
A Appendix

A.1 Annotation of the benchmark dataset

A.1.1 Raw data processing

Raw read data from 10X multiome and CITE-seq data was processed using the CZ Biohub
alignment pipeline available at https://github.com/czbiohub/utilities/tree/neevor/
cellrangerarc. Both pipelines were run using AWS batch and with reference refdata-cellranger-
arc-GRCh38-2020-A-2.0.0.tar.gz provided by 10X. For ATAC-seq plus GEX, cellranger-arc-2.0.0
was used to run cellranger-arc count on each individual sample. Then all samples were run with
cellranger-arc aggr to produce the final multiomics dataset. For CITE-seq plus GEX, cellranger-6.1.0
was used to run cellranger count on each sample. Internal steps of the pipeline used pandas v1.3.1,
numpy v1.21.1, and scanpy v1.8.1. All pipelines were built using docker v20.10.7 and deployed to
AWS ERC for use with AWS BATCH.

A.1.2 Gene expression data

Gene expression data from the 10X Multiome (nuclear data) and CITE-seq (whole cell data) protocols
were both analyzed using our previously published best practices [20]. We used the Scanpy plat-
form [38] as a basis for quality control, normalization, dimensionality reduction, clustering, feature
selection, and trajectory inference.

Quality control of cellular data was performed per sample by thresholding the number of molecular
counts (UMIs) per cell and the number of genes per cell. Considering the joint distribution of these
quantities, we selected minimum thresholds ranging from 300-750 and 280-750, respectively, per
sample. Furthermore, an upper threshold on UMI counts between 22,000 and 38,000 was selected
also on a per-sample basis. Genes with observations in fewer than 20 cells per sample were removed
from the dataset.

To enable comparisons between cellular expression profiles that may have received different numbers
of reads during sequencing, we normalized the data. Normalization was performed by the pooling
method implemented in the computeSumFactors() function in Scran v1.20.1 [41]. To improve the
signal-to-noise, we selected 4000 highly variable genes (HVGs) as implemented by the “cell ranger”
method in Scanpy. Here, highly variable genes are selected by binning genes by mean expression and
choosing the genes with the highest coefficient of variation per bin. We used the first 50 principal
components of the HVG-subsetted expression matrix as a low dimensional representation of the
data. To apply graph-based visualization and clustering algorithms to the data, we generated a k-
nearest neighbour (kNN) graph using Euclidean distance on the PC space as implemented in Scanpy.
The data was then visualized using the UMAP algorithm [42] and clustered by Leiden community
detection [43] v0.8.7 at a range of resolutions. We finally extracted cluster-related features using
pairwise t-tests over the cluster assignments per cluster and compared these to published literature on
bone marrow mononuclear cells.

A.1.3 Open chromatin data

The chromatin accessibility data acquired by ATAC-seq as part of the 10X Multiome protocol was
processed using Signac v1.3.0 [39], an extension of the Seurat toolkit v4.0.3 [16], and the Scanpy
platform v1.7.2 [38]. To ensure the same set of features across samples, accessible regions (also
referred to as peaks) were aggregated using cellranger-arc aggr. Quality control, dimensionality
reduction and translating peaks to gene activity scores was performed using Signac, following
the authors’ instructions. Downstream analysis steps including cell type annotation and trajectory
inference were done in Scanpy.

After loading the peak-by-cell matrix, counts were binarized to only represent an accessible versus
non-accessible state of each region. Cells were then filtered based on 5 quality control metrics
comprising the total number of fragments (ranging from 200-850 to 60,000-150,000 across samples),
the enrichment of fragments detected at transcription start sites (TSS) (ranging from 2.2-4.1 to
10.5-20 across sample), the fraction of fragments in peak regions compared to peak-flanking regions
(lower limit between 0.2-0.455 across samples), the fraction of peaks blacklisted by the ENCODE
consortium [44] (upper limit ranging between of 0.0075-0.015 across samples) and the nucleosome

1

https://github.com/czbiohub/utilities/tree/neevor/cellrangerarc
https://github.com/czbiohub/utilities/tree/neevor/cellrangerarc

signal, which describes the length distribution of fragments which is expected to follow the length of
DNA required span across one nucleosome or multiples of it (upper limit ranging from 2-2.5 across
samples). Since ATAC data is sparser than gene expression data, peaks were included if they were
accessible in at least 15 cells.

