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6 Supplementary Material

6.1 Optimization procedure of
Recall that the Lagrangian £, of [CQHF|is:

£,(W,Q. Z,02) =5 |M© (M — Z)[f5 + Tu(W) + 6IW [l + To0 + Bl@la (13)
+ {0z, Z = W.CIQ7) + £ |2 - W.CIQ" [ + Z=(2) (14)

Following the ADMM approach, we alternatingly update primal variables W, () and the auxiliary
variable Z, instead of updating them jointly. In particular, we iteratively solve the following sub-
problems:

2

4 , . 1 g
WD = argmin p HZ“) — W, C1QWT + fa(Z) + BIW |11 (Sub-problem 1)
wew 2 p .
, , , 1 ol
QU = arg min P HZ“) — WY 1QT + fag) + B8Rl 1 (Sub-problem 2)
Qeo 2 P o

2

, 1 . ; 1 @
JAG Y. argmin ~ [M © (M — Z)||2F + 4 HZ _ [W(l-&-l)’C}Q(z-&-l),T + *a(z)
zez 2 2 )

F
(Sub-problem 3)

for some penalty parameter p. We denote the Hadamard product as ®. The vector of Lagrangian
multipliers az is updated via

ag_,_l) - ag) i p(Z(iJrl) _ [V[/(iqtl)7 C](Q(iJrl))T) (15)

Sub-problems 1 and 2 (Equations 2] and [3)

Note that equation 2] (and similarly equation @by taking the transpose) can be split into row-wise
constrained Lasso problem. Specifically, the 7™ row problem can be simplified into:

. ) ) 1
2" = argmin £|b— Aall} + Bllefs, A=QY, b= [Z@ - CQUT + 2o (16)
0<z;<1 p [r,:]

Here we use the Matlab matrix notation H i 1O represent row extraction operation. As suggested in
Gaines et al.|(2018)) one can also use ADMM to solve equation@

i . T i Lo
20 = argmin g Ib— Az|3 + §||$ —y@ ¢ ;M( 5 + Bllzll (17)
. . i 1 7
Y+ = Projig q (20+) + ;M( ) (18)
GO RN CES S CER (19)

Similarly, (s is the vector of Lagrangian multipliers and 7 is the penalty parameter. Proj [0,1hrefers to

the orthogonal projection into [0, 1] (inherited from the box-constraints of ). Equation|l7|can be
solved via the well-established FISTA algorithm (Beck & Teboullel 2009). Consider the following
optimization problem

. 1
argmin A/, + af(x) (20)
The FISTA algorithm for solving[20]is summarized as follows:
To solve equation 17| with FISTA algorithm, using the notation as introduced in equation |16} we have

. 1 .
f(x) =p||b—A$H§+TH$—y(”+;u(”\|§ 2y

14



519

520

521
522
523
524
525
526
527
528
529

530

532

533

535
536
537
538
539

541
542

543

Algorithm 1: FISTA for equation [20]
Initialize: 6 = le—6;2_1 =0,20 =tg =1
Input: L, Lipschitz constant of V f
Result: Solution x of equation
while ||.’£Z — (Ei_1||2 > 4§ do
Tin =2 {Zlzlh + 3 |2 = (2 = £V £ ()]

};

1+4/14482
ti+1 = 2 >

~ t;—1 (~ .
Tit1 = Tiv1 + 3 (Tig1 — x4);

end

To compute L, the Lipschitz constant of V f, we have
Vf(z)=2p (AT Az — b) + 7(z — ¢))
= 2(pAT A+ 71)x — 2(pAT Ab + 1¢) (22)
where ¢ = y(¥) — %u(i). Thus, L is just equal to the largest eigenvalue of 2(pAT A + 71).

As recommended in [Huang et al.| (2016)), ADMM provides flexibility to use various types of loss
functions and regularizations without changing the procedure. For example, we can simply change to
Lo 1 norm and equation|[16/becomes a constrained ridge-regression problem, which can be efficiently
solved by non-negative quadratic programming algorithms. For most clinical usage, the size of
questionnaire data is manageable on a single machine. However, if optimal computational and
memory efficiency is required, various stochastic optimization approaches such as|Mairal et al.|(2010)
can replace the ADMM procedure. Yet, an unbiased sampling scheme for generating random batches
that handles missing responses is also needed. Such a scheme is non-trivial to obtain, especially
under the multi-questionnaires scenario.

Sub-problem 3 (Equation [d)

Since both terms in equation @ are in Frobenius-norm, Z can be optimized entry-wise. In particular,
we have the following closed-form solution for Z(+1):

70D = Proj (M © M + p[WHD, ClQUI)T — ag)) 2 (pL+M) (23
[min(M),max(M)]

where 1 is a I-matrix with appropriate dimension and © is the Hadamard division.

6.2 Details and proof of Preposition 3.1]

In the following, we provide a self-contained convergence proof and show that, under an appropriate
choice of the penalty parameter p, the ADMM optimization scheme discussed in Section[3.2]converges
to a local minimum. To simplify notation, we denote V(%) = {IW() QW) Z(*)} to be the tuple
of variables W, @ and Z during iteration (7), (j) and (k) respectively. If i = j = k, we abbreviate
it as V(). We also denote R® = [W@ C](Q®)T and for any matrices A, B with appropriate
dimensions, (A, B) = Trace(A” B). In the following, we are going to show that the Lagrangian
is decreasing across iterations. Particularly, we consider the difference of Lagrangian between
consecutive iterations:

L, (VD oGy — £, (VD ad))
=L, (VED o0y — £ (WD o0y 4 £, (WD o@Dy — £,(VD, aP) (24)
) (1)

Expanding term (I), we have

£p(w(i+1)’ag+l)) B Ep(w(i+1)7a(zi)) _ <ag+1) B ag)’ Z(i+1) _ R(¢+1)>
1 . (25)

1+1 7
“Jagtt —aP|%
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s44  Expanding term (I]), we have

L, (VY oP)) — £,(VD,a))

(A) (B)
:Ep(w(i+1),ag)) . LP(“;(HLHL@’a(Zfi)> +£P(“r(i+1,i+l,i),Qg)) . Ep(w(iJrl,i,i)’ag))
+ L, (VLD 09y [(s®) of) (26)
©

s45  Expanding (A) by the definition, we have
1 i 1 i i i i
SIME (O = 2D = ZM o (M = ZO) + (o, 2070 — RE+Y)
_{a® 70 _ pl+1) P HZ(iJrl) _ (z‘+1)H2 _p Hz(i) _ (i+1)H2
< z i >+ 2 R Fo 2 R F
= (M@0 = M), M e (20D = Z0)) — Mo (20D - 20|},
+ <ag)7 ZG+D) _ 7@y ¢ p<Z(i+1) _ RU+D_Z(+1) _ Z(i)> —pl| 26D — @2,
- <M © (26D _ M) 4 p. 20D 4 o) _ pREHD | ZGHD) _ Z<i>>
— Mo (25 = 2|5 = pll(20HY = 2|7
— (M (20 = M), (1= M) © (20D - Z0))

se6 Since Z(t1) is the minimizer of equation 4, we have

) 2 . ) 1 ¢ 2
HM © (M — Z““))HF +p HZ(”” _ RO+D ;a(;
F

L2 , , 1 wl?
<|mor-20)| +, Hzm _ RUHD 4 ;on)

F

547 which gives
2(M& (20D = M), M6 (20D = 20)) — Mo (20D - 20)|%
<_9 <p 4GS ag) — pRUFD ZG+1) _ Z(i)> + p|| 26+ — Z(i)HQF
sag It further implies
<p- Z+1) 4 ag) — RO Z(+D) _ Z(¢)>
<= (Mo (24D = M), Mo (219 = 20)) + Mo (264D - 20)]
+ 52— ZO
s49 By direct substitution, we have
(A) < <M © (2D — My, Z6+D Z(i)>
- </\/l ® (204D — M), M & (26D Z<Z‘>)>
+3IME (26 - 202 4 22640 - 2|3 — Mo (26 — Z0)|F
Pl (20D = Z0)E — (M© (20D M), (1 - M) © (20D - 20))

1 i i 4 i i P i i
= — 5IME (20 = 2O - 2200 - 2O)|3 < L)) 20+ - 202 @)
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ss0  For the second term (), by definition, we have,
2

_ . 1 wl?
(B) :g Hz@) — RO+ 4 Zo ()
p F

+ 1R V11 = BIQV .
. O , , .
=p <R(z+1) _ g _ ;a(Z)’ [W(z+1)7 C](Q(ZH),T _ Q(@),T)>

Ny HZ@ WD )T 4 %a?

