law scaling as a function of model size. Accordingly,
in recent years, several large-scale generative language models, including GPT-3 (175B) (Brown
et al., 2020), HyperCLOVA (204B) (Kim et al., 2021a), Gopher (280B) (Rae et al., 2021), Chinchilla
(70B) (Hoffmann et al., 2022), Megatron Turing NLG (530B) (Smith et al., 2022), PaLM (540B)
(Chowdhery et al., 2022), and LLaMA (65B) (Touvron et al., 2023), have been proposed to further
advance state-of-the-art performance. However, models with billions of parameters cannot be
accommodated on a single GPU due to the limited memory size of GPUs, which is sacrificed to
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Figure 1: Three matrix multiplication schemes for W8/A8 or W4/A16 (i.e., weight-only) quantization
format. Our proposed LUT-GEMM can adopt W4 and A16 without requiring an additional dequanti-
zation step.

enhance memory bandwidth (Migacz, 2017; Yu et al., 2017). To address such a concern, researchers
have proposed to use model parallelism, which distributes computations over multiple GPUs through
GPU-to-GPU communication (Shoeybi et al., 2019; Narayanan et al., 2021). Nevertheless, it is
worth noting that model parallelism introduces additional overheads, stemming from the inter-GPU
communication. Consequently, the performance gains achieved through model parallelism exhibit a
sub-linear relationship with the number of GPUs employed.

To mitigate the challenges related to model parallelism, parameter quantization (Xu et al., 2018; Choi
et al., 2017; McDonnell, 2018) presents a practical solution for minimizing model size, reducing
the number of GPUs required for inference. Among the various quantization schemes, the preferred
choice is quantizing both activations and weights to exploit integer-based arithmetic units (Jacob
et al., 2018; Wu et al., 2018; Lin et al., 2016). Nonetheless, this quantization method is practically
limited to 8 bits, and non-linear operations (e.g., softmax and normalization) may yield imprecise
results (Kim et al., 2021b; Bhandare et al., 2019). Moreover, to fully utilize integer arithmetic units, it
is essential to implement on-the-fly activation quantization and dequantization, along with an accurate
estimation of the activation distribution (Yao et al., 2022; Dettmers et al., 2022).

Recent research has proposed 4-bit weight-only quantization as an approach for memory compression
(Frantar et al., 2022; Lin et al., 2023; Dettmers et al., 2023; Kim et al., 2023), involving on-the-
fly conversion to full-precision. While this sacrifices the computational benefits of using integer
arithmetic, empirical findings in LLMs suggest that weight-only quantization can achieve significantly
higher compression ratios for a given target accuracy compared to quantizing both weights and
activations (Zeng et al., 2022). Various weight-only quantization methods have been proposed to
improve the compression ratio while preserving accuracy, often accompanied by dedicated kernels for
practical acceleration through quantization (Jeon et al., 2020; Frantar et al., 2022; Lin et al., 2023).

In this paper, we present LUT-GEMM, a kernel designed to facilitate quantized matrix multiplications
with quantized weights and full-precision activations. As shown in Figure 1, LUT-GEMM addresses
two issues prevalent in previous quantization approaches: 1) accuracy degradation due to quantized
activations and 2) the need for additional dequantization implementation. LUT-GEMM inherently
accommodates quantized weights and full-precision activations, enabling the acceleration of the
inference process while preserving the desired level of precision. Specifically, LUT-GEMM employs
the binary-coding quantization (BCQ) format (Rastegari et al., 2016) to capitalize on simple arithmetic
operations. It is worth noting that BCQ was initially proposed to support non-uniform quantization,
which relies on customized hardware for bit-level operations. To our knowledge, we are the first to
show that prior uniform quantization can be reformulated in the form of BCQ, allowing LUT-GEMM
to support both non-uniform and uniform quantization formats. Consequently, LUT-GEMM can
execute a wide range of weight-only quantization schemes for matrix multiplications, achieving low
inference latency and eliminating the need for on-the-fly dequantization.

Our major contributions in this work include the following: 1) We verify that BCQ is capable of
representing both uniform and non-uniform weight quantization. 2) We show that LUT-GEMM,
using the BCQ format, offers a broad spectrum of latency and accuracy trade-offs, leveraging GPU-
specific hardware utilization methods to implement various BCQ configurations efficiently. 3) For
LLMs, we demonstrate that LUT-GEMM, which utilizes quantized weights without a dequantization
process, can considerably accelerate matrix multiplications with small quantization bits while power
consumption is greatly saved by reducing the number of GPUs. 4) Assuming a 3-bit BCQ format
for weights of OPT-175B served by a single GPU, experimental results show that LUT-GEMM
accelerates token generation latency by 2.1× compared to the OPTQ (Frantar et al., 2022).
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2 BACKGROUND

2.1 GPU-ACCELERATED GENERATIVE LMS

For large LMs, the processing time of matrix multiplications dominates the entire inference latency
because of higher time complexity compared to activation functions, normalization layers, and so on
(Dettmers et al., 2022). Specifically, matrix multiplications account for at least 75% of the processing
time for various LM sizes and input token lengths (see Appendix A). Note that due to the limited
memory capacity of a single GPU, large LMs may need multiple GPUs, resulting in increased
communication latency. GPUs are commonly adopted to accelerate inference as GPUs embed lots
of arithmetic units and support multiple threads, critical for speeding up matrix multiplications
(Narayanan et al., 2021; Migacz, 2017). However, extracting high performance from GPUs depends
on arithmetic intensity, and therefore, the batch size should be large enough to ensure a high reuse
ratio from main memory (Markidis et al., 2018).

