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A.1 Extended Related Work25

A.1.1 Datasets/Benchmarks26

To drive the progress in Video QA, researchers have developed various datasets with distinct focuses27

and contributions. In the following, we will delve into the landscape of Video QA datasets, examining28

their characteristics, limitations, and the specific areas they address.29

Early Video QA Datasets. During the early stages of Video QA research, several datasets relied30

on video captions or descriptions to automatically generate questions and corresponding answers.31

Examples of these datasets include MovieFIB [15], MSVD-QA [20], MSRVTT-QA [20], YouTube2Text32

[6], open-ended QA, Zeng et al., and Video Context-QA[26]. These datasets played a crucial role in33

the initial exploration of Video QA but were primarily limited to object and action recognition. They34

lacked the ability to go beyond these basic visual cues, which posed limitations in understanding35

complex interactions and causal relationships within videos.36

TGIF-QA [7, 8] focuses on short videos and relies on captions to generate questions and answers,37

but it is limited in its coverage of object interactions and causal reasoning. On the other hand,38

ActivityNet-QA [23] annotates longer web videos, offering a broader range of content, but it also39

lacks in capturing complex reasoning. Both datasets fall short in capturing the depth and complexity40

required for comprehensive video question answering; they did not fully explore questions and41

answers involving object interactions and causal relationships.42

The Social-IQ [24] dataset is designed to address questions related to human social behavior in videos,43

relying on multimodal cues for answering. This dataset emphasizes the importance of understanding44

social interactions and dynamics within video content. By focusing on human behavior, Social-IQ45

offers a unique perspective in video question answering. However, it should be noted that this dataset46

primarily relies on multimodal cues, meaning that the answers to the questions heavily depend on47

the combination of visual and other sensory information, and as such cannot be used as a visual48

reasoning dataset. While it provides valuable insights into social aspects of video content, the dataset49

may not fully capture the broader context and reasoning required for comprehensive video question50

answering.51

CLEVRER [22] dataset covers temporal and causal relationships using collision events between52

various objects. Being limited to simple, inanimate objects and collision events, it does not cover53

reasoning involving emotions and intentions; objects do not have any characteristics; actions do54

not have motivation or rationale; limited set of events; scene does not have an actually involved55

background; character-object interaction is lacking. Moreover, the reasoning is over a shorter56

temporal horizon than ours. Since it is a synthetic dataset with programmatically generated QA pairs,57

there is also a lack of diversity in natural language descriptions of the events and human judgments.58

CLEVRER-Humans [17] bