
6 Supplementary Material500

6.1 Optimization procedure of ICQF501

Recall that the Lagrangian Lρ of ICQF is:502

Lρ(W,Q,Z, αZ) =
1

2
∥M⊙ (M − Z)∥2F + IW(W ) + β∥W∥1,1 + IQ() + β∥Q∥1,1 (13)

+
〈
αZ , Z − [W,C]QT

〉
+

ρ

2

∥∥Z − [W,C]QT
∥∥2
F
+ IZ(Z) (14)

Following the ADMM approach, we alternatingly update primal variables W,Q and the auxiliary503

variable Z, instead of updating them jointly. In particular, we iteratively solve the following sub-504

problems:505

W (i+1) = argmin
W∈W

ρ

2

∥∥∥∥Z(i) − [W,C]Q(i),T +
1

ρ
α
(i)
Z

∥∥∥∥2
F

+ β∥W∥1,1 (Sub-problem 1)

Q(i+1) = argmin
Q∈Q

ρ

2

∥∥∥∥Z(i) − [W (i+1), C]QT +
1

ρ
α
(i)
Z

∥∥∥∥2
F

+ β∥Q∥1,1 (Sub-problem 2)

Z(i+1) = argmin
Z∈Z

1

2
∥M⊙ (M − Z)∥2F +

ρ

2

∥∥∥∥Z − [W (i+1), C]Q(i+1),T +
1

ρ
α
(i)
Z

∥∥∥∥2
F

(Sub-problem 3)

for some penalty parameter ρ. We denote the Hadamard product as ⊙. The vector of Lagrangian506

multipliers αZ is updated via507

α
(i+1)
Z ← α

(i)
Z + ρ(Z(i+1) − [W (i+1), C](Q(i+1))T ) (15)

Sub-problems 1 and 2 (Equations 2 and 3)508

Note that equation 2 (and similarly equation 3 by taking the transpose) can be split into row-wise509

constrained Lasso problem. Specifically, the rth row problem can be simplified into:510

x∗ = argmin
0≤xi≤1

ρ

2
∥b−Ax∥2F + β∥x∥1, A = Q(i), b =

[
Z(i) − CQ(i),T +

1

ρ
α
(i)
Z

]
[r,:]

(16)

Here we use the Matlab matrix notation
[
·
]
[r,:]

to represent row extraction operation. As suggested in511

Gaines et al. (2018) one can also use ADMM to solve equation 16:512

x(i+1) = argmin
ρ

2
∥b−Ax∥22 +

τ

2
∥x− y(i) +

1

τ
µ(i)∥22 + β∥x∥1 (17)

y(i+1) = Proj[0,1](x
(i+1) +

1

τ
µ(i)) (18)

µ(i+1) ← µ(i) + τ(x(i+1) − y(i+1)) (19)

Similarly, µ is the vector of Lagrangian multipliers and τ is the penalty parameter. Proj[0,1] refers to513

the orthogonal projection into [0, 1] (inherited from the box-constraints of W ). Equation 17 can be514

solved via the well-established FISTA algorithm (Beck & Teboulle, 2009). Consider the following515

optimization problem516

argmin
x

λ∥x∥1 +
1

2
f(x) (20)

The FISTA algorithm for solving 20 is summarized as follows:517

To solve equation 17 with FISTA algorithm, using the notation as introduced in equation 16, we have518

f(x) = ρ∥b−Ax∥22 + τ∥x− y(i) +
1

τ
µ(i)∥22 (21)
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Algorithm 1: FISTA for equation 20
Initialize: δ = 1e−6; x−1 = 0, x0 = t0 = 1
Input: L, Lipschitz constant of∇f
Result: Solution x of equation 20
while ∥xi − xi−1∥2 > δ do

x̃i+1 =z

{
λ
L∥z∥1 +

1
2

∥∥z − (xi − 1
L∇f(xi)

)∥∥};

ti+1 =
1+
√

1+4t2i
2 ;

xi+1 = x̃i+1 +
ti−1
ti+1

(x̃i+1 − xi);
end

To compute L, the Lipschitz constant of∇f , we have519

∇f(x) = 2ρ
(
ATA(x− b) + τ(x− c)

)
= 2(ρATA+ τI)x− 2(ρATAb+ τc) (22)

where c = y(i) − 1
τ µ

(i). Thus, L is just equal to the largest eigenvalue of 2(ρATA+ τI).520

As recommended in Huang et al. (2016), ADMM provides flexibility to use various types of loss521

functions and regularizations without changing the procedure. For example, we can simply change to522