2.2 QUANTIZATION METHODS AND LIMITATIONS

Various research efforts have been made to enhance the serviceability of large and heavy deep neural
networks by improving their latency and throughput. These efforts include quantization (Rastegari
et al., 2016; Jacob et al., 2018; Nagel et al., 2017; Xu et al., 2018; Chung et al., 2020), pruning (Han
et al., 2016; Zhu & Gupta, 2017; Gale et al., 2019), knowledge distillation (Hinton et al., 2015; Polino
et al., 2018), and low-rank approximation (N. Sainath et al., 2013; Chen et al., 2018; Edalati et al.,
2021). Among these, quantization is the most extensively researched field, which involves using
faster and more efficient computing units and reducing memory usage. Uniform quantization using
an INT8 operator is particularly well-studied among the various quantization formats and is currently
being actively applied in LLMs (Yao et al., 2022; Dettmers et al., 2022; Xiao et al., 2022).

INT8 arithmetic units, commonly found in contemporary computing systems, offer reduced latency
(thanks to their low hardware complexity) and decreased memory usage of up to 50% compared to
FP16. Thus, present NVIDIA GPUs employ Tensor cores that support INT8 operations to accelerate
computations (Markidis et al., 2018). However, the utilization of INT8 mandates the quantization
of activations, which can pose a significant challenge in achieving compressed and accelerated
models employing INT8 units. For instance, when scaling factors are determined offline, activation
quantization may lead to a considerable reduction in model accuracy as outliers are approximated.

To address declining accuracy in quantizing LLMs, token-based dynamic quantization has emerged
as a crucial technique (Yao et al., 2022; Dettmers et al., 2022). The LLM.int8() method (Dettmers
et al., 2022) addresses the systematic appearance of outliers in LLMs by proposing a decomposition
method that conducts most computations in INT8 and dequantizes a limited number of outliers to
FP16, resulting in only a marginal latency decrease in LLMs. SmoothQuant (Xiao et al., 2022) takes
an advanced approach by mathematically transferring activation variance (challenging to quantize
due to outliers) to weights, which are relatively easier to quantize. This technique enables efficient
computation using INT8 arithmetic units (i.e., W8A8), even when employing static quantization of
activations. However, it should be noted that applying SmoothQuant in novel LLMs is necessary to
empirically observe and validate the occurrence of outliers before applying the migration technique.

The utilization of INT8 precision introduces variability in its efficacy, primarily influenced by the
specific characteristics of each phase within LLM inference. While the summarization phase exhibits
a high likelihood of weight reuse, resulting in a compute-bound operation, the generation phase, due
to its autoregressive nature, primarily involves a memory-bound workload. This intrinsic memory
limitation restricts hardware throughput even with INT8 precision. Consequently, services generating
a large number of tokens may experience only marginal performance gains with INT8 adoption.

Recent studies have focused on the inefficiency of the generation step and, in response, proposed the
utilization of the W4A16 format (Frantar et al., 2022; Zeng et al., 2022; Dettmers et al., 2023; Kim
et al., 2023), which compresses model weights into 4-bit integers without quantizing the activations
as weights typically dominate memory size compared to activations. Given that current computing
systems cannot accelerate the W4A16 format, OPTQ (Frantar et al., 2022) and AWQ (Lin et al.,
2023) solve such an issue by dynamically dequantizing weights to FP16 and then performing matrix
multiplication. Leveraging the memory-bound nature of the generation step, this approach enhances
generation latency by reducing memory movement despite the dequantization overheads.
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2.3 BINARY-CODING QUANTIZATION

Binary-coding quantization (BCQ) initially introduced by Xu et al. (2018), presents a compelling
alternative to conventional uniform quantization methods. For instance, when a weight vector w
(of size n) is quantized into q-bit by BCQ, w is approximated to be

∑q
i=1 αibi where αi ∈ R+ is

a scaling factor and bi ∈ {−1,+1}n is a binary vector. In this paper, we have chosen to employ
BCQ as our primary quantization technique for weights while retaining activations in full precision
to address the challenges mentioned earlier. Moreover, we introduce an extension to BCQ, enhancing
its capabilities to encompass both uniform quantization and group-wise quantization. This extension,
outlined in the subsequent section, not only broadens BCQ’s utility but also enables the applicability
of LUT-GEMM to various quantization methods.

3 DESIGN METHODOLOGY OF LUT-GEMM

LUT-GEMM is devised to develop high-performance, energy-efficient inference systems for LLMs.
To achieve this objective, LUT-GEMM incorporates several innovative approaches. Firstly, we
employ a lookup table (LUT) based computation technique to mitigate redundant calculations caused
by digitized binary weights after BCQ. Furthermore, since most non-uniform quantization methods
involve complex operations with limited parallelism and often lack hardware support, we design
LUT-GEMM to efficiently support BCQ formats. Our proposed kernel, LUT-GEMM, directly utilizes
BCQ formats without additional overhead, such as dequantization. Secondly, we expand conventional
BCQ methods by introducing a bias term, significantly enhancing representational capability. This
simple yet profound enhancement enables the representation of both non-uniform and uniform
quantization methods within the extended BCQ format, providing us with the flexibility to leverage
various quantization techniques based on the specific requirements of LLMs. Finally, We further
refine the implementation details of the binary-coding quantization scheme, enabling a trade-off
between compression ratio and quantization error to better exploit the characteristics of LLMs. As a
result, LUT-GEMM demonstrates reduced latency and/or a decreased number of GPUs required for
LLM inference while inherently accommodating various weight-only quantization methods.