Dimensionality reduction was performed by generating term frequencies using latent semantic
indexing (LSI) initially suggested by Cusanovich et al. [45], followed by singular value decomposition.
LSI components with a high correlation (absolute value> 0.51) with the total number of fragments
per cell were removed prior to subsequent analysis steps. Visualisation, clustering and cell type
annotation was performed as described in the gene expression data analysis with the difference of
using LSI components as the low dimensional representation of the data. Since peaks only refer
to regions in the genome, they are difficult to interpret directly. Therefore, the count matrix was
translated to a gene activity matrix by summing up accessible regions over the gene bodies including
promoter regions (defined as 2kb upstream of the TSS). These gene activity scores were used for a
marker-based cell type annotation.

A.1.4 Protein data

The workflow of analyzing cell surface protein levels captured as antibody-derived tags (ADT) in
the CITE-seq protocol was adapted from our pipeline to process gene expression data and mainly
performed using the Scanpy platform v1.7.2 [38]. The TotalSeq-B antibody panel from BioLegend
Inc. used in this study comprises 134 primary antibodies capturing human cell surface proteins and 6
isotype controls without any human target protein that can be used to assess the level of unspecific
binding in each cell.

Quality control was done based on the total number of ADTs (ranging from 1100-1200 to 24000
across samples), the number of proteins captured in each cell (with a lower limit of 80) and the ADT
count of the 6 isotype controls summed up in each cell (ranging from 1 to 100). Since the total number
of captured ADTs is limited, absolute ADT counts appear to be lower if highly abundant proteins
are present. To account for this effect, normalization was performed using the centered log ratio
transformation implemented in the NormalizeData() in Seurat v4.0.3 [16]. Dimensionality reduction,
computation of a k-nearest neighbour (kNN) graph, clustering and visualisation was performed
analogously to the gene expression data analysis. Cell surface protein markers derived from the
literature were used for cell type annotation.

A.1.5 Harmonizing cell labels between joint modalities

Following modality- and batch-specific data analysis, we harmonized the cell type annotation per
batch by taking the outer product of the cluster annotation to ensure substructure present in only one
modality was still preserved in the final annotations. Where cluster substructure did not agree and
did not lead to a clean subclustering, we manually evaluated which modality marker features more
clearly described the specific cellular subpopulation.

A.1.6 Annotating trajectories in the data

To capture continuous cellular, we inferred and annotated the erythrocyte differentiation trajectory.
This trajectory goes from hematopoietic stem cells (HSCs) via megakaryocyte and erythrocyte
progenitors (MK/E prog), proerythroblasts, and erythroblasts, to normoblasts and reticulocytes (if
present in the data) in the bone marrow. Using a similar approach as in [7], we subsetted the relevant
clusters and fitted trajectory to the data in diffusion map space using the diffusion pseudotime
algorithm [28]; implemented in Scanpy v1.7.2. In brief, this method runs a diffusion process on the
single-cell kNN graph and embeds the data into a spectral decomposition of the obtained transition
matrix. A linear trajectory is described by a so-called pseudotime ordering of cells, which is computed
based on the distance to a root cell in diffusion space. The root cell was manually determined as a
cell in the HSC cluster with an extremal embedding in the first two diffusion components.

To ensure that our ground-truth trajectories were not affected by a particular embedding of the data,
trajectories were fit separately per modality and batch. Here, the uni-modal kNN graph representations
generated separately from each modality were used as a basis for trajectory inference.

2

A.2 Joint embedding metrics

Performance in task 3 will be measured using seven metrics broken into two classes:

• Biological variance conservation
• Batch correction

These measures are then aggregated into a single score used to rank embedding methods.