F

. ) . 2 . .
= 2w, @ T - @A)+ ARVl 199l1)

551 We recall that () is updated via solving constrained Lasso problems for every row Qf:f]l):

z,0<z

, N
y = argmin ||z + g||b — Az||2, where A=[W0tD ] b= [Z“) + oz(Z)} (28)
P [,

ss2  One obtains y if and only if there exists g € J||y||1, the sub-differential of || - ||; such that
pAT (Ay —b) + Bg = 0. (29)
553 As || - ||1 is convex, we have

Izl =yl + (z =y, 9) (30)
s54  which gives

p p
ol = el < (o~ 2. 547y =) = (405 - 2). 5 an - ) 61)
555 Re-substituting x = in):’]T, y = QE:T)’T, A=Wt ), b= {Z(i) + %ag)}[ | and sum over

556 1, we have

BIQ V11 = BIQW1 < —p <R<’“> =20 = 2ol WD, ClQUDT - ¢ >7T>>

(32)
557 Therefore, we have )
(B) < =2 W, cl@i T - n | (33)
558 With similar argument, we can bound (C) by
. ) . 2
© < =2 |iwn — w0 (34)

ss9  To get an upper bound of ||ag+1) - ag) ||%, we have

laf ™ = ol |3
<20+ - ZO)% + | RCTD — RO13,
<N Z0HD = ZO)% + ([, QU+ T — (WD, 1T
+ WD 1T — W, 1|13,
<[ 20D — ZO)3 4+ | [w D, o)QEFDT — QU + || (WD — w@), 01QWT 1%

(35)
se0 Combining equation 23] [35] 26] 27] 33| and [34] with equation 24] we have
Lp(W(iH),a(ZHl)) _ Ep(W(i), ag))
Ly vy @] P H (i+1) @[> _P H (i+1) (i+1),T (i),T H2
<= _ AU AU — 2wt C % T i),
—pHO‘Z 2Z\p 2 r 2 [ ,Cl(@ Q )F
_P H[(Wum _ W(i)),C}Q(“’THQ
2 F
L p i i i i i
<(2-8) - (1264 - 200 + [V, 0T - QU
+ I — W), IO T ) (36)

561 We set p = 3 in all experiments for sufficiency.
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6.3 Details and proof of Preposition

Assume that there is a ground-truth factorization (W*, Q*) of the given M = W*(Q*)T, with latent
dimension £*, where W* and Q* are matrix-valued random variables with entries sampled from
some bounded distributions. With high probability, the error |[M — WQ'||%, we are minimizing
is star-convex towards (W*, Q*) whenever k& = k* (Bjorck et al., [2021). To demonstrate the
importance of the choice of k, we consider the scenario when k # k* below.

First, a more precise assumption for [CQH is to model W as row-independent bounded random
matrices. Recall that W is generated by arranging n participants’ latent representation as rows of
n X k matrix, where the n participants are assumed to be independent from each other and their
corresponding latent representations follow a high-dimensional bounded distribution.

Second, let (W1, Q1) and (W2, Q2) be two factorizations with dimensions k; and ks respectively.
Consider that there exists two factorizations which achieve the same critical point, i.e. (a): equivalent
mismatching loss in expectation, and (b): equivalent expectation approximation to data matrix M:

@: E[IM-W,Qf %] =E[|[M-W,Qj[3] and (b): E[W,Q]] = E[W,Q]]
We also assume (c): E [Z] 1(W7)§H} = oy, and E [Z;n:l(Qz)gﬁ] = ogq, forall k = ki,
1 =1,2.

Expanding (a), we have

E [Trace (M — W1Q7)" (M — W1Q7))] = E [Trace (M — W2Q3)" (M — W2Q3))]
This gives

IE [Trace (W{ W1Q{ Q; — 2M"W;Q7 )] = E [Trace (W3 W2Q3 Q> — 2M"W,Q7 )]
Denote E[W,] = pw,, E[Q;] = nq, fori = 1,2, we have W; = W, + pw, and Q; = Q; + q,»

where W, and Q; denote the corresponding centered variables. Note that by the independence of
‘W, and Q; and linearity of trace and expectation operator,

E [Trace (MTlef)]
=E [Trace (MTW1Q1T + MTWULgl + M7 puw, QT + MTuwl,ugl)]
=Trace(MTE[W]E[Q]]) = Trace(M" E[W,]E[Q]]) = E [Trace (M"W>QJ)]  (37)

which yields
E [Trace (W] W1Q{ Q;)] = E [Trace (W3 W2Q] Q2)] (38)

Consider E [Trace (W] W1QT Q)] via definition, we have
E [Trace (W] W1Q{ Q)]
=Trace (E [W{ W] E [Q] Q1])

(Zya(wo2) -
=Trace | E
+ (Zho(woz,,)
(Zra @) 0
x E
0 (S @uz,)
k1 n m
~ LB | L W0l B2 (Qui (39)
Incorporating assumption (c¢), we have

IE [Trace (W{ W1Q{ Q1)] = kioty,0q, (40)
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Consider equation with ky > k;. For W1,Q;, W.L.O.G. we pad ks — k; columns of zeros.
Moreover, let P be an optimal ko x ko permutation matrix, we also have

IE [Trace (W2P)" W2P(QoP) " QoP)| = E [Trace (W3 W2Q3 Q2)| = koo, 08, (1)

Combining with equation [3§] it is equivalent to

k10,08, = k20,04, 42)
which gives
2 0(232 2 ‘7(292 2
E [[Wil7] = S2E[[W2%] = 52E [[W2P|%] 43)
7Q. 7Q.

To evaluate the impact of interpretability of latent representation under different latent dimension, we
consider E [||[W; — W,P||%]:
E [|W; — WP|%] = E [Trace (W1 — WoP)" (W, — W,P))]
2
o
=E[[Wili] + 3 B [[Wil|7] - 2B [Trace(W W2P)]  (44)

Q2

As Trace(WI W, P) < |W| r||W2P| £, we also have
E [Trace(W{ WoP)| < E[[W1]r] - E[|W2P|r]
2

g
< VEIWR-E[Wal3] = “2E[Wil]  @9)
Q2
which implies
2 7%, | %4 2 74 ’ 2
E (W1~ WoP|3] > (1-2 /22 + 22 B [[Wf3] = (1- /-3 ) E[IWa)3]
Q2 7Q, Q.

(40)

Since W is generated from row-wise independent bounded distribution, if we add a mild assumption
that 03y, := o3y for all i through re-scaling, Equationimplies k10, = k209, and therefore

2
k k k
E [|[W1— Wa|7] > (1 =2 ,j+,j> E[[W1]%] = (w,j 1) E[IWillF] @D
1 1 1

If we substitute k; = k*, (W1, Q1) = (W*,Q*), we have

2
k
E[|W" - Wa|7] > <\/ki - 1) E [[W*II%] (48)

which means the relative expected difference between W* and W5 is bounded below by

2
ky

(VE-)

To prove that equation 8 holds in general, we consider the matrix concentration inequalities and
show that large deviations from their means are exponentially unlikely. Benefitting from the model
constraints, we can further assume that W is generated from some high dimensional bounded
distribution. In the following, we make use of the main theorem proposed in|Meckes & Szarek! (2012)
on concentration of non-commutative random matrices polynomials. As W, are generated from
bounded distributions, ||W; — E[W,]||r is uniformly bounded. Therefore, it satisfies the convex
concentration properties. The theorem achieves the following results:

P {|W[% -~ E[[W]%] > thn?} < C; exp (_02 mm(t?,tlﬂ‘)n) (49)

