
Supplementary Material of Triangulation Residual
Loss for Data-efficient 3D Pose Estimation

A Appendix

A.1 Formulate the triangulation matrix Ã

Triangulation aims to estimate a 3D point X∗ based on the 2D measurement x̂c = (x̂c, ŷc, 1) in each
view by solving equations xc = Pc ·X∗. The homogeneous method transforms the equations with a
cross-product, as x̂c × (PcX

∗) = 0, and gives three equations for each 2D measurement, of which
two are linearly independent:

x̂c · (P T
c,3 ·X∗)− (P T

c,1 ·X∗) = 0

ŷc · (P T
c,3 ·X∗)− (P T

c,2 ·X∗) = 0

x̂c · (P T
c,2 ·X∗)− ŷc · (P T

c,1 ·X∗) = 0

(1)

where P T
i is the ith row of P . Combining independent equations of all views gives an overdetermined

linear system of equations as AX = 0 with

A =



x̂1 · P T
1,3 − P T

1,1

ŷ1 · P T
1,3 − P T

1,2

...

x̂C · P T
C,3 − P T

C,1

ŷC · P T
C,3 − P T

C,2


∈ R2C×4, (2)

Taking the learnable weights into account, the triangulation matrix will be

Ã = [w1, w1, ..., wC , wC ]
T ⊙A (3)

where [w1, w1, ..., wC , wC ] ∈ R2C .

A.2 Relation of the geometric error and the algebraic error

The algebraic error Eq. (9) is approximate to geometric error Eq. (5), but the algebraic error can be
solved linearly so it is more suitable for end-to-end training. A detailed discussion follows.

Given a point predicted by the 2D detector in cth view with homogeneous coordinates as x̂(x̂, ŷ, t̂).
The triangulation problem is to solve overdetermined systems of equations x̂ = Pc ·X∗ where
c = 1, 2, ..., C. We further define x∗(x∗, y∗, t∗) as the exact point projected from the estimated
3D point X∗(X∗, Y ∗, Z∗, 1) using the projection matrix Pc (i.e. x∗ = Pc ·X∗). There are two
ways to solve the triangulation problem: the inhomogeneous method (minimizing geometric error)
and the homogeneous method (minimizing algebraic error). The geometric error is defined as
the Euclidean distance between x̂ and x∗ in inhomogeneous coordinates: dgeo(x̂,x

∗) = ((x̂/t̂ −
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x∗/t∗)2 + (ŷ/t̂− y∗/t∗)2)1/2, where t∗ is the depth of point X∗ from the cth view, which usually
varies across views. The algebraic error is the 2-norm of the algebraic error vector and writes
dalg(x̂,x

∗) = ((ŷt∗ − t̂y∗)2 + (t̂x∗ − x̂t∗))1/2. The homogeneous method finds the solution of
minimizing dalg as the unit singular vector corresponding to the smallest singular value of A as shown
in Eq.(6)-Eq.(9). Moreover, we always set t = 1, so dalg = dgeo ∗ t∗. By accumulating the errors
from all the points from different views, dalg is not proportional to dgeo because t∗s from different
views are unequal. Minimizing the algebraic error is an approximation of minimizing the geometric
error, but it can be solved linearly and is more suitable for end-to-end training. See Chapters 4.1 and
12.1 in "Multiple view geometry in computer vision" (Hartley, 2003) for details.

A.3 Pseudocode for computing TR loss

Algorithm 1 presents the procedure to compute TR loss for a joint in C synchronized multiview
images.

Algorithm 1: compute TR loss
Input: 1. synchronized multiview images Ic (c = 1, 2, ..., C);

2. projection matrix of cameras Pc (c = 1, 2, ..., C).
Parameters :1. a pretrained 2D detector with backbone Φ and heatmap head h;

2. a randomly initialized confidence head f .
Output: 1. TR loss, Lres;

2. updated model parameters.
1 propagate images Ics forward through the total model;
2 compose the triangulation matrix Ã via Eq. (3) based on outputs of the model;
3 perform SVD on Ã;
4 Lres ← the smallest singular value of Ã;
5 update the model by minimizing Lres.
6 return Lres; updated Φ, h and f .