A.2.1 Bio-conservation metrics

These metrics measure how well an embedding reflects expert-annotated biology.

1. NMI cluster/label - Normalized mutual information (NMI) compares the overlap of two
clusterings. We use NMI to compare the cell type labels with an automated clustering
computed on the integrated dataset (based on Louvain clustering). NMI scores of 0 or 1
correspond to uncorrelated clustering or a perfect match, respectively. Automated Louvain
clustering is performed at resolution ranges from 0.1 to 2 in steps of 0.1, and the clustering
output with the highest NMI with the label set is used.

2. ARI cluster/label - The Rand index compares the overlap of two clusterings; it counts both
correct clustering overlaps and correct disagreements between two clusterings. Similar to
NMI, we compare the cell type labels with the NMI-optimized Louvain clustering computed
on the integrated dataset. An ARI of 0 or 1 corresponds to random labelling or a perfect
match, respectively.

3. Cell type ASW - The silhouette width measures the compactness of observations with
the same labels. Averaging over all silhouette widths of a set of cells yields the average
silhouette width (ASW), which ranges between -1 and 1. We use ASW to evaluate the
compactness of cell types in the resulting embedding. The cluster ASW is computed on cell
identity labels and scaled to a value between 0 and 1 using the equation:

ASW = (ASWC + 1)/2

where C denotes the set of all cell identity labels.
4. Cell cycle conservation - The cell cycle conservation score is a proxy for the conservation

of gene program signal during data integration. It evaluates how much variance is explained
by cell cycle per batch before and after integration. This should ideally be equal. Using
Scanpy’s score_cell_cycle() function we score the cell cycle stage of each cell using
the gene expression data and gene sets from [46]. We then compute the variance contribution
of the resulting S and G2/M phase scores using principal component regression, which is
performed for each batch separately. The differences in variance before, V arbefore, and
after, V arafter, integration is aggregated into a final score between 0 and 1, using the
equation:

CC conservation = 1�
|Varafter � Varbefore|

Varbefore
In this equation values close to 0 indicate lower conservation and 1 indicates complete
conservation of the variance explained by the cell cycle. In other words, the variance
remains unchanged within each batch for complete conservation, while any deviation from
the pre-integration variance contribution reduces the score.

5. Trajectory conservation - The trajectory conservation score is a proxy for the conservation
of a continuous biological signal in the joint embedding. In this metric, we compare trajec-
tories computed after integration for relevant cell types that describe a continuous cellular
differentiation process with a trajectory computed per batch and modality. Trajectories are
computed using diffusion pseudotime (implemented in the sc.tl.dpt function in Scanpy).
This approach embeds the data into a diffusion map space and computes an ordering of cells
in this space from a selected root cell (a pseudotime value). As root cell, we select the cell
in the earliest progenitor cluster that is most extremal in the first three diffusion components,
which is still in the largest connected component of the cellular nearest neighbor graph (the
graph that is used as the basis for the diffusion map computation). The conservation of the
trajectory is quantified via Spearman’s rank correlation coefficient s between the pseudotime

3

values before and after integration. The final score is scaled to a value between 0 and 1 using
the equation:

trajectory_conservation = (s+ 1)/2.
Values of 1 or 0 correspond to the same order of cells on the trajectory before and after
integration or the reverse order, respectively. In cases where the trajectory could not be
computed, which occurs when kNN graphs of the integrated data contain many connected
components, we set the value of the metric to 0. To compute a multi-modal trajectory
conservation score using uni-modal ground-truth trajectories, we take the mean of the
trajectory conservation scores for each modality.

A.2.2 Batch correction metrics

The following metrics assess how well an embedding removes batch variation.