3.1 LUT BASED QUANTIZED MATRIX MULTIPLICATION

Our quantization scheme, which utilizes BCQ format for weight-only quantization while maintaining
full precision for activations, leads to duplicate and redundant partial computations in naive matrix
multiplications. To illustrate, assume that a binary matrix B ∈ {−1,+1}4×6 and an activation vector
x ∈ R6 are given as

B =

+1 +1 −1 −1 −1 +1
+1 +1 −1 +1 +1 −1
+1 +1 −1 −1 −1 −1
−1 −1 +1 −1 −1 +1

 , x = [x1 x2 x3 x4 x5 x6] . (1)

Then, computing Bx⊤ (that is to be multiplied by scaling factors) would repeat (x1 +x2 −x3) three
times and (−x4−x5+x6) two times. Such redundant computations are caused by digitized elements
of B, and thus, we expect more duplicated computations as the size of matrices increases according
to the growth of model size. Moreover, loading each element of B requires bit-level memory accesses
that can be slow for commercial CPUs and GPUs.

To efficiently perform Bx⊤ while avoiding bit-level memory accesses, we can pre-compute all
possible combinations of full-precision activations and binary patterns. Note that a LUT has been
widely used to save processing time when numerous computations yield outputs within a restricted set
(de Queiroz & Stein, 2004; Meher, 2010; Jeon et al., 2020; Xu et al., 2021). LUT-based computation
is justified, especially when retrieving a value from a LUT is much faster than carrying out the
original calculations. BCQ format (without quantizing activations that require heavy modifications
in training codes and model structure (Wu et al., 2018; Jacob et al., 2018)) is also useful to be
implemented by LUT-based approaches. To construct a LUT, a hyperparameter µ is introduced,
representing the sub-vector length of x. For example, to address redundant computation observed in
Equation 1, we can pre-compute 8 (=23) possible values with every three elements in x and store
those values in a LUT. Hence, µ is 3 in this example. Once 2µ values of a LUT are generated by
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Figure 2: The overview of LUT-GEMM implementation on GPUs. In this example, we assume
µ = 8, th = 4, l = 4, tw = 32, and q = 1. “◦” denotes element-wise multiplication and “·” indicates
a tensor product.

using a sub-vector of x, arithmetic operations to obtain partial dot products (of Bx⊤) are replaced
with LUT retrieval operations while a key is given by concatenating µ binary elements of B. To
complete Bx⊤ computation, as the final step, those partial products are summed and then multiplied
by scaling factors. When the row dimension of B is enlarged (as generative LMs get larger), the
utilization of a LUT increases due to more occurrences of redundant computations.

To quantify the reduction in computation, assume that a q-bit quantized (m × n) binary matrix
Bi (for i = 1, 2, 3, . . . , q) is multiplied with an (n × 1) input vector x using µ-width LUTs. The
computational complexity of the LUT-based approach can be described as follows, when mq ≫ 2µ:

C = Cbuild + Cread = O
(
2µ ·

n

µ
+m ·

n

µ
· q
)

≈ O
(
m ·

n

µ
· q
)
, (2)

where Cbuild and Cread represent the complexity of building the LUT and reading a value from the
LUT, respectively. Consequently, compared to the complexity of conventional matrix multiplication
O(mn), LUT-GEMM can achieve a computational savings of q

µ times by leveraging LUTs.

3.2 LUT BASED IMPLEMENTATION ON GPU

In addition to the LUT-based scheme (eliminating redundant computations and bit-level memory
accesses), our strategy for optimizing single-batch operations on GPUs is as follows: 1) To improve
parallelism, we create as many threads as possible while each thread is allowed to perform independent
LUT accesses. 2) Binary weights accessed by a thread can share a common scaling factor such that
operations related to scaling factors do not degrade the performance of a thread. 3) If we allocate
too small resources to a thread, then LUT utilization can be low, and synchronization overhead can
increase. As such, we need to optimize thread configurations empirically.

Figure 2 illustrates the overall LUT-GEMM implementation scheme on GPUs. For the sake of
simplicity, we formulate the proposed quantized matrix multiplication as y =

∑q
i=1 (Ai ◦ (Bi · x)),

where A is an (m × 1) FP16 scaling matrix, B is an (m × n) FP16 binary matrix, x is an FP16
input vector of size n, and the operator ◦ indicates element-wise multiplication. For LUT-GEMM,
we assign l LUTs to a thread block (TB) of GPU. Then, the size of submatrix of B allocated to each
TB becomes (th × tw) where tw = l × µ. Small th can increase the number of available threads
while large th enhances LUT utilization inside a TB. Thus, th is empirically determined (2048 is a
practical number for large-scale LMs). For q > 1, the entire process of Figure 2 can be iterated q
times while intermediate results are accumulated. See Appendix B for implementation details.

3.3 REPRESENTATIONAL CAPABILITY OF LUT-GEMM

LUT-GEMM extends the BCQ format to support both non-uniform and uniform quantization methods,
which are widely used in compressing LLM. In this section, we introduce extended BCQ format to
enhance representational capability of LUT-GEMM.