L2,1 norm and equation 16 becomes a constrained ridge-regression problem, which can be efficiently523

solved by non-negative quadratic programming algorithms. For most clinical usage, the size of524

questionnaire data is manageable on a single machine. However, if optimal computational and525

memory efficiency is required, various stochastic optimization approaches such as Mairal et al. (2010)526

can replace the ADMM procedure. Yet, an unbiased sampling scheme for generating random batches527

that handles missing responses is also needed. Such a scheme is non-trivial to obtain, especially528

under the multi-questionnaires scenario.529

Sub-problem 3 (Equation 4)530

Since both terms in equation 4 are in Frobenius-norm, Z can be optimized entry-wise. In particular,531

we have the following closed-form solution for Z(i+1):532

Z(i+1) = Proj
[min(M),max(M)]

(
M⊙M + ρ[W (i+1), C](Q(i+1))T − α

(i)
Z

)
⊘ (ρ1+M) (23)

where 1 is a 1-matrix with appropriate dimension and ⊘ is the Hadamard division.533

6.2 Details and proof of Preposition 3.1534

In the following, we provide a self-contained convergence proof and show that, under an appropriate535

choice of the penalty parameter ρ, the ADMM optimization scheme discussed in Section 3.2 converges536

to a local minimum. To simplify notation, we denoteV(i,j,k) = {W (i), Q(j), Z(k)} to be the tuple537

of variables W,Q and Z during iteration (i), (j) and (k) respectively. If i = j = k, we abbreviate538

it as V(i). We also denote R(i) = [W (i), C](Q(i))T and for any matrices A,B with appropriate539

dimensions, ⟨A,B⟩ = Trace(ATB). In the following, we are going to show that the Lagrangian540

is decreasing across iterations. Particularly, we consider the difference of Lagrangian between541

consecutive iterations:542

Lρ(V
(i+1), α

(i+1)
Z )− Lρ(V

(i), α
(i)
Z )

=Lρ(V
(i+1), α

(i+1)
Z )− Lρ(V

(i+1), α
(i)
Z )︸ ︷︷ ︸

(I)

+Lρ(V
(i+1), α

(i)
Z )− Lρ(V

(i), α
(i)
Z )︸ ︷︷ ︸

(II)

(24)

Expanding term (I), we have543

Lρ(V
(i+1), α

(i+1)
Z )− Lρ(V

(i+1), α
(i)
Z ) =

〈
α
(i+1)
Z − α

(i)
Z , Z(i+1) −R(i+1)

〉
=

1

ρ
∥α(i+1)

Z − α
(i)
Z ∥

2
F

(25)
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Expanding term (II), we have544

Lρ(V
(i+1), α

(i)
Z )− Lρ(V

(i), α
(i)
Z )

=

(A)︷ ︸︸ ︷
Lρ(V

(i+1), α
(i)
Z )− Lρ(V

(i+1,i+1,i), α
(i)
Z )+

(B)︷ ︸︸ ︷
Lρ(V

(i+1,i+1,i), α
(i)
Z )− Lρ(V

(i+1,i,i), α
(i)
Z )

+ Lρ(V
(i+1,i,i), α

(i)
Z )− L(S(k), α

(i)
Z )︸ ︷︷ ︸

(C)

(26)

Expanding (A) by the definition, we have545

1

2
∥M⊙ (M − Z(i+1))∥2F −

1

2
∥M⊙ (M − Z(i))∥2F +

〈
α
(i)
Z , Z(i+1) −R(i+1)

〉
−
〈
α
(i)
Z , Z(i) −R(i+1)

〉
+

ρ

2

∥∥∥Z(i+1) −R(i+1)
∥∥∥2
F
− ρ

2

∥∥∥Z(i) −R(i+1)
∥∥∥2
F

=
〈
M⊙ (Z(i+1) −M),M⊙ (Z(i+1) − Z(i))

〉
− ∥M⊙ (Z(i+1) − Z(i))∥2F

+ ⟨α(i)
Z , Z(i+1) − Z(i)⟩+ ρ

〈
Z(i+1) −R(i+1), Z(i+1) − Z(i)