1. Batch ASW - The average silhouette width (ASW) measures the compactness of obser-
vations with the same label in an embedding. We use the ASW to measure batch mixing
by considering the non-compactness of batch labels per cell type cluster. Specifically, we
consider the absolute silhouette width, s(i), on batch labels per cell i. Here, 0 indicates that
batches are well mixed, and any deviation from 0 indicates a batch effect. We rescale this
score so that higher scores indicate better batch mixing and compute this per cell type label,
j, via the equation:

batchASWj =
1

|Cj |
X

i2Cj

1� |s(i)|

where Cj is the set of cells with the cell label j and |Cj | denotes the number of cells in
that set. To obtain the final batchASW score, the label-specific batchASWj scores are
averaged:

batchASW =
1

|M |
X

j2M

batchASWj

Here, M is the set of unique cell labels. Overall, a batch ASW of 1 represents ideal batch
mixing and a value of 0 indicates strongly separated batches.

2. Graph connectivity - The graph connectivity metric assesses whether cells of the same
type from different batches are close to one another in the embedding. This is evaluated
by computing a k-nearest neighbour (kNN) graph, G, on the embedding using Euclidean
distances. We then check if all cells with the same cell identity label are connected on this
kNN graph. For each cell identity label c, we generate the subset kNN graph G(Nc;Ec),
which contains only cells from a given label. Using these subset kNN graphs, we compute
the graph connectivity score:

gc =
1

|C|
X

c2C

|LCC(G(Nc;Ec))|
|Nc|

Here, C represents the set of cell identity labels, |LCC()| is the number of nodes in the
largest connected component of the graph, and |Nc| is the number of nodes with cell identity
c. The resulting score has a range of (0; 1], where 1 indicates that all cells with the same cell
identity are connected in the integrated kNN graph, and the lowest possible score indicates a
graph where no cell is connected.

A.2.3 Understanding variability and batch effects

To understand the extent of variability and batch effects in the benchmarking dataset, we defined
train-test splits and computed the correlation of each test cell to the global or local (same cell identity)
mean in training cells. Using the ATAC+GEX datasets (Figure 4), we find higher correlation in GEX
(0.52±0.1) relative to ATAC (0.32±0.1), indicating greater variability in the ATAC data. We also
observe that for both modalities, correlations are higher within donor test-train splits than across donor
test-train splits, as expected, though batch effects appear larger for GEX. Within donor, imputing
each cell as the mean of similarly annotated cells outperforms imputing each cell as the overall
mean. However, the opposite holds when imputing across donors, another indicator of batch effects.
We anticipate that successful competitors will need to take these sources or real-world donor and
technical variability into account.

4

Figure 4: Comparison of within donor and between donor variability in the ATAC+GEX data. Train-
test split is within or across donors. Pearson correlation is computed on log counts between each test
cell and the global or local (cell identity cluster) mean of training cells. Error bars show standard
deviation.

A.2.4 Metric aggregation

To rank methods, the individual metric scores will be aggregated. However, due to the differing
nature of each metric, we will assign a weight to each metric after 1 month of the public competition.
The goal of this weighting will be to provide equal importance on each measure when summing
them. This weighting will be noted in the competition documentation and in communication to all
competitions.

An overall weighted average of batch correction and bio-conservation scores will be computed via
the equation:

Soverall,i = 0.6 · Sbio,i + 0.4 · Sbatch,i

This reflects the relative importance of the metrics.

The batch covariate used for evaluation is “sample”, however one can consider encoding the site of
data collection as an additional or replacement batch covariate.

A.3 Computational benchmarking framework

The overall workflow consists of the following types. For the Data Censor, Method and Metric
components, the interface specifications are task-dependent.

• Dataset Loader: Retrieves a dataset from a source (e.g. a HTTPS URL or S3 bucket) and store it
as an AnnData file in a predetermined format.

• Dataset Processor: Preprocesses a dataset – for example, calculating size-factors.

• Dataset Censor: Separates a dataset into one or more censored files which will be passed to
Method components, and a solution object which contains the ground-truth information required
to evaluate a prediction.

• Baseline Method: A simple method for generating a prediction using the provided censored files.