Asymmetric Binary-Coding Quantization Conventional BCQ methods are basically limited to
exhibiting symmetric quantization shape with respect to the zero point. Another constraint of BCQ
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methods stems from their inability to represent the value of zero due to the symmetric quantization
properties. To enhance the representational capability of BCQ, we extend the conventional BCQ
method by including a bias term z as follows:

ŵ =

q−1∑
i=0

(αi · bi) + z, bi ∈ [−1,+1]n, (3)

where a weight vector (of size n) is decomposed into binary vector bi with associated scaling factors
αi. As a result, the modified BCQ format, along with the inclusion of the bias term, can represent
asymmetry quantization centered around z, as illustrated in Figure 3(a).

Uniform Quantization Incorporating a bias term into the BCQ format, we have discovered that
the extended BCQ format can effectively represent uniform quantization by carefully adjusting the
scaling factors and bias term, as visually depicted in Figure 3(b). See Appendix C for details of
how asymmetric uniform quantization can be converted into symmetric BCQ with a bias term. In
Figure 3, we can see that for q-bit quantization, the uniform quantization method employs a single
scaling factor, while the non-uniform quantization technique calls for the use of q distinct scaling
factors. Consequently, due to the incorporation of the extended binary-coding quantization format,
our proposed LUT-based matrix multiplication scheme is applicable to both uniform quantization
and binary-coding-based non-uniform quantization methods.
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Figure 3: Extension of binary-coding quantization to support both non-uniform and uniform quanti-
zation formats, achieved by including a bias term (q = 3).

3.4 LATENCY-ACCURACY TRADE-OFF FOR IMPROVED APPLICABILITY

As the hidden size increases rapidly (e.g., dmodel = 12288 for GPT-3 175B) according to the advent
of large-scale LMs, it would be more difficult to compute a proper scaling factor shared by a larger
number of weights. As an alternative to row-wise quantization, group-wise quantization in which a
scaling factor can be shared by an arbitrary number of weights is widely used to minimize quantization
error (Frantar et al., 2022; Lin et al., 2023). To examine the latency variance of LUT-GEMM with
respect to group size g, we perform matrix multiplications (using an (m× n) matrix and an (n× 1)
matrix) when g values vary as shown in Figure 4(a). We observe a sufficiently large g, such as 128
and 256, can result in fast LUT-GEMM while accuracy improvement by group-wise is substantial.
To gain insights into the underlying mechanisms, we analyze the memory footprint of LUT-GEMM
because single-batch operations are primarily memory-bound and latency is proportional to the
memory footprint. Let Sb and Sα represent the space complexity of binary weights and scaling
factors, respectively. Then the overall space complexity S can be described as

S = Sb + Sα = O
(
1 ·m · n · q + 16 ·m ·

n

g
· q
)

= O
(
m · n · q

(
1 +

16

g

))
. (4)

As a consequence, when g ≫ 16, S becomes independent of g and can be approximated as
O (m · n · q). To verify our claim that latency of LUT-GEMM is proportional to memory foot-
print (when running single-batch operations), we explore various (q, g) pairs and their corresponding
compression ratios and measure matrix multiplication latency when m = n = 12288 as depicted in
Figure 4(b). Note that even if the number of quantization bits q is smaller, the memory footprint can
be large when the group size g is small (i.e., more scaling factors are employed, see Appendix D).
Therefore, the additional search parameter g allows a fine-grained search space of compression ratio
that is not available by q alone. Across all available compression ratios, latency is a function of
compression ratio. For instance, if two different pairs (q1, g1) and (q2, g2) exhibit a similar memory
footprint, then we can expect similar latency by LUT-GEMM.
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Figure 4: (a) Normalized LUT-GEMM latency when a (m× n) weight matrix is quantized by 3-bit
with different g values. (b) Relationship between latency and compression ratio when LUT-GEMM
performs quantized matrix multiplications with m = n = 12288 and various (q, g) pairs.

4 EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained by utilizing LUT-GEMM across various
levels of complexity, ranging from a single-layer experimental setup to the complete model level.
Initially, we examine the influence of LUT-GEMM on a specific layer, followed by an investigation
into the inefficiency of tensor parallelism. Finally, we analyze the end-to-end latency of OPT models
(Zhang et al., 2022) to determine the overall effect of LUT-GEMM on performance.

4.1 KERNEL EVALUATION

Latency Comparisons with Various Kernels Table 1 shows latency measurements for the first
layer of the Feed-Forward Network (FFN) in the OPT-175B model (Zhang et al., 2022). The measured
kernels include cuBLAS (for FP-FP or INT-INT), OPTQ (Frantar et al., 2022), AWQ (Lin et al.,
2023) (for FP-INT), and LUT-GEMM (for FP-INT or FP-BCQ). Note that OPTQ and AWQ kernels
involve dequantization followed by GEMM, while LUT-GEMM accepts quantized weights directly,
eliminating the need for dequantization. We can observe that the latency of the INT8-INT8 (with
cuBLAS) implementation only slightly improves latency over FP-FP since cuBLAS is not well-
optimized for single batch operations. While OPTQ and AWQ achieve lower latency than cuBLAS
due to reduced memory movement but are slower than LUT-GEMM due to dequantization overhead.
Moreover, LUT-GEMM exhibits 2.6× reduction in computation compared to the previous GEMM
kernels. Thus, the proposed LUT-GEMM kernel, which operates directly on quantized weights and
reduces computational complexity, achieves the lowest latency among the kernels considered.

Table 1: Latency comparison of the first FFN layer on OPT-175B model with various precision and
corresponding kernel selections with m = 12288 and g = 128 on A100-80GB-GPU.

Kernel
Precision for Data Type Latency (ms)

(Speed up)Weight Input Output
(4m×m) (m× 1) (4m× 1)

cuBLAS FP32 FP32 FP32 1.4015 (×0.52)
cuBLAS FP16 FP16 FP16 0.7256 (×1.00)
cuBLAS INT8 INT8 INT32 0.6345 (×1.14)
LUT-GEMM INT8* FP16 FP16 0.4620 (×1.57)
OPTQ (Frantar et al., 2022) INT3 FP16 FP16 0.3599 (×2.02)
AWQ (Lin et al., 2023) INT4 FP16 FP16 0.3238 (×2.24)
LUT-GEMM INT4* FP16 FP16 0.2688 (×2.70)
LUT-GEMM INT3* FP16 FP16 0.2250 (×3.22)

* LUT-GEMM supports both non-uniform and uniform quantization.

Comparison with FP16 Tensor Parallelism Table 2 summarizes the profiling results of matrix
multiplications performed by using cuBLAS (with tensor parallelism) or LUT-GEMM. GPU power
and other metrics are collected by using nvidia-smi utility (Tiwari et al., 2015; Ali et al., 2020). We
notice that tensor parallelism with additional GPUs in cuBLAS brings about a significant decrease in
GPU utilization, memory bandwidth (BW) utilization, and computation latency ratios. As evidenced
by the increase in the latency ratio of communication, such reductions in utilization indicate that
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some GPUs can be temporarily idle until all GPUs are synchronized. Accordingly, the speed-up that
can be obtained by tensor parallelism is a lot smaller than the number of GPUs. As a result, cuBLAS
with more GPUs causes increased energy consumption for matrix multiplications. On the other hand,
LUT-GEMM (with one GPU) can offer high speed-up (that cannot be achieved by tensor parallelism)
while retaining high GPU/memory utilization. Combining low latency and a reduced number of
GPUs, thus, LUT-GEMM substantially saves energy consumption for matrix multiplications.

Table 2: Profiling results of matrix multiplications (with an (4m×m) matrix and an (m× 1) matrix).
For LUT-GEMM, g = m and q is 2 or 4.

Kernel-GPUs-m-q Comm.
Ratio (%)

Speed
Up

GPU BW
Util. (%)

Memory
Util. (%)

Avg. Power
(W/GPU)

Total
Energy (mJ)

cuBLAS-1-12288-16 0.00 1.00 96.57 98.37 215.70 161.85 (×1.00)
cuBLAS-8-12288-16 38.58 3.45 52.48 24.27 172.44 299.96 (×1.85)
LUT-GEMM-1-12288-2 0.00 4.85 88.63 58.38 280.85 43.49 (×0.27)
LUT-GEMM-1-12288-4 0.00 3.23 92.51 77.98 292.76 68.09 (×0.42)

4.2 END-TO-END LATENCY

We now evaluate the end-to-end latency of inference with a single batch size, considering various
LLaMA models with quantized weights while preserving full precision activations. Table 3 illustrates
the end-to-end latency per token and perplexity when weights are uniformly quantized using AWQ
method (Lin et al., 2023) . Additionally, the evaluation for OPT family models and LLaMA family
models can be found in Appendix Table 6 and Table 7, respectively, providing a comprehensive
overview. Latency measurements are conducted within the FasterTransformer framework, exploring
different GPU configurations to assess potential speed-up gains from model parallelism. From our
observations, we can conclude the following: 1) Reducing the group size (g) effectively decreases
perplexity, even when employing a simple RTN quantization scheme, at the cost of a marginal
increase in latency, 2) Increasing the number of GPUs (and, consequently, parallelism) does not
significantly reduce latency due to various overheads such as GPU-to-GPU communication cost, as
described in Appendix A. In the case of LUT-GEMM, where matrix multiplications are accelerated,
relative GPU-to-GPU communication overheads become more pronounced compared to cuBLAS,
making model parallelism less effective. This highlights the prominence of communication overheads
for high-performance matrix multiplication engines.

In the case of the LLaMA-30B model, end-to-end inference with FP16 weights can be executed on
a single GPU (See Appendix Figure 8 for a latency comparison of various model sizes on a single
GPU). However, for the LLaMA-65B model with FP16 weights, the model size exceeds the memory
capacity of a single GPU (80GB for A100), necessitating model parallelism techniques. Nevertheless,
when the weights of the LLaMA-65B model are quantized to 3 or 4 bits, as demonstrated to be a
viable solution in (Frantar et al., 2022), inference can be accommodated on a single GPU. Assuming
3-bit quantization and the implementation of LUT-GEMM with g=128, a speed-up of 2.41× for
LLaMA-30B (using one GPU) and 2.04× for LLaMA-66B (using two GPUs) is achievable. Note
that when fine-tuning is performed after constructing a pre-trained model, more efficient quantization
techniques such as AlphaTuning (Kwon et al., 2022) can enable even 2-bit quantization, as shown in
Appendix Table 8. The efficacy of LUT-GEMM is further enhanced when combined with advanced
quantization methods to reduce the number of quantization bits.

Table 3: Comparison of perplexity and end-to-end latency per token with cuBLAS and LUT-GEMM
implementations with AWQ quantization method and model parallelism on multiple GPUs.