0,2
Recall that E [||[W1 — W P||3] = E [|[W1]|3] + -2LE [[W1]%] — 2E [Trace(W] W, P)|. By
Q
padding W and W5 with zeros columns, we assumé that W, are all n x n matrices. Then the
probability that the any one of the terms is deviating from their mean by a relative factor € is less than
C exp(—Cae?n) for some small €. By the union bound, the probability that the either of them does
is less than or equal to C3 exp(—Cye’n).
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6.4 Visualization of the experimental setup for diagnostic prediction evaluation
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Figure 4: Setup for diagnostic prediction experiments.
6.5 Table of the 21 questionnaires used in /BN dataset
Table 3: Optimal (k, 8) of all 21 questionnaires.
Questionnaire Abbreviation n questions Subscales &k B
Affective Reactivity Index (Parent-Report) ARI P 7 nan 2 0.01
Affective Reactivity Index (Self-Report) ARIL_S 7 nan 2 0.01
Autism Spectrum Screening Questionnaire ASSQ 27 nan 2 0.01
Conners 3 (Self-Report) C3SR 9 4 0.05
Child Behavior Checklist CBCL 119 9 8 0.5
Extended Strengths and Weaknesses Assessment ESWAN 65 nan 13 0.2
of Normal Behavior
Inventory of Callous-Unemotional Traits ICU_P 24 3 4 0.1
(Parent-Report)
Inventory of Callous-Unemotional Traits ICU_SR 24 3 3 0.1
(Self-Report)
Mood and Feelings Questionnaire MFQ_P 34 nan 2 0.1
(Parent-Report)
Mood and Feelings Questionnaire (Self-Report) MFQ_SR 33 nan 2 0.1
The Positive and Negative Affect Schedule PANAS 20 2 2 0.05
Repetitive Behaviors Scale RBS 43 5 3 0.1
Screen for Child Anxiety Related Disorders SCARED_P 41 5 3 0.1
(Parent-Report)
Screen for Child Anxiety Related Disorders SCARED_SR 41 5 3 0.3
(Self-Report)
Social Communication Questionnaire SCQ 40 nan 4 0.02
Strength and Difficulties Questionnaire SDQ 33 9 6 0.05
Social Responsiveness Scale (School Age) SRS 65 7 3 0.5
The Strengths and Weaknesses Assessment of SWAN 18 2 3 0.02
Normal Behavior Rating Scale for ADHD
Symptom Checklist (Parent-Report) SympChck 63 nan 3 0.1
Teacher Report Form (School Age) TRF 116 19 8 0.5
Youth Self Report YSR 119 11 3 0.2
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612 6.6 Full list of Top 10 questions from factorizing CBCL-HBN questionnaire

CBCL - Factor 1

[CBCL_95] 95. Temper tantrums or hot temper I Aggressive
[CBCL_19] 19. Demands a lot of attention I Aggressive
[CBCL_03] 3. Argues a lot I Aggressive
[CBCL_22] 22. Disobedient at home I Aggressive
[CBCL_68] 68. Screams a lot I Aggressive
[CBCL_41] 41. Impulsive or acts without thinking I Attention

[CBCL_86] 86. Stubborn, sullen, or irritable I Aggressive
[CBCL_28] 28. Breaks rules at home, school, or elsewhere  RuleBreak

[CBCL_27] 27. Easily jealous I Social
[CBCL_104] 104. Unusually loud I Aggressive

010 0j2 0:4 0:6 0.’8 1j0
CBCL - Factor 2
[CBCL_50] 50. Too fearful or anxious r AnxDep
[CBCL_112] 112. Worries r AnxDep
[CBCL_71] 71. Self-conscious or easily embarrassed  AnxDep
[CBCL_45] 45. Nervous, highstrung, or tense r AnxDep
[CBCL_32] 32. Feels he/she has to be perfect r AnxDep
[CBCL_29] 29. Fears certain animals, situations, or places, other than school r AnxDep
[CBCL_75] 75. Too shy or timid r WithDep
[CBCL_103] 103. Unhappy, sad, or depressed F WithDep
[CBCL_35] 35. Feels worthless or inferior r AnxDep
[CBCL_100] 100. Trouble sleeping F Thought
0:0 012 014 016 018
CBCL - Factor 3
[CBCL_08] 8. Can't concentrate, can't pay attention for long [ Attention
[CBCL_78] 78. Inattentive or easily distracted I Attention
[CBCL_10] 10. Can't sit still, restless or hyperactive r Attention
[CBCL_04] 4. Fails to finish things he/she starts r Attention
[CBCL_17] 17. Daydreams or gets lost in his/her thoughts I Attention
[CBCL_61] 61. Poor school work r Attention
[CBCL_41] 41. Impulsive or acts without thinking [ Attention
[CBCL_93] 93. Talks too much r Other