A.4 Mouse skeleton definition

The original CalMS21 dataset contains 30,000 frames of two interacting mice (a black mouse and a
white mouse) performing resident-intruder assay in a homecage. We only consider the single object
pose estimation in this paper, so we regard the black mouse as the object and the white mouse as the
background. Images in the CalMS21 dataset are captured by a top-view camera and a front-view
camera. Since the self-occlusion, 7 joints are annotated for the front view and 11 joints are annotated
for the top view. We select 9 joints to evaluate methods, as shown in Figure 1 (a) and Table 1. Some
images in CalMS21 are not high quality due to insufficient lighting and occasion by bedding in the
mouse cage. Therefore, we only keep parts of high-quality images as training data in this paper. To
select the high-quality images, we train and test a 2D key point detection model on the entire dataset,
and then select the images with high accuracy. Finally, 767 images from the front view and 12 from
the top view are used as training data in the CalMS21-Dannce and CalMS21-THM experiments.

The original Dannce dataset annotates 22 joints, from which we select 12 joints in this paper, as
shown in Figure 1 (b) and Table 2. We follow the same 12-joint definition and annotate our THMouse
dataset. We use the 9-joint definition in the CalMS21-Dannce and CalMS21-THM, and the 12-joint
definition in the THM-Dannce and Dannce-THM experiments.

Table 1: Joint definition of the CalMS21 dataset
Index 0 1 2 3 4 5 6 7 8
Joint left ear right ear nose neck tail_1 left paw right paw left foot right foot
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(a) 9 joints in CalMS21 dataset (b) 12 joints in Dannce and THmouse datasets

Figure 1: Mouse skeleton definition

Table 2: Joint definition of the Dannce and the THmouse dataset
Index 0 1 2 3 4 5
Joint left ear right ear nose neck body tail_1
Index 6 7 8 9 10 11
Joint tail_2 tail_3 left paw right paw left foot right foot

A.5 MPJPE result on each joint on Dannce dataset

Table 3 shows the MPJPE error on the Dannce dataset. The results show that the nose and ears have
lower errors than those of other points, while limb positions are difficult to estimate because of the
self-occlusion, and body joint error is relatively large due to the lack of texture features.

Table 3: MPJPE result of each joint on Dannce dataset. The unit is mm.
Ear_L Ear_R Nose Neck Body Taill Tail2 Tail3 Paw_L Paw_R Foot_L Foot_R Average

Baseline 1.27 1.37 1.56 2.85 3.63 2.78 3.39 1.54 4.67 5.99 3.94 3.04 3.04
Ransac 1.04 1.23 1.80 2.50 3.07 3.04 3.36 2.35 3.98 3.56 2.95 2.43 2.61

DeeplabCut 2.84 2.51 2.21 3.93 4.10 3.98 4.22 3.47 5.57 5.31 5.44 4.68 4.02
GeneraliTriang 0.91 1.32 1.79 2.80 2.90 3.06 3.74 2.45 3.36 3.69 2.50 2.28 2.56

Sup3d* 0.81 0.95 1.08 2.45 3.14 1.20 4.60 2.38 2.18 2.86 2.37 4.14 2.35
TR+Sup2d 1.02 1.02 2.13 2.80 3.50 1.43 2.84 1.56 2.83 2.23 2.55 2.75 2.22

TR+Sup3d* 0.69 0.72 1.05 2.25 3.20 1.00 4.58 1.82 2.03 1.94 2.37 2.39 2.00

A.6 More qualitative results

More good examples are shown in Figure 2-4.

Some failed examples are shown in Figure 5.

A video example is available at https://www.youtube.com/watch?v=CjuV5qEfiFg.
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Figure 2: More qualitative results on the Dannce dataset.

Figure 3: More qualitative results on the Thmouse dataset.

Figure 4: More qualitative results on Human3.6M dataset, where models are trained on Subject 1 but
tested on Subject 11.
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(a) THM dataset example (b) Dannce dataset example

Figure 5: Failed examples of mouse pose estimation, where the lambs are not detected correctly due
to the self-occlusion.
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