Model Kernel-q-g Quant.
method

Perplexity Latency (ms)
Wiki2 1-GPU 2-GPU 4-GPU

LLaMA
30B

cuBLAS-16-N/A FP16 4.10 43.6 25.1 16.9
LUT-GEMM-4-128 AWQ 4.23 20.7 15.5 12.2
LUT-GEMM-3-128 AWQ 4.88 18.1 13.7 11.2

LLaMA
65B

cuBLAS-16-N/A FP16 3.53 OOM 46.9 29.1
LUT-GEMM-4-128 AWQ 3.67 35.7 25.4 19.9
LUT-GEMM-3-128 AWQ 4.24 31.3 23.0 18.3
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5 ACCELERATING QUANTIZED OPT-175B

Table 4 provides a comparison of the end-to-end latency for generating a token in OPT-175B, a
representative large-scale LM, using the FasterTransformer framework. LUT-GEMM demonstrates
its ability to decrease the number of GPUs needed for running inference, while concurrently reducing
latency as q diminishes or as the number of GPUs rises. For OPT-175B with FP16, a minimum of 8
GPUs is necessary for executing inference. However, upon utilizing the BCQ format for quantization,
LUT-GEMM is able to perform inference using just a single GPU, while maintaining a comparable
overall latency. It should be noted that, when comparing identical 3-bit (weight-only and row-wise)
quantization scenarios, the latency for token generation using LUT-GEMM is 2.1× lower than that of
the OPTQ library. This significant reduction in latency can be primarily attributed to LUT-GEMM’s
ability to directly accept quantized weights, thereby eliminating the need for dequantization.

Table 4: End-to-end latency per token for OPT-175B model. The latency is measured on A100 80GB.

GPUs
Latency per token (ms)

Baseline OPTQ LUT-GEMM
FP16 3-bit 1-bit 2-bit 3-bit 4-bit

1 OOM 106.5 30.4 40.1 51.6 OOM
2 OOM N/A 25.2 30.1 35.8 41.2
4 OOM N/A 20.3 23.8 27.2 30.1
8 42.4 N/A 20.1 22.4 24.2 25.8

Let us demonstrate that the flexible features of LUT-GEMM (attributable to the extended BCQ format)
can accelerate existing uniform quantization methods. Table 5 shows the perplexity of OPT-175B
for various q and g configurations, as obtained using the OPTQ method (See Appendix Table 9 for
a comprehensive accuracy evaluation at q = 3). The table also displays the corresponding latency
(per generated token) achieved by LUT-GEMM (excluding FP16). The results clearly indicate that
LUT-GEMM provides lower latency as q decreases, although an excessively small g may have a
marginal adverse impact on latency. All in all, by integrating LUT-GEMM and OPTQ at the expense
of an acceptable increase in perplexity, it is possible to reduce the number of GPUs required for
running OPT-175B inference from eight GPUs to a single GPU while ensuring comparable latency. It
is crucial to note that such an improvement in performance cannot be achieved when dequantization
is included.

Table 5: Perplexity of quantized OPT-175B using OPTQ and end-to-end latency per token by
LUT-GEMM for various q and g configurations. g of ‘-’ indicates row-wise quantization.

Kernel q g PPL* Model size(GB)
(Comp. Ratio) Latency(ms)

cuBLAS 16 N/A 8.34 347.9 (×1.00) 42.4 (8-GPU)

LUT-GEMM

4 - 8.37 87.0 (×4.00) OOM (1-GPU)
3 - 8.68 65.3 (×5.33) 51.6 (1-GPU)
2 32 8.94 54.4 (×6.40) 55.2 (1-GPU)
2 64 9.18 48.9 (×7.11) 47.5 (1-GPU)
2 128 9.58 46.2 (×7.53) 46.5 (1-GPU)

* PPL numbers are extracted from the OPTQ reference (Frantar et al., 2022).

6 SUMMARY AND LIMITATIONS

In this paper, we introduce LUT-GEMM, a highly efficient matrix multiplication kernel designed to
operate directly on quantized weights, thereby eliminating the need for an additional dequantization
step. Leveraging an extended BCQ format, LUT-GEMM exhibits the capability to process both
uniformly and non-uniformly quantized models, achieving 2.1× speedup over GPTQ. However,
it is important to note some limitations: Our method primarily focuses on single-batch inference
and exhibits diminishing performance gains as the batch size increases. This limitation is primarily
attributed to the constrained memory bandwidth between core and LUTs in the shared memory.
Nevertheless, we anticipate that this constraint will gradually diminish in significance with the advent
of advanced hardware solutions.
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7 REPRODUCIBILITY STATEMENT

In the Supplementary Materials, we furnish code for replicating our “Kernel Evaluation” experiments.
Specifically, this entails:

• Offering our CUDA kernel alongside a concise benchmarking script for single matrix-vector
products.

• Supplying a README document that presents example commands and instructions for
executing all the scripts.
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Figure 5: Latency breakdown of various OPT models. The overall performance is dominated
by MatMul and communication operations. Experiments are conducted with A100 80GB and
FasterTransformer (v4.0) framework.

A LLM INFERENCE LATENCY BREAKDOWN

Figure 5 presents a detailed breakdown of latency for various large-scale generative language models
(LMs), specifically OPT models ranging from 6.7B to 175B parameters. This analysis consid-
ers different numbers of input tokens and was conducted on an A100 (80GB) GPU using the
FasterTransformer inference framework developed by Nvidia1. The OPT models are built
upon the Transformer architecture Vaswani et al. (2017) and consist of identical layers. Each layer
incorporates multi-head attention and a feed-forward network, both involving four primary linear
computations with relatively higher time complexity compared to other non-linear operations. Conse-
quently, matrix multiplications constitute a substantial portion, accounting for at least 75% of the
processing time across various LM sizes and input token lengths. Note that we can observe the
emergence of GPU communication overhead in larger models. This is primarily attributable to the
limited memory capacity of a single GPU, which necessitates communication between GPUs to
accommodate the larger models.

