
Automated Training of Learned Database Components with
Generative AI

Angjela Davitkova
RPTU Kaiserslautern-Landau
Kaiserslautern, Germany

angjela.davitkova@cs.rptu.de

Sebastian Michel
RPTU Kaiserslautern-Landau
Kaiserslautern, Germany

sebastian.michel@cs.rptu.de

Abstract
The use of deep learning for database optimization has gained sig-
nificant traction, offering improvements in indexing, cardinality es-
timation, and query optimization. However, acquiring high-quality
training data remains a significant challenge. This paper explores
the possibility of using generative models, such as GPT, to synthe-
size training data for learned database components. We present an
initial feasibility study investigating their ability to produce realis-
tic query distributions and execution plans for database workloads.
Additionally, we discuss key challenges, such as data scalability and
labeling, along with potential solutions. The initial results suggest
that generative models can effectively augment training datasets,
improving the adaptability of learned database techniques.
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1 Introduction
The increasing volume and complexity of data in modern database
systems necessitate continuous optimization of indexing, query
processing, and cardinality estimation. Traditional methods for
database optimization rely on hand-crafted heuristics and rule-
based techniques and often struggle under evolving workloads
and large-scale datasets. Recent advancements in machine learning
(ML) have introduced learned models that can improve database
performance by predicting data distributions for cardinality es-
timation [12, 17, 22], optimizing query execution plans [16, 20],
and enhancing indexing mechanisms [4, 13]. Despite their promise,
learned database components, in particular query models, require
extensive labeled training data to function effectively, as they rely
on learning to identify patterns and generalize to different datasets.
However, acquiring such data poses significant challenges.

First, there is a Lack ofReal-WorldData.High-quality training
datasets consisting of key distributions, query workloads, and exe-
cution statistics are difficult to obtain due to privacy concerns and
limited access to production database logs. Additionally, learned
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models requiring queries for training face the cold start problem,
where they struggle to make accurate predictions in the absence of
sufficient initial training data, leading to poor performance until
enough representative samples are available.

Second, problems arise in the presence of Data Bias and Dis-
tribution Shifts. Training on static datasets often results in over-
fitting, where models learn patterns specific to the training data but
fail to generalize to unseen and evolving workloads. This limita-
tion reduces their adaptability, leading to suboptimal performance
when encountering real-world variations, such as workload shifts,
seasonal trends, or dynamically changing database contents.

Third, Scalability Issues are an additional problem. Generating
and labeling large-scale datasets manually or through query exe-
cution is highly computationally expensive, requiring substantial
processing resources and time. The challenge is further amplified
in dynamic database environments where both data distributions
and query workloads evolve continuously, necessitating frequent
regeneration and relabeling of training data. This overhead makes
it impractical for applications, especially when aiming to maintain
accurate and up-to-date learned models for indexing, cardinality
estimation, and query optimization.

To overcome these challenges, this paper investigates the
feasibility of leveraging generative models to automate and
enhance the process of training data generation for learned
database components, specifically cardinality estimation and
query optimization. We focus on how well generative models
can produce diverse and representative workloads and identify key
aspects associated with synthetic data generation. We show that
models such as GPT offer a promising alternative by using data se-
mantics to generate meaningful workloads, beyond basic rule-based
query generation. Furthermore, we address the limitations of the
model, in particular, when considering selectivity-related tasks, and
outline potential future ideas that can be investigated to enhance
the adaptability and robustness of GPT, ultimately contributing to
more efficient and accurate database optimization strategies. The
data generation also provides an avenue for testing and benchmark-
ing, facilitating the design of more robust components.

We present the requirements of workload synthesis for cardi-
nality estimation and query optimization in Section 2, and discuss
the potential of GPT in doing so in a first feasibility study in Sec-
tion 3, before discussing related work in Section 4 and giving a brief
conclusion and outlook in Section 5.

2 Methodology
2.1 Cardinality Estimation
Deep learning methods have shown promise in predicting query
selectivity, enabling the selection of efficient execution plans to
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improve performance. However, these models require high-quality
labeled datasets for training, testing, and continuous improvement.
The complexity of this task lies in having meaningful queries and
the need to account for various query patterns, data distributions,
and predicate selectivities.

