
Supplementary Material
The Supplementary Material is organized as follows: Section A provides additional information on
the SiT dataset. Section B provides the implementation details of the perception models. In Section
C, we introduce the performance metrics used for the benchmarks.

A Additional Details for SiT Dataset

In this section, we discuss the details of the SiT dataset.

A.1 Additional Statistics of SiT Dataset

Figure 1 presents the distribution of the distance from the robot for different object categories.
Figure 2 presents the distribution of object velocity. Figure 3 compares the distribution of pedestrian
position between outdoor and indoor environments. In outdoor settings, the spatial distribution of
pedestrian position from the robot is broader in both longitudinal and lateral directions than in indoor
scenes. This can be attributed to the expansive nature of outdoor environments. Figure 4 illustrates
the distribution of distance from the robot and velocity of pedestrians in both indoor and outdoor
environments. Figure 5 presents the distribution of 3D and 2D box sizes for pedestrians, as well as
the yaw angle of 3D pedestrian boxes.
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Figure 1: Distribution of distance from the robot
for different object classes.
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Figure 2: Distribution of velocity for different
object classes.
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Figure 3: Distribution of pedestrian positions in
both outdoor and indoor environments, where
(0, 0) indicates the position of the robot.
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Figure 4: Distribution of distance from the robot
and velocity of pedestrians in both indoor and
outdoor environments.

A.2 Additional Examples of SiT Dataset

Figure 6 presents an illustration of more data samples in the SiT dataset.

A.3 Interaction Examples of SiT Dataset

Our dataset is intended to capture natural and unbiased interactions between pedestrians and the
robot in real-world scenarios. We avoided controlled setups and did not provide any guidance to
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participants, collecting trajectory data from pedestrians in both indoor and outdoor environments.
Figure 7 provides several examples of trajectories of the robot and pedestrians capturing real-world
interactions like approaching, following, and collision avoidance.
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Figure 5: Distribution of size of both 3D and 2D pedestrian boxes as well as yaw angle of 3D
pedestrian boxes.

(a) Outdoor scene (Alley_1) (b) Outdoor scene (Alley_2)

(c) Outdoor scene (Courtyard_6) (d) Indoor scene (Corridor_4)

(e) Indoor scene (Cafeteria_2) (f) Indoor scene (Lobby_9)

Figure 6: Illustration of additional examples of SiT dataset.
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(a) Pedestrians and the robot face each other, moving
closer and sideways.

(b) The robot maintains a constant distance while
following pedestrians.

(c) Pedestrians avoid collision with the robot. (d) The robot avoids collision with pedestrians.

Figure 7: Examples of human-robot interactions in the SiT dataset. Dotted lines, solid lines, and
circles indicate future trajectories, past trajectories, and current positions, respectively. The robot,
the highlighted pedestrians, and other objects are represented by green, red, and dark gray colors,
respectively. The background map is shown in light gray.

A.4 Additional Information on Semantic Map

Figure 8 presents examples of semantic maps included in the SiT dataset. In Table 1, we describe the
attributes of each layer used for the semantic maps.

A.5 Additional Information on Privacy Concerns

All data instances in the SiT dataset are carefully processed to remove identifiable information from
the images. We identified faces using RetinaNet [7] and blurred them. For license plates, we labeled
a portion of our image data with license plates and then trained Faster-RCNN [5] to blur them. After
blurring the faces and license plates with the models, we checked each frame for additional blur to
ensure that latent identifiers such as faces in the image dataset are completely anonymized, as shown
in Figure 9.
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Figure 8: Illustration of semantic maps obtained from the SiT dataset.

A.6 Licence

The SiT dataset is published under the CC BY-NC-ND License 4.0, and all codes are published under
the Apache License 2.0.

B Implementation details

In this section, we provide additional details on the 3D pedestrian detection, 3D Multi-Object Tracking
(MOT), pedestrian trajectory prediction, and end-to-end pedestrian motion forecasting baselines. Our
experiments were conducted on systems running Ubuntu 18.04, equipped with 2 Intel Xeon CPUs
and 4 NVIDIA RTX3090 GPUs. Each experiment was performed three times with three distinct
seeds, and the median of these results was reported as the experimental results in the body of the
paper. Figure 10 presents the error bar plots for the 3D pedestrian detection, trajectory prediction,
and end-to-end pedestrian motion forecasting experiments.
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Atrribution Decimal Code (R,G,B) Type Description
Building (64, 64, 64)

2D POLYGONS

Impassable areas in structures such as buildings
Car_road1 (128, 128, 128) Vehicle-only areas generally inaccessible to pedestrians
Car_road2 (150, 150, 100) Areas between stop lines and crosswalk

Crosswalk_1 (200, 150, 50) Area encompassing crosswalk denoting the overall designated crossing zone
Crosswalk_2 (200, 200, 200) Areas of the crosswalks

Walkaway (200, 200, 120) Areas exclusively for pedestrian use
Sharedway (200, 100, 100) Areas accommodating both pedestrians and vehicles
Road_slope (147, 112, 219) Areas including slopes in roads
Walk_slope (128, 200, 128) Areas including slopes within walkaway