B DETAILED IMPLEMENTATION

Each TB first conducts pre-computation using partial x values assigned in order to fill up the l number
of LUTs. Then l LUTs can be shared by all threads inside a TB (so as to mitigate costly global
memory accesses) and multiple rows of a submatrix of B can be processed by multiple threads (so as
to improve throughput). When threads finish retrieving and summing LUT values, scaling factors are
fetched (only once for each thread) and multiplied to produce partial outputs. Finally, n

l×µ partial
outputs are accumulated across TBs (through atomicAdd operations, as illustrated in Figure 2) to
generate the final outputs. LUTs are stored in shared memory inside GPU and the shared memory
presents high bandwidth (e.g., 19TB/s for A100). Thus, high memory accesses for LUTs (while
multiple FLOPs can be replaced with one LUT access) enable fast matrix computations. As for the
memory size of LUTs, only 1KB is required for every 8 hidden dimensions and the shared memory
size is more than a few megabytes (e.g., 20MB for A100 with 192KB per SM and 108 SMs available).
Thus, the whole LUTs can be safely stored in shared memory. To illustrate, the hidden dimension can
be up to 324,000 for A100 while 12,288 is the hidden dimension for GPT-3 175B.

C CONVERSION OF UNIFORM QUANTIZATION INTO BCQ

A q-bit uniformly quantized weight ŵ with a scaling factor s can be expressed (prior to conversion)
as follows:

ŵ = s

q−1∑
i=0

2i b̂i + ẑ, b̂i ∈ [0, 1]. (5)

1https://github.com/NVIDIA/FasterTransformer
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Then, ŵ can be rewritten as:

ŵ =
1

2
s

q−1∑
i=0

2i · 2b̂i + ẑ =

q−1∑
i=0

1

2
s · 2i(2b̂i − 1) +

q−1∑
i=0

1

2
s · 2i + ẑ,

(6)

Given that a binary weight b in the BCQ format can be defined as b = 2b̂− 1, we obtain

ŵ =

q−1∑
i=0

(2i−1s · bi) + (

q−1∑
i=0

1

2
s · 2i + ẑ), (7)

which can be interpreted as a special case of BCQ, where αi = 2i−1s and z =
∑q−1

i=0
1
2s · 2

i + ẑ =∑q−1
i=0 αi + ẑ in Equation 3.

In detail, to construct the binary weights and scaling factors from the pre-trained weights, we
introduce a two-step methodology. Initially, scaling factors and integer weights are generated via a
uniform quantization method (Frantar et al., 2022; Lin et al., 2023; Lee et al., 2023) as described
in Equation 5. Subsequently, the integer weights are transformed into binary weights using bitwise
operations, as described in Equation 7. More precisely, the scaling factors αi and binary weights
bi in BCQ format for the i-th bit position are computed as 2i−1s and 2b̂i − 1 respectively. Here, s
and b̂i denote the scaling factor and the binary value at the i-th bit position of the integer weight in
uniform quantization, respectively.

D IMPACT ON COMPRESSION RATIO

Let q be the number of quantization bits. For a given q, a smaller group size g can lower quantization
error at the expense of an increased memory footprint for scaling factors. Then, the target quantization
error serves as a constraint for determining a compromise between q and g, thus resulting in a range
of achievable compression ratios. In other words, due to the introduction of g, we can control the
amount of scaling factors and binary vectors as a trade-off process. Note that the memory footprint
of conventional row-wise quantization techniques is dominated by the size of binary vectors because
the size of scaling factors can usually be ignored if the column width of a matrix is large enough.
Compared to the conventional scheme, our proposed group-wise BCQ provides a new wide search
space for quantization formats to meet a target compression ratio.

Figure 6 shows an example with two (g, q) configurations to quantize an (4× 8) matrix. Indeed, even
if the number of quantization bits is smaller, the memory footprint can be large when the group size g
is small (i.e., more scaling factors are employed).

(a) g = 2, q = 3, m = 4, n = 8

Scale Factor

A (16-bit)

Binary Weight

B (1-bit)
Scale Factor

A (16-bit)

Binary Weight

B (1-bit)
(b) g = 4, q = 4, m = 4, n = 8

n

g

m

q

(a) (b)

(c) Memory Footprint

Scale Factors (bits)

Binary Weights (bits)

Total (bits) 864

4 × 4 × 3 × 16

4 × 8 × 3 × 1

640

4 × 2 × 4 × 16

4 × 8 × 4 × 1

Figure 6: Group-wise BCQ example with two different (g, q) configurations to quantize an (4× 8)
matrix. Assuming a scaling factor of 16 bits, smaller q can yield a larger memory footprint if g is
also small.

E EXPLORATION OF COMPRESSION RATIO

To study the capability of group-wise BCQ to enlarge search space for compression, we conduct
experiments on three pre-trained OPT models Zhang et al. (2022), which are publicly available2.
Specifically, we apply post-training quantization (with an iterative solver introduced in Xu et al.