2.1.1 Problem Formulation for Cardinality Estimation. The selec-
tivity 𝜎 (𝑄, 𝐷) for a query 𝑄 and database 𝐷 with a total number of
tuples |𝐷 | can be estimated as: 𝜎 (𝑄, 𝐷) = |𝑅 (𝑄,𝐷) |

|𝐷 | where 𝑅(𝑄, 𝐷)
is the set of tuples that satisfy the query 𝑄 .

2.1.2 Training Data Generation. The key aspects of generating
synthetic training data for cardinality estimation involve creating
diverse query workloads and assigning corresponding selectivities.
Step 1: Generating Diverse SQL Queries that cover different
types of workloads and queries with varying complexity is the
first step in training a cardinality estimator. The generated queries,
depending on the cardinality estimator being tested, may involve
various operations, leading to different outcomes:

• Simple Queries: Queries with straightforward selection con-
ditions and projections.

• Complex Joins: Queries involving multiple joins, which re-
quire estimating the cardinality of intermediate results.

• Aggregations: Queries involving group-by clauses, needing
complex cardinality estimations due to data grouping.

Step 2: Generating Accurate Labels involves assigning selectiv-
ity or actual cardinality values to the generated queries. These
values are typically derived from actual query execution on data
or approximated through sampling techniques. Although GPT can
generate query syntax and structure based on patterns learned
from data, it cannot analyze the underlying data distributions in
real-time. We will discuss the extent of the model’s capabilities in
the feasibility study (Section 3).

2.2 Query Optimization
With learned query optimizers gaining traction for handling com-
plex and dynamic workloads, generating high-quality training data
is essential for their effective training.

2.2.1 Problem Formulation for Query Optimization. Given a query
𝑄 and a database 𝐷 , the goal is to select a candidate execution
plan 𝑃 that minimizes the cost𝐶 (𝑄, 𝑃, 𝐷) of executing query𝑄 , i.e.,
𝑃opt (𝑄,𝐷) = argmin𝑃 𝐶 (𝑄, 𝑃, 𝐷).

2.2.2 Training Data Generation. The process of generating syn-
thetic training data for query optimization can be broken down
into generating diverse SQL queries, simulating multiple execution
plans for those queries, and estimating costs.
Step 1: Generating Diverse SQL Queries is crucial for training
query optimizers. Unlike in cardinality estimation, this step typi-
cally requires more complex queries involving multiple joins and
nested queries.
Step 2: Query-Plan Pair Generation involves that for each gen-
erated SQL query 𝑄 , we need to simulate multiple candidate execu-
tion plans (𝑃1, 𝑃2, ..., 𝑃𝑛). These execution plans represent different
strategies for executing the query, such as:

• Join Ordering: Different orders of the joins between tables.
• Join Methods: Hash joins, nested loop joins, and merge joins.

• Access Methods: Index scans, full table scans.
Simulating multiple candidate execution plans for a single query
results in a rich training dataset useful for training query optimizers
to predict the most efficient plan based on query characteristics.
Step 3: Generating Accurate Labels is to assign estimated costs
to each generated execution plan, considering the following:

• Index Scan vs. Table Scan: Cost difference based on whether
an index is used or a full table scan is performed.

• Hash Join vs. Nested Loop Join: Estimation of the cost of
different join methods based on query structure and data
distribution.

• Other Factors: CPU costs, memory usage, and disk I/O.
Accurate cost estimation relies on precise cardinalities, and the
usage of GPT to do so will be further discussed.