• Negative Control Method: Serves as a negative control for the censoring and metric components.
By generating constant or random predictions, negative controls should obtain bad scores on most
of the metrics, unless the opposite is expected. For instance, a random embedding of a dataset
will obtain a good score on any metrics which look at batch effects in the embedding.

• Positive Control Method: Serves as a positive control for the censoring and metric components.
By returning the solution or creating a prediction based on ground-truth information, positive
control methods should obtain good scores on most of the metrics, unless the opposite is expected.

• Metric: Calculates one or more metrics by comparing a prediction to the ground-truth solution.

5

Viash runtime

Viash component

Script Unit test(s)Viash config

 • Functionality metadata
 - Component info
 - Author info
 - List of arguments
 - List of resources
 • Platform-specific metadata
 - Docker container setup
 - Nextflow settings

config.vsh.yaml

b.

Build Nextflow
module

Run unit
test(s)

Build Docker
container

Test resultsNextflow moduleDocker container

a.

Raw gene
expression

Raw
ATAC/ADT

Dataset
Processor

Pre-processed
gene expression

Pre-processed
ATAC/ADT

Dataset
Censor

Censored input
file(s)Solution

Prediction

Metric

Score(s)

Dataset
Loader

Task-
specific

Remote workerNextflow pipeline

Combine Nextflow modules
into a Nextflow pipeline

EvalAI competition

Baseline
Method

Control
Method+/-

h5ad

=
Module

=
AnnData

file

Figure 5: Overview of the computational framework. a. The pilot workflow consists of different
types of components, for which the interfaces were defined beforehand in order to collaboratively
reason about and implement new components. b. Several technologies were used to ensure that the
pilot pipeline is reproducible (Docker), scalable (Nextflow and AWS), and versionable (Viash). Viash,
in particular, was essential to be able to rapidly prototype new components in a collaborative and
time-constrained setting.

The benchmarking framework was developed with a combination of technologies to allow for
reproducibility and scalability without sacrificing on ease of use and rapid prototyping (Figure 5B).
These are the following:

• AnnData: All datasets are formatted using the Annotated Data file format from the Scanpy
framework [38]. AnnData is a lightweight but efficient format, which requires minimal package
dependencies in order to load a dataset into memory. Python and R users can use the anndata
package on PyPi and CRAN, respectively.

• Viash [40]: A tool for wrapping small scripts and some metadata as modular pipeline components.
Examples of such metadata include author information, a list or arguments required by the script,
or a list of R and Python packages which the component requires. Viash can be used to perform a
variety of tasks, including wrapping the component as a standalone Bash executable or Nextflow
module and unit testing the component.

• Docker: Each component has a corresponding (implicit) Docker container. When a version of the
benchmark pipeline is released, the containers are pushed to Docker Hub to ensure reproducibility
on many systems.

• Nextflow [47]: One of the more popular frameworks for defining and running pipelines in
Bioinformatics. By having extensive support for containerisation of components and interfacing
with cloud execution and storage solutions, Nextflow allows for flexibility in switching our chosen
cloud solution for alternatives if so desired.

• EvalAI [48]: An open-source framework for evaluating machine learning algorithms at scale.
Through the EvalAI infrastructure, competitors can submit solutions. This triggers a remote

6

evaluation worker hosted on AWS EC2 which executes a Nextflow evaluation pipeline on the
user-submitted files. After the evaluation pipeline has finished running, a competitor can browse
through the overall ranking of methods, including baseline results generated by this benchmarking
framework.

Since the components included in this benchmarking framework were developed collaboratively, a
major benefit of using Viash to generate Docker containers and Nextflow modules is that it allows
for separation of concerns. By separating the pipeline logic from the core functionality provided in
each of the components (written as R or Python scripts), component developers did not directly need
to interface with the Nextflow Domain Specific Language (DSL), which can form a steep barrier to
entry for novice pipeline component developers.

A.4 Challenges and logistics associated with building a multimodal single-cell sandbox

Building this sandbox for multimodal single-cell data required coordinating technical expertise across
the US and Europe. This required management of data generation, data analysis, and designing
computational infrastructure. The following section describes the challenges and key learnings
associated with each of these arms of the initiative.