Static_obstacle (250, 100, 1) Areas of static obstacles including trees, tables, bollards, etc
Stair (138, 43, 226) Areas of stairways used by pedestrians
Gate (1, 154, 205) 2D POLYLINE Lines for entrances allowing pedestrians to pass through buildings

Table 1: Definition of each layer from semantic map

(a) Blurred license plates in (Outdoor_Alley_1) (b) Blurred faces in (Courtyard_8)

Figure 9: Examples of images with blurred identifiable information such as license plates and
pedestrian faces.
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Figure 10: Error bar plots for the implemented models.
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B.1 3D Pedestrian Detection Models

We implemented FCOS3D [11], PointPillars [6], CenterPoint [13] and Transfusion [2] using the
PyTorch 1.7.1 framework and the 1.0 version of MMDetection3D [4]. Employing the AdamW
optimizer with a learning rate of 0.001, we trained each model for 20 epochs. The batch sizes were
configured to 4, 16, 24, and 8 respectively. We resized the image by half for the training of the
Transfusion.

B.2 3D Multi-Object Tracking Models

Based on the detection experiment results of the PointPillars and CenterPoint(V) models, we imple-
mented AB3DMOT [12] and Centerpoint tracker for the 3D MOT task. For AB3DMOT, the threshold
for box association is 2 meters based on the 3D distance metric. For Centerpoint tracker, we used the
Hungarian algorithm with a maximum age set to 3. The remaining settings for both AB3DMOT and
the Centerpoint tracker follow the default settings in the author code. For the evaluation, we used the
official nuScenes evaluation code [3], which uses a distance-based evaluation method. The distance
threshold was set to 2 meters and we used 41 recall values from 0 to 1.

B.3 Pedestrian Trajectory Prediction Models

Pedestrian trajectory prediction models were trained using the official code for each model. Adam
optimizer and multi-step learning rate scheduler were used. Social-LSTM [1], Y-Net [9], and NSP
[14] were trained for 20 epochs with a learning rate set to 0.003, 0.001, 0.001, and batch sizes of 5, 4,
and 8. NSP used the results of the model trained with Y-Net as goal point information. When using
semantic map information, we used 0.08m per pixel as a patch size.

B.4 End-to-End Motion Forecasting Models

For the end-to-end pedestrian motion forecasting task, we implemented Fast and Furious (FaF) [8]
and FutureDet [10] using the PyTorch 1.7.1 framework and the 1.0 version of MMDetection3D [4].
The batch sizes were set to 2 and 8 respectively. We trained each model for 20 epochs using the
AdamW Optimizer with a learning rate of 0.001. Both FaF and FutureDet were trained using the
code from the FutureDet author’s repository.

C Performance Metrics

C.1 3D Pedestrian Detection

Average Precision (AP)
APd =

∑
n

(Rn −Rn−1)Pn, (1)

where Rn and Pn are the recall and precision at the nth confidence score threshold and d denotes
distance threshold.

mean Average Precision (AP)
mAP =

1

4

∑
d

APd, (2)

where distance threshold is used at 0.25, 0.5, 1, and 2m.

C.2 3D Multi-Object Tracking

Multiple Object Tracking Accuracy (MOTA)

MOTA = 1−
∑

t(FPt + FNt + IDSt)∑
t GTt

, (3)

where FPt, FNt, IDSt, and GTt denotes number of False Positive, False Negative, IDentity Switches
and Ground Truth objects at time t, respectively.
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Multiple Object Tracking Precision (MOTP)

MOTP =

∑
t

∑
i dt,i∑

t ct
, (4)

where dt,i denotes the distance between the predicted bounding box i and its corresponding ground
truth bounding box at time t, and ct denotes the number of matches correctly identified objects at
time t.

Average Multiple Object Tracking Accuracy (AMOTA)

AMOTA =
1

N

N∑
i=1

MOTAri , (5)

where ri denotes ith recall value and N is the number of recall values.

Average Multiple Object Tracking Precision (AMOTP)

AMOTP =
1

N

N∑
i=1

MOTPri (6)

scaled MOTA (sMOTA)

sMOTAr = max(0, 1− FPr + FNr + IDSr − (1− r)× GT
r × GT

) (7)

scaled AMOTA (sAMOTA)

sAMOTA =
1

N

N∑
i=1

sMOTAri (8)

C.3 Pedestrian Trajectory Prediction

Average Displacement Error (ADE)

ADE =
1

T

T∑
t=1

||yt − ŷt||, (9)

where T represents the prediction horizon, yt and ŷt denote the ground truth and the predicted
position at time step t, respectively.

Final Displacement Error (FDE)
FDE = ||yT − ŷT || (10)

Minimum Average Displacement Error (ADEK)
ADEK = min

i=1:K
ADEi, (11)

where K denotes the number of predicted trajectories.

Minimum Final Displacement Error (FDEK)
FDEK = min

i=1:K
FDEi (12)

C.4 End-to-End Pedestrian Motion Forecasting

Forecasting Mean Average Precision (mAPf )

mAPf =
1

3
(APS

f +APL
f +APNL

f ), (13)

where APf represents mAP in the predicted final timestep, while S, L, and NL denote static, linear,
and non-linear states defined by FutureDet [10].
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