2.3 Challenges and Discussion
2.3.1 Diversity of Generated Queries. The ability to achieve diver-
sity in SQL queries is essential, as it is critical for developing an
effective generator. Based on the data given, GPT optimizes query
generation and workload adaptation by leveraging various database
characteristics and usage patterns.
Schema-Aware Generation allows that given a schema, GPT con-
structs a diverse set of queries that adhere to its structure, ensuring
syntactic and semantic correctness.
Context-Aware Generation allows providing context-aware re-
quirements, creating realistic query workloads that are tailored to
specific use-case workloads. When specified, GPT produces a mix of
queries from different workload categories (e.g., heavy aggregation
queries vs. light lookup queries) to simulate a realistic distribution
of queries that the cardinality estimator might encounter in practice.
Context-aware query generation can also be beneficial when the
model struggles with certain query types and requires additional
examples of those queries to improve its performance.
Workload Expansion allows that when provided with an exam-
ple workload, the model refines and expands it by learning from
existing query patterns relevant to the given domain. By provid-
ing even a small example of query logs, GPT can generate queries
that closely resemble practical usage patterns, improving workload
representativeness and query performance insights.

2.3.2 Generating Complex Query Patterns. Complex queries in-
volving multiple joins or nested subqueries pose another challenge
for generative models. Detailed prompts are needed to fine-tune
GPT and guide it in the right direction. For instance, by explicitly
showing a wide variety of query types, including edge cases with
nested joins and subqueries, GPT can also adapt and generate such
realistic and diverse query patterns.

2.3.3 Query Plan Diversity. A major challenge in query optimiza-
tion is the diversity of execution plans for a single query. Different
strategies can be used for joins, scans, and aggregations, and gener-
ating a comprehensive set of these strategies is difficult. To solve
this, GPT is capable of generating multiple alternative plans for
the same query. Further, these plans need to be validated against
real-world query execution to ensure their diversity and realism. By
fine-tuning the model on a wide range of plans from real execution
logs, GPT can produce a broad set of execution plans.
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2.3.4 Selectivity & Cost Estimation. By default, GPT cannot accu-
rately perform counting or cardinality estimation because it oper-
ates purely based on patterns learned from large amounts of text
data rather than actual data distribution or statistics. Since accurate
cost estimation is dependent on cardinality estimates, the same
problem is present for labeling in query optimization. However,
the model can incorporate guidance for selectivity information to
generate queries that reflect realistic database access patterns, that
align with expected data distributions. For example, providing in-
formation such as table sizes, column distributions (e.g., distinct
counts, value frequencies), and predicate selectivities, helps the
model, to some extent, to generate realistic queries that balance
low- and high-selectivity patterns.

2.3.5 Adaptation to Different Databases. Different database sys-
tems have varying syntax as well as optimizers and execution strate-
gies. A query optimized for one system may not be optimal for
another. GPT is adaptable to multiple database engines when prop-
erly instructed. Training data generation needs to be adapted to
represent workloads suited for distinct database engines ensuring
that learned models generalize across various systems. This adapt-
ability allows the generated data to be more useful across multiple
platforms, improving the generalization of query optimizers.

2.3.6 Scaling to Large Datasets. One key issue with generating
large-scale training data is the computational cost of generating
queries. A good generative model should be scalable, meaning it can
efficiently generate large volumes of high-quality data. The query
generation requires generating a defined number of 𝑛 queries. Due
to the model’s output limitations, when 𝑛 is large enough that a
single response cannot accommodate all queries, we must generate
them in batches to ensure the desired quantity is met. When con-
sidering query optimization, generating a large volume of diverse
training data can become computationally expensive as the number
of potential query plans grows. By introducing small variations
to existing queries (e.g., modifying join conditions), GPT can pro-
duce more data from a small set of original queries. This helps in
scaling the training dataset without requiring an overwhelming
computational cost. While the generation of diverse queries can be
efficiently parallelized, scalable labeling remains challenging and
requires incorporating traditional indexing methods or cardinality
estimators for a fast and accurate execution.

2.3.7 Fidelity of Generated Data. While GPT can generate syn-
tactically valid SQL queries, guaranteeing they represent realistic
use cases and query patterns is crucial for effective training. This
challenge can be addressed by domain-specific fine-tuning of GPT
on real-world query logs, ensuring that the generated queries re-
flect typical user behavior and database workloads. It would be
helpful to detect similarities between the generated data and
real-world data in terms of similar joins, filters, and subqueries,
variations expressing the same intent, and deeper syntactic and
semantic resemblances. Domain expert reviews or user studies
can also be useful in assessing whether generated data reflects typ-
ical database behavior by manually inspecting a subset of queries,
cardinalities, or execution plans. Finally, the performance of a
model trained on generated data and evaluated using real-world
data can act as a direct indicator of the generated data’s quality.

3 Feasibility Study
For the first insights on the usefulness of generative AI to synthesize
training data for learned database components, we give an overview
of key metrics and first observations on how well GPT can handle
the different tasks, using OpenAI’s GPT-4o over a modified, simpler
version of the IMDB schema and data [14].

3.1 Diversity of Generated Queries
3.1.1 Schema-Aware Generation. To analyze how GPT generates
queries, we start by providing the IMDB schema and using a sim-
ple prompt to generate a diverse set of queries for it. The model
generates various queriesprimarily consisting of equality pred-
icates, followed by range predicates, mixed predicates, and
nested queries that use the IN operator.While simpler queries
with no or fewer joins are prioritized, more complex multi-table
joins are also included. The tables and columns that are used vary
in different queries, where the constraints given by the schema
are used in the join predicates. During the generation, we can also
restrict an equal number of queries for each predicate, which is
particularly useful for classification or testing tasks.

3.1.2 Context-Aware Generation. The generation of queries using
GPT also has the capability to be context-aware, e.g., different ap-
proaches might focus on different predicate conditions to showcase
their performance. An example tailored prompt can be as follows:
Generate a workload of SQL queries with inequality
predicates for testing a cardinality estimator for
the IMDB dataset. The workload should include queries
with simple and compound predicate inequalities.

resulting in queries specifically tailored for this use case:
SELECT * FROM movies WHERE rating > 7.5;
SELECT * FROM movies WHERE release_year < 2000;
SELECT * FROM movies WHERE duration
BETWEEN 90 AND 150 AND rating >= 6;

A step further would be the creation of test queries mimicking a
specific use case, such as:
Generate a workload of SQL queries for testing a
cardinality estimator for the IMDB dataset by
assuming the workload of an accountant of movies.

resulting in queries involving information relevant to an accountant,
such as revenue, movie budgets, durations, and ratings.

3.1.3 Workload Expansion. Given a sample workload and insuffi-
cient data, we aim to generate additional queries to supplement it.
For instance, if the previously represented inequality queries are
provided as a sample, the following queries are generated:
SELECT * FROM movies
WHERE duration > 150 AND rating > 7.5;
SELECT * FROM movies WHERE release_year
BETWEEN 1980 AND 2000 AND rating >= 6.5;

The model extended the queries by varying the numeric ranges and
combining conditions while maintaining the original intent.

3.2 Selectivity & Cost Estimation
Intuitively, when only the schema is provided, the model does
not know anything about the column distribution, and it relies on
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Equality Predicates Only Inequality Predicates Only
Given to the Model Non-Selective Selective Non-Selective Selective

Boundaries & Schema 0.02920 0.00330 0.70965 0.0382
Sample & Schema 0.0342 0.000679 0.6073 0.0133
Histogram & Schema 0.0328 0.0102 0.7143 0.0088

Table 1: Avg. Selectivity for Different Query Types

assumptions. For instance, if we consider a car dataset when asked
for a selective query, GPT invents values that are selective in a
global sense and incorporates them in the query, e.g., ”Rolls-Royce”.
Thus, it is crucial to provide additional information to the model.

To test the behavior of generation based on selectivity, we re-
trieve the starting year of the title table. We first create two broad
prompts, including the sample of the array, one for highly selective
and one for not that selective queries in the form:
Create 20 query predicates with high selectivity that
produce a small number of results as an outcome.

The model generates queries based on the understanding that equal-
ity predicates are associated with high selectivity, while wide-range
predicates are linked to low selectivity. Since GPT cannot provide
an accurate count of the individual elements in a sample list, the
selectivity is assumed to be solely based on assumptions.