A.4.1 Data Generation

Data generation was the most challenging aspect of the initiative to organize. Generating single-cell
data is not easy and requires separate PhD-level scientists to write the protocols, isolate cells, prepare
the single-cell libraries, and operate the sequencing machines.

Sourcing reagents One of the biggest hurdles we faced was delays in the supply chain due to
COVID-19. When we initially contacted vendors to source bone-marrow mononuclear cells, we
found only one had enough inventory in May 2021 to support data generation across sites. We
then faced customs delays shipping cells from the vendor in California, USA to Munich, Germany.
We faced a similar hurdle sourcing the antibody panels for the CITE-seq data generation. When
we contacted the vendor in May 2021, we were told the stock panels were backordered through
August 2021. To get antibody panels in time, we arranged access to a pre-market product that is
now commercially available. In July 2021, we hit a shortage of sequencing reagents that affected
all sites and delayed sequencing of constructed libraries. These issues were compounded by the
just-in-time inventory stocking policies at partners. Throughout the competition, we learned to keep
extra inventory on hand to account for unplanned repeat experiments, which ended up being more
common than we anticipated.

Difficulty in sample preparation Like most humans, we fell prey to the planning fallacy [49]
and anticipated that sample preparation would be straightforward and work correctly on the first
try. Instead, we faced difficulties at every stage of data generation. Only two of the four sites had
generated both GEX+ATAC and GEX+ADT libraries. None of the participants at the sites had
experience with bone marrow mononuclear cells. Start to finish generating a single dataset takes no
shorter than three weeks, with little feedback about the experiment success along the way. Three
sites experienced challenges with cell isolation that led to a two month delay in preparing data due
to a need to repeat experiments. Two sites faced unexpected failures in sequencing that led to a
month delay in sequencing libraries. We found interestingly enough that the success of each site was
unrelated to running pilot experiments, however data at each site did seem to get better with repeats.

Project management Making sure scientists involved with data generation knew what to do
when was critical to the success of the project. Through this process, we learned to adopt project
management best practices like using centralized documents to track the status of each sample at
each site, list all protocols, outline clear timelines, and keep track of the accountability for each site.
We organized weekly planning meetings to review the project timeline and discuss our experimental
plans and results.

A.4.2 Data Analysis

Prior to this effort, none of the sites had experience analyzing multimodal single-cell data in human
bone-marrow mononuclear cells. Devising analysis strategies required consulting existing literature

7

and contacting domain experts. We then needed to create template analysis notebooks and train a team
of 7 data analysts to perform the analysis. This process required constant supervision and iteration
to revise cluster labels and ensure data quality. We set up a system where two of the organizers
picked one data type each to review. Analysis would then work on QC, initial annotation, and doublet
identification for a dataset, submit their work to the relevant reviewer, and incorporate feedback over
the course of a week per dataset. This attention to detail in the data analysis was crucial to removing
doublets and low quality cells, which compromise dataset quality.

A.4.3 Computational Infrastructure

Portable submission components One of the biggest challenges with this competition was design-
ing infrastructure that enabled competitors to submit runnable code in a variety of languages on a
centralized data server and as part of a workflow. We also wanted to accommodate participants who
may have more experience scripting than creating portable docker containers compatible with our
testing infrastructure. To achieve these goals, we used Viash, a tool to create portable command line
interfaces using a script and a configuration YAML. The details of this infrastructure is described
above.

Documentation Making this competition accessible necessitated documenting the computational
infrastructure and data. Although Viash solves many of our difficulties of centralized benchmarking,
most users are unfamiliar with it. Additionally, single-cell data is not a common substrate for machine
learning tasks. Many NeurIPS attendees may not be familiar with the data type, and this may provide
a barrier for entry. Finally, the tasks presented in this sandbox were mostly formulated from scratch.
To make sure this sandbox is accessible, we made sure to fully document every aspect including
quickstart guides and walkthroughs of the development process.