[CBCL_01] 1. Acts too young for his/her age [ Attention
[CBCL_80] 80. Stares blankly r Attention

0.00 025 050 0.75 1.00 1.25

Figure 5: Top 10 questions ranked by @) in CBCL using ) obtained from(Factor 1-3).
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CBCL - Factor 4

[CBCL_61] 61. Poor school work  Attention
[CBCL_69] 69. Secretive, keeps things to self F WithDep
[CBCL_05] 5. There is very little he/she enjoys F WithDep
[CBCL_26] 26. Doesn't seem to feel guilty after misbehaving I RuleBreak
[CBCL_04] 4. Fails to finish things he/she starts [ Attention
[CBCL_28] 28. Breaks rules at home, school, or elsewhere  RuleBreak
[CBCL_43] 43. Lying or cheating I RuleBreak
[CBCL_42] 42. Would rather be along than with others F WithDep
[CBCL_103] 103. Unhappy, sad, or depressed F WithDep
[CBCL_102] 102. Underactive, slow moving, or lacks energy F WithDep
0:0 0:2 0:4 0:6 0.'8
CBCL - Factor 5
[CBCL_79] 79. Speech problem r Social
[CBCL_01] 1. Acts too young for his/her age [ Attention
[CBCL_64] 64. Prefers being with younger kids F Social
[CBCL_66] 66. Repeats certain acts over and over; compulsions  Thought
[CBCL_62] 62. Poorly coordinated or clumsy F Social
[CBCL_38] 38. Gets teased a lot F Social
[CBCL_84] 84. Strange behavior  Thought
[CBCL_48] 48. Not liked by other kids r Social
[CBCL_42] 42. Would rather be along than with others F WithDep
[CBCL_80] 80. Stares blankly [ Attention

0.00 025 050 0.75 1.00 1.25

CBCL - Factor 6

[CBCL_07] 7. Bragging, boasting I Other
[CBCL_74] 74. Showing off or clowning F Other
[CBCL_44] 44. Bites fingernails  Other
[CBCL_93] 93. Talks too much  Other
[CBCL_56F] 56F. Stomachaches F Somatic
[CBCL_56B] 56B. Headaches F Somatic
[CBCL_43] 43. Lying or cheating I RuleBreak
[CBCL_63] 63. Prefers being with older kids  RuleBreak
[CBCL_58] 58. Picks nose, skin, or other parts of body  Thought
[CBCL_38] 38. Gets teased a lot I Social

0.0 0.2 0.4 0.6

Figure 6: Top 10 questions ranked by () in CBCL using () obtained from (Factor 4-6).
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CBCL - Factor 7

[CBCL_55] 55. Overweight r Other
[CBCL_53] 53. Overeating r Other
[CBCL_102] 102. Underactive, slow moving, or lacks energy r WithDep
[CBCL_56B] 56B. Headaches F Somatic
[CBCL_56A] 56A. Aches or pains (not stomach or headaches) F Somatic
[CBCL_54] 54. Overtired without good reason F Somatic
[CBCL_62] 62. Poorly coordinated or clumsy F Social
[CBCL_56F] 56F. Stomachaches F Somatic
[CBCL_56C] 56C. Nausea, feels sick F Somatic
[CBCL_36] 36. Gets hurt a lot, accident-prone r Social
CBCL - Factor 8
[CBCL_44] 44. Bites fingernails I Other
[CBCL_58] 58. Picks nose, skin, or other parts of body I Thought
[CBCL_45] 45. Nervous, highstrung, or tense I AnxDep
[CBCL_46] 46. Nervous movements or twitching I Thought
[CBCL_109] 109. Whining I Other
[CBCL_86] 86. Stubborn, sullen, or irritable I Aggressive
[CBCL_95] 95. Temper tantrums or hot temper I Aggressive
[CBCL_01] 1. Acts too young for his/her age I Attention
[CBCL_03] 3. Argues a lot I Aggressive
[CBCL_68] 68. Screams a lot I Aggressive

Figure 7: Top 10 questions ranked by Q in CBCL using () obtained from (Factor 7-8).
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