To further underpin the problem, we enforce it to generate se-
lective and non-selective predicates for different settings (Table 1).
Boundaries & Schema: GPT generates queries based on the min-
imum and maximum values of the data but lacks knowledge of the
distribution of values within the specified range. As a result, it may
either distribute queries evenly across the range or rely on heuris-
tics to guess common values, such as assuming that recent years are
more frequently represented. For equality queries, this often leads
to poor selectivity since GPT does not have information on which
values are more common or rare. In the case of inequality queries,
GPT sets the predicate boundaries based on the asked selectivity.
Sample & Schema: If the sample is representative, GPT can infer
patterns, such as clusters of frequently occurring years. However, it
does not count occurrences precisely; instead, it estimates based on
the patterns it observes within the sample. As a result, its accuracy
in determining selectivity may be limited.
Histogram&Schema: Similar to previous cases, the model cannot
keep track of the exact data but can recognize what is considered
selective versus non-selective. While GPT may not be able to com-
pute exact counts, it can make better estimates when provided with
a histogram, as it has access to the frequency distribution. The his-
togram helps the model prioritize common values, but the estimates
are still based on patterns rather than exact counts.

While GPT can distinguish between highly selective and non-
selective queries, it cannot generate values in a pre-specified range.
None of the approaches can provide reasonable results when asked
to generate queries in a specific selectivity range, which poses the
question, how will we label the data?

3.3 Scaling to Large Datasets
Last but not least, the runtime cost for generating synthetic work-
loads must also be acceptable. To obtain ballpark numbers, we asked
GPT to generate a number of queries and measure the time it takes.

# Queries 10 20 30 40 50 100

Avg. Time per Query (ms) 486 377 380 415 309 310

Table 2: Execution Time for Different Numbers of Queries

As we can see in Table 2, generating a larger number of queries
slightly reduces the overall average time. The execution time also
depends on factors such as the query size, the input schema, and
the number of tables included in the queries.

4 Related Work
Benchmarking database systems is a core ingredient of scientific
publication and industrial performance studies, with benchmarks
like TPC-H [1], SSB [18], the join order benchmark (JOB) [14], or
TPC-H Skew [3].

Hilprecht and Binnig [10] propose zero-shot learning to train
learned components of a database without costly (re-)training re-
quired in former learned approaches [19]. While aiming at the same
problem as we do, they do this from a completely orthogonal angle.
They propose learning based on data and workloads, and a new
benchmark for which they implement a workload generator using
different patterns of queries. Differently, we propose to leave the
generation of workloads to the LLM—we do not suggest any new
learning methodology. Another related field is automated database
tuning, with recent work on using machine learning methods to
tune various aspects of a database, like index creation, buffer sizes,
etc. [23], to use optimizer hints [21], or using (Large) Language
Models to understand the meaning of parameters and follow their
suggestion [2, 8]. None of these works specifically aims at training
learned components inside a database system.

Essential to our goal of using LLMs for workload generation
is their ability to understand database schemas and to generate
SQL queries. Work on Text-to-SQL [5, 11] is now turning toward
using LLMs [6, 9, 15] and recent off-the-shelf LLMs like GPT show
already an impressive, human-like level of understanding schemas
and query intent and perform very well in Text-to-SQL tasks [7].

5 Conclusion & Outlook
We proposed using generative AI to enhance the applicability of
learned database components by automatically producing database
workloads to support their development and optimization. Through
an initial feasibility study, we highlighted key requirements and
challenges and demonstrated that models like GPT can effectively
assist in working with database schemas and SQL for query gener-
ation, when provided with well-designed prompts.

While GPTmodels are effective at generating diverse SQL queries
under various constraints, generating queries that adhere to specific
selectivity requirements remains a significant challenge. Achieving
fine-grained control over selectivity requires more than language
generation—it necessitates the integration of indexing structures
to guide the generation for correct selectivity filtering and label
assignment. Another promising direction is the generation of pa-
rameterized queries, where selectivity variations are introduced
systematically based on additional statistics, offering greater control
over the diversity and representativeness of generated workloads.
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