We also knew that even with the documentation, participants would have more detailed questions. To
encourage a public discourse around areas of confusion, we set up a Discord server where anyone
could ask questions. So far this has been a successful venue for handling both technical questions
and hosting public discussion around the tasks with over 400 members.

Appendix References
[41] Aaron T. L. Lun, Karsten Bach, and John C. Marioni. Pooling across cells to normalize

single-cell RNA sequencing data with many zero counts. Genome Biology, 17(1):75, dec 2016.

[42] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. UMAP: Uniform Manifold
Approximation and Projection. Journal of Open Source Software, 3(29):861, sep 2018.

[43] Vincent A. Traag, Ludo Waltman, and Nees Jan van Eck. From Louvain to Leiden: guaranteeing
well-connected communities. Scientific Reports, 9(1):5233, dec 2019.

[44] Haley M Amemiya, Anshul Kundaje, and Alan P Boyle. The ENCODE Blacklist: Identification
of Problematic Regions of the Genome. Scientific reports, 9(1):9354, jun 2019.

[45] Darren A Cusanovich, Riza Daza, Andrew Adey, Hannah A Pliner, Lena Christiansen, Kevin L
Gunderson, Frank J Steemers, Cole Trapnell, and Jay Shendure. Multiplex single cell profil-
ing of chromatin accessibility by combinatorial cellular indexing. Science (New York, N.Y.),
348(6237):910–914, may 2015.

[46] Itay Tirosh, Benjamin Izar, Sanjay M. Prakadan, Marc H. Wadsworth, Daniel Treacy, John J.
Trombetta, Asaf Rotem, Christopher Rodman, Christine Lian, George Murphy, Mohammad
Fallahi-Sichani, Ken Dutton-Regester, Jia-Ren Lin, Ofir Cohen, Parin Shah, Diana Lu, Alex S.
Genshaft, Travis K. Hughes, Carly G. K. Ziegler, Samuel W. Kazer, Aleth Gaillard, Kellie E.
Kolb, Alexandra-Chloé Villani, Cory M. Johannessen, Aleksandr Y. Andreev, Eliezer M.
Van Allen, Monica Bertagnolli, Peter K. Sorger, Ryan J. Sullivan, Keith T. Flaherty, Dennie T.
Frederick, Judit Jané-Valbuena, Charles H. Yoon, Orit Rozenblatt-Rosen, Alex K. Shalek, Aviv
Regev, and Levi A. Garraway. Dissecting the multicellular ecosystem of metastatic melanoma
by single-cell RNA-seq. Science, 352(6282):189–196, Apr 2016.

8

[47] Paolo Di Tommaso, Maria Chatzou, Evan W Floden, Pablo Prieto Barja, Emilio Palumbo,
and Cedric Notredame. Nextflow enables reproducible computational workflows. Nature
biotechnology, 35(4):316–319, 2017.

[48] Deshraj Yadav, Rishabh Jain, Harsh Agrawal, Prithvijit Chattopadhyay, Taranjeet Singh, Akash
Jain, Shiv Baran Singh, Stefan Lee, and Dhruv Batra. Evalai: Towards better evaluation systems
for ai agents. arXiv preprint arXiv:1902.03570, arXiv:1902.03570, 2019.

[49] Roger Buehler, Dale Griffin, and Michael Ross. Exploring the "planning fallacy": Why people
underestimate their task completion times. Journal of personality and social psychology,
67(3):366, 1994.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] , See associated Datasheet Section
1.I

(c) Did you discuss any potential negative societal impacts of your work? [Yes] , See
associated Datasheet Section 7

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] , See associated Datasheet Section 7

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] , See associated
Datasheet Section 4.F and Section 5.A

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] , See Section 3.1

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] , see Datasheet Section 5.B
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

, see Datasheet Section 5
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] , see Datasheet Section 7
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] , see Datasheet Section 7
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [Yes] , see Datasheet Section 7

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [Yes] , see Datasheet Section 7

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [No] , compensation was arranged by AllCells.

9