2https://huggingface.co/facebook/opt-30b
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(2018)) to pre-trained OPT models while g and q vary. Then, each quantized model is evaluated on
the LAMBADA Paperno et al. (2016) dataset to find the relationship between compression ratio and
accuracy. Figure 7 shows accuracy and compression ratio3 when we try various q values and g values.
From Figure 7, we observe that compared to the conventional row-wise quantization, group-wise
BCQ offers new optimal configurations. Thus, to achieve the best compression ratio (or minimum
accuracy degradation), it is necessary to explore different q and g values simultaneously for a given
target. Note that for OPT-13B and OPT-30B, as we discussed the limits of row-wise quantization
for large-scale LMs, a small g value is critical to achieving low accuracy degradation (while latency
is not heavily affected by a small g). All in all, the effects of q and g on accuracy differ with each
model such that q and g are hyper-parameters to be optimized.

g = 32 g = 256 g = 512 g = row-wiseg = 128g = 64

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
50

55

60

65

70

75

A
c
c
u
ra

c
y
 (

%
)

Compression ratio

6.7B, FP16

30B, FP16

13B, FP16

6.7B, q = 4
13B,  q = 3
30B,  q = 3

Figure 7: Accuracy and compression ratio with the various combinations of quantization bits (q) and
group size (g). Three pre-trained OPT models are quantized (by post-training BCQ method) and then
evaluated on the LAMBADA dataset.

F ADDITIONAL EXPERIMENTAL RESULTS

This section contains additional experimental results.

Table 6: Comparison of perplexity and end-to-end latency per token for OPT family models.

Model Kernel-q-g Quant.
method

Perplexity Latency (ms)
Wiki2 PTB LAMBADA 1-GPU 2-GPU 4-GPU

OPT
30B

cuBLAS-16-N/A FP16 9.56 11.84 15.84 40.5 23.5 14.7
LUT-GEMM-4-32 RTN 9.71 12.02 16.16 18.5 14.3 11.9
LUT-GEMM-4-64 RTN 9.88 12.05 16.17 17.8 13.9 11.8
LUT-GEMM-3-32 RTN 10.78 13.89 19.21 16.7 13.3 11.6
LUT-GEMM-3-64 RTN 14.61 24.63 31.13 15.7 12.6 11.2

OPT
66B

cuBLAS-16-N/A FP16 9.34 11.36 15.47 OOM 48.4 28.3
LUT-GEMM-4-32 RTN 9.54 11.55 15.83 33.5 23.5 18.5
LUT-GEMM-4-64 RTN 9.54 11.63 15.91 31.9 23.2 17.8
LUT-GEMM-3-32 RTN 18.82 35.76 42.16 30.5 21.5 16.9
LUT-GEMM-3-64 RTN 51.15 130.54 130.19 27.5 20.9 16.0

3Calculated as FP16 model size divided by each quantized model size.
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Table 7: Comparison of perplexity and end-to-end latency per token for LLaMA family models.

Model Kernel-q-g Quant.
method

Perplexity Latency (ms)
Wiki2 1-GPU 2-GPU 4-GPU

LLaMA
7B

cuBLAS-16-N/A FP16 5.68 10.0 7.6 5.6
LUT-GEMM-4-128 AWQ 5.96 6.1 5.4 5.7
LUT-GEMM-3-128 AWQ 7.01 5.5 5.1 5.3

LLaMA
13B

cuBLAS-16-N/A FP16 5.09 18.2 12.0 8.6
LUT-GEMM-4-128 AWQ 5.25 10.4 8.0 6.9
LUT-GEMM-3-128 AWQ 5.88 9.3 7.1 6.4

LLaMA
30B

cuBLAS-16-N/A FP16 4.10 43.6 25.1 16.9
LUT-GEMM-4-128 AWQ 4.23 20.7 15.5 12.2
LUT-GEMM-3-128 AWQ 4.88 18.1 13.7 11.2

LLaMA
65B

cuBLAS-16-N/A FP16 3.53 OOM 46.9 29.1
LUT-GEMM-4-128 AWQ 3.67 35.7 25.4 19.9
LUT-GEMM-3-128 AWQ 4.24 31.3 23.0 18.3

* PPL numbers are extracted from the AWQ reference (Lin et al., 2023).
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Figure 8: End-to-end latency comparison between FP16 and quantized OPT models on a single A100
80GB GPU with g = 128. Note that the latency data for the OPT-66B and OPT-175B models in
FP16, as well as the OPT-175B model in 4-bit quantization, are omitted due to Out Of Memory
(OOM) constraints.

Table 8: Accuracy achieved with 2-bit AlphaTuning on the MNLI dataset.
Model Method g Acc. (%) mm Acc. (%)

OPT-1.3B

Full fine-tune - 87.5 87.4

AlphaTuning

2048 85.0 84.9
1024 85.1 85.1
256 85.3 85.6
128 85.7 86.2
64 86.3 86.6
32 86.5 87.1

OPT-2.7B

Full fine-tune - 88.5 88.4

AlphaTuning

1280 85.5 86.0
256 86.8 87.7
128 87.3 87.8
64 87.4 87.9
32 87.6 88.4
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Table 9: Accuracy of quantized OPT-175B using OPTQ (without group quantization) and the
corresponding end-to-end latency per token by LUT-GEMM.

Kernel q
Perplexity Accuracy (%) Model size (GB)

(Comp. ratio) Latency (ms)Wiki2 PTB C4 PIQA
cuBLAS 16 8.34 12.01 10.13 81.07 347.9 (×1.00) 42.4 (8-GPU)

LUT-GEMM 3 8.68 12.86 10.67 80.03 65.3 (×5.33) 51.6 (1-GPU)
* PPL and accuracy numbers are extracted from the OPTQ reference (Frantar et al., 2022).
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