〉
− ρ∥Z(i+1) − Z(i)∥2F

=
〈
M⊙ (Z(i+1) −M) + ρ · Z(i+1) + α

(i)
Z − ρR(i+1), Z(i+1) − Z(i)

〉
− ∥M⊙ (Z(i+1) − Z(i))∥2F − ρ∥(Z(i+1) − Z(i))∥2F
−
〈
M⊙ (Z(i+1) −M), (1−M)⊙ (Z(i+1) − Z(i))

〉
Since Z(i+1) is the minimizer of equation 4, we have546 ∥∥∥M⊙ (M − Z(i+1))

∥∥∥2
F
+ ρ

∥∥∥∥Z(i+1) −R(i+1) +
1

ρ
α
(i)
Z

∥∥∥∥2
F

≤
∥∥∥M⊙ (M − Z(i))

∥∥∥2
F
+ ρ

∥∥∥∥Z(i) −R(i+1) +
1

ρ
α
(i)
Z

∥∥∥∥2
F

which gives547

2
〈
M⊙ (Z(i+1) −M),M⊙ (Z(i+1) − Z(i))

〉
− ∥M⊙ (Z(i+1) − Z(i))∥2F

≤− 2
〈
ρ · Z(i+1) + α

(i)
Z − ρR(i+1), Z(i+1) − Z(i)

〉
+ ρ∥Z(i+1) − Z(i)∥2F

It further implies548 〈
ρ · Z(i+1) + α

(i)
Z − ρR(i+1), Z(i+1) − Z(i)

〉
≤−

〈
M⊙ (Z(i+1) −M),M⊙ (Z(i+1) − Z(i))

〉
+

1

2
∥M⊙ (Z(i+1) − Z(i))∥2F

+
ρ

2
∥Z(i+1) − Z(i)∥2F

By direct substitution, we have549

(A) ≤
〈
M⊙ (Z(i+1) −M), Z(i+1) − Z(i)

〉
−
〈
M⊙ (Z(i+1) −M),M⊙ (Z(i+1) − Z(i))

〉
+

1

2
∥M⊙ (Z(i+1) − Z(i)∥2F +

ρ

2
∥Z(i+1) − Z(i)∥2F − ∥M⊙ (Z(i+1) − Z(i))∥2F

− ρ∥(Z(i+1) − Z(i))∥2F −
〈
M⊙ (Z(i+1) −M), (1−M)⊙ (Z(i+1) − Z(i))

〉
=− 1

2
∥M⊙ (Z(i+1) − Z(i))∥2F −

ρ

2
∥(Z(i+1) − Z(i))∥2F ≤ −

ρ

2
∥(Z(i+1) − Z(i))∥2F (27)
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For the second term (B), by definition, we have,550

(B) =ρ

2

∥∥∥∥Z(i) −R(i+1) +
1

ρ
α
(i)
Z

∥∥∥∥2
F

− ρ

2

∥∥∥∥Z(i) − [W (i+1), C]Q(i),T +
1

ρ
α
(i)
Z

∥∥∥∥2
F

+ β∥Q(i+1)∥1,1 − β∥Q(i)∥1,1

=ρ

〈
R(i+1) − Z(i) − 1

ρ
α
(i)
Z , [W (i+1), C](Q(i+1),T −Q(i),T )

〉
− ρ

2

∥∥∥[W (i+1), C](Q(i+1),T −Q(i),T )
∥∥∥2
F
+ β(∥Q(i+1)∥1,1 − ∥Q(i)∥1,1)

We recall that Q is updated via solving constrained Lasso problems for every row Q
(i+1)
[r,:] :551

y = argmin
x,0≤x

β∥x∥1 +
ρ

2
∥b−Ax∥22, where A = [W (i+1), C], b =

[
Z(i) +

1

ρ
α
(i)
Z

]
[r,:]

(28)

One obtains y if and only if there exists g ∈ ∂∥y∥1, the sub-differential of ∥ · ∥1 such that552

ρAT (Ay − b) + βg = 0. (29)
As ∥ · ∥1 is convex, we have553

∥x∥1 ≥ ∥y∥1 + ⟨x− y, g⟩ (30)
which gives554

∥y∥1 − ∥x∥1 ≤
〈
y − x,

ρ

β
AT (Ay − b)

〉
=

〈
A(y − x),

ρ

β
(Ay − b)

〉
(31)

Re-substituting x = Q
(i),T
[r,:] , y = Q

(i+1),T
[r,:] , A = [W (i+1), C], b =

[
Z(i) + 1

ρα
(i)
Z

]
[r,:]

and sum over555

r, we have556

β∥Q(i+1)∥1,1 − β∥Q(i)∥1,1 ≤ −ρ
〈
R(i+1) − Z(i) − 1

ρ
α
(i)
Z , [W (i+1), C](Q(i+1),T −Q(i),T )

〉
(32)

Therefore, we have557

(B) ≤ −ρ

2

∥∥∥[W (i+1), C](Q(i+1),T −Q(i),T )
∥∥∥2
F

(33)

With similar argument, we can bound (C) by558

(C) ≤ −ρ

2

∥∥∥[(W (i+1) −W (i)), C]Q(i),T
∥∥∥2
F

(34)

To get an upper bound of ∥α(i+1)
Z − α

(i)
Z ∥2F , we have559

∥α(i+1)
Z − α

(i)
Z ∥

2
F

≤∥Z(i+1) − Z(i)∥2F + ∥R(i+1) −R(i)∥2F
≤∥Z(i+1) − Z(i)∥2F + ∥[W (i+1), C]Q(i+1),T − [W (i+1), C]Q(i),T ∥2F

+ ∥[W (i+1), C]Q(i),T − [W (i), C]Q(i),T ∥2F
≤∥Z(i+1) − Z(i)∥2F + ∥[W (i+1), C](Q(i+1),T −Q(i),T )∥2F + ∥[(W (i+1) −W (i)), C]Q(i),T ∥2F

(35)

Combining equation 25, 35, 26, 27, 33 and 34 with equation 24, we have560

Lρ(V
(i+1), α

(i+1)
Z )− Lρ(V

(i), α
(i)
Z )

≤1

ρ

∥∥∥α(i+1)
Z − α

(i)
Z

∥∥∥2
F
− ρ

2

∥∥∥Z(i+1) − Z(i)
∥∥∥2
F
− ρ

2

∥∥∥[W (i+1), C](Q(i+1),T −Q(i),T )
∥∥∥2
F

− ρ

2

∥∥∥[(W (i+1) −W (i)), C]Q(i),T
∥∥∥2
F

≤
(
1

ρ
− ρ

2

)
·
(
∥Z(i+1) − Z(i)∥2F + ∥[W (i+1), C](Q(i+1),T −Q(i),T )∥2F

+ ∥[(W (i+1) −W (i)), C]Q(i),T ∥2F
)
. (36)

We set ρ = 3 in all experiments for sufficiency.561
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6.3 Details and proof of Preposition 3.2562

Assume that there is a ground-truth factorization (W∗,Q∗) of the given M = W∗(Q∗)T , with latent563

dimension k∗, where W∗ and Q∗ are matrix-valued random variables with entries sampled from564

some bounded distributions. With high probability, the error ∥M −WQT ∥2F we are minimizing565

is star-convex towards (W∗,Q∗) whenever k = k∗ (Bjorck et al., 2021). To demonstrate the566

importance of the choice of k, we consider the scenario when k ̸= k∗ below.567

First, a more precise assumption for ICQF is to model W as row-independent bounded random568

matrices. Recall that W is generated by arranging n participants’ latent representation as rows of569

n × k matrix, where the n participants are assumed to be independent from each other and their570

corresponding latent representations follow a high-dimensional bounded distribution.571

Second, let (W1,Q1) and (W2,Q2) be two factorizations with dimensions k1 and k2 respectively.572

Consider that there exists two factorizations which achieve the same critical point, i.e. (a): equivalent573

mismatching loss in expectation, and (b): equivalent expectation approximation to data matrix M:574

(a) : E
[
∥M−W1Q

T
1 ∥2F

]
= E

[
∥M−W2Q

T
2 ∥2F

]
and (b) : E[W1Q

T
1 ] = E[W2Q

T
2 ]

We also assume (c): E
[∑n

j=1(Wi)
2
jκ

]
:= σ2

Wi
and E

[∑m
j=1(Qi)

2
jκ

]
:= σ2

Qi
for all κ = ki,575

i = 1, 2.576

Expanding (a), we have577

E
[
Trace

(
(M−W1Q

T
1 )

T (M−W1Q
T
1 )
)]

= E
[
Trace

(
(M−W2Q

T
2 )

T (M−W2Q
T
2 )
)]

This gives578

E
[
Trace

(
WT

1 W1Q
T
1 Q1 − 2MTW1Q

T
1

)]
= E

[
Trace

(
WT

2 W2Q
T
2 Q2 − 2MTW2Q

T
2

)]
Denote E[Wi] = µWi , E[Qi] = µQi for i = 1, 2, we have Wi = W̄i +µWi and Qi = Q̄i +µQi ,579

where W̄i and Q̄i denote the corresponding centered variables. Note that by the independence of580

Wi and Qi and linearity of trace and expectation operator,581

E
[
Trace

(
MTW1Q

T
1

)]
=E

[
Trace

(
MTW̄1Q̄

T
1 +MTW̄1µ

T
Q1

+MTµW1
Q̄T

1 +MTµW1
µT
Q1

)]
=Trace(MT

E[W1]E[Q
T
1 ]) = Trace(MT

E[W2]E[Q
T
2 ]) = E

[
Trace

(
MTW2Q

T
2

)]
(37)

which yields582

E
[
Trace

(
WT

1 W1Q
T
1 Q1

)]
= E

[
Trace

(
WT

2 W2Q
T
2 Q2

)]
(38)

Consider E
[
Trace

(
WT

1 W1Q
T
1 Q1

)]
via definition, we have583

E
[
Trace

(
WT

1 W1Q
T
1 Q1

)]
=Trace

(
E
[
WT

1 W1

]
E
[
QT

1 Q1

])
=Trace

E

(∑n

j=1(W1)
2
j1

)
∗

. . .

∗
(∑n

j=1(W1)
2
jk1

)


× E


(∑m

j=1(Q1)
2
j1

)
0

. . .

0
(∑m

j=1(Q1)
2
jk1

)



=

k1∑
κ=1

E

 n∑
j=1

(W1)
2
jκ

E
 m∑
j=1

(Q1)
2
jκ

 (39)

Incorporating assumption (c), we have584

E
[
Trace

(
WT

1 W1Q
T
1 Q1

)]
= k1σ

2
W1

σ2
Q1

(40)
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Consider equation 38 with k2 > k1. For W1,Q1, W.L.O.G. we pad k2 − k1 columns of zeros.585

Moreover, let P be an optimal k2 × k2 permutation matrix, we also have586

E
[
Trace

(
(W2P)TW2P(Q2P)TQ2P

)]
= E

[
Trace

(
WT

2 W2Q
T
2 Q2

)]
= k2σ

2
W2

σ2
Q2

(41)

Combining with equation 38, it is equivalent to587

k1σ
2
W1

σ2
Q1

= k2σ
2
W2

σ2
Q2

(42)

which gives588

E
[
∥W1∥2F

]
=

σ2
Q2

σ2
Q1

E
[
∥W2∥2F

]
=

σ2
Q2

σ2
Q1

E
[
∥W2P∥2F

]
(43)

To evaluate the impact of interpretability of latent representation under different latent dimension, we589

consider E
[
∥W1 −W2P∥2F

]
:590

E
[
∥W1 −W2P∥2F

]
= E

[
Trace

(
(W1 −W2P)T (W1 −W2P)

)]
= E

[
∥W1∥2F

]
+

σ2
Q1

σ2
Q2

E
[
∥W1∥2F

]
− 2E

[
Trace(WT

1 W2P)
]

(44)

As Trace(WT
1 W2P ) ≤ ∥W1∥F ∥W2P∥F , we also have591

E
[
Trace(WT

1 W2P)
]
≤ E [∥W1∥F ] ·E [∥W2P∥F ]

≤
√
E [∥W1∥2F ] ·E [∥W2∥2F ] =

√
σ2
Q1

σ2
Q2

E
[
∥W1∥2F

]
(45)

which implies592

E
[
∥W1 −W2P∥2F

]
≥

(
1− 2

√
σ2
Q1

σ2
Q2

+
σ2
Q1

σ2
Q2

)
E
[
∥W1∥2F

]
=

(
1−

√
σ2
Q1

σ2
Q2

)2

E
[
∥W1∥2F

]
(46)

Since Wi is generated from row-wise independent bounded distribution, if we add a mild assumption593

that σ2
Wi

:= σ2
W for all i through re-scaling, Equation 42 implies k1σ2

Q1
= k2σ

2
Q2

and therefore594

E
[
∥W1 −W2∥2F

]
≥

(
1− 2

√
k2
k1

+
k2
k1

)
E
[
∥W1∥2F

]
=

(√
k2
k1
− 1

)2

E
[
∥W1∥2F

]
(47)

If we substitute k1 = k∗, (W1,Q1) = (W∗,Q∗), we have595

E
[
∥W∗ −W2∥2F

]
≥

(√
k2
k∗
− 1

)2

E
[
∥W∗∥2F

]
(48)

which means the relative expected difference between W∗ and W2 is bounded below by596 (√
k2

k∗ − 1

)2

.597

To prove that equation 48 holds in general, we consider the matrix concentration inequalities and598

show that large deviations from their means are exponentially unlikely. Benefitting from the model599

constraints, we can further assume that W is generated from some high dimensional bounded600

distribution. In the following, we make use of the main theorem proposed in Meckes & Szarek (2012)601

on concentration of non-commutative random matrices polynomials. As Wi are generated from602

bounded distributions, ∥Wi − E[Wi]∥F is uniformly bounded. Therefore, it satisfies the convex603

concentration properties. The theorem achieves the following results:604

P
{
∥W∥2F −E

[
∥W∥2F

]
> tkn2

}
≤ C1 exp

(
−C2 min(t2, t1/2)n

)
(49)

Recall thatE
[
∥W1 −W2P∥2F

]
= E

[
∥W1∥2F

]
+

σ2
Q1

σ2
Q2

E
[
∥W1∥2F

]
− 2E

[
Trace(WT

1 W2P)
]
. By605

padding W1 and W2 with zeros columns, we assume that Wi are all n × n matrices. Then the606

probability that the any one of the terms is deviating from their mean by a relative factor ϵ is less than607

C1 exp(−C2ϵ
2n) for some small ϵ. By the union bound, the probability that the either of them does608

is less than or equal to C3 exp(−C4ϵ
2n).609
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6.4 Visualization of the experimental setup for diagnostic prediction evaluation610

Figure 4: Setup for diagnostic prediction experiments.

6.5 Table of the 21 questionnaires used in HBN dataset611

Table 3: Optimal (k, β) of all 21 questionnaires.

Questionnaire Abbreviation n questions Subscales k β
Affective Reactivity Index (Parent-Report) ARI_P 7 nan 2 0.01
Affective Reactivity Index (Self-Report) ARI_S 7 nan 2 0.01
Autism Spectrum Screening Questionnaire ASSQ 27 nan 2 0.01
Conners 3 (Self-Report) C3SR 9 4 0.05
Child Behavior Checklist CBCL 119 9 8 0.5
Extended Strengths and Weaknesses Assessment
of Normal Behavior

ESWAN 65 nan 13 0.2

Inventory of Callous-Unemotional Traits
(Parent-Report)

ICU_P 24 3 4 0.1

Inventory of Callous-Unemotional Traits
(Self-Report)

ICU_SR 24 3 3 0.1

Mood and Feelings Questionnaire
(Parent-Report)

MFQ_P 34 nan 2 0.1

Mood and Feelings Questionnaire (Self-Report) MFQ_SR 33 nan 2 0.1
The Positive and Negative Affect Schedule PANAS 20 2 2 0.05
Repetitive Behaviors Scale RBS 43 5 3 0.1
Screen for Child Anxiety Related Disorders
(Parent-Report)

SCARED_P 41 5 3 0.1

Screen for Child Anxiety Related Disorders
(Self-Report)

SCARED_SR 41 5 3 0.3

Social Communication Questionnaire SCQ 40 nan 4 0.02
Strength and Difficulties Questionnaire SDQ 33 9 6 0.05
Social Responsiveness Scale (School Age) SRS 65 7 3 0.5
The Strengths and Weaknesses Assessment of
Normal Behavior Rating Scale for ADHD

SWAN 18 2 3 0.02

Symptom Checklist (Parent-Report) SympChck 63 nan 3 0.1
Teacher Report Form (School Age) TRF 116 19 8 0.5
Youth Self Report YSR 119 11 3 0.2
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6.6 Full list of Top 10 questions from factorizing CBCL-HBN questionnaire612

Figure 5: Top 10 questions ranked by Q in CBCL using Q obtained from ICQF (Factor 1-3).
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Figure 6: Top 10 questions ranked by Q in CBCL using Q obtained from ICQF (Factor 4-6).
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Figure 7: Top 10 questions ranked by Q in CBCL using Q obtained from ICQF (Factor 7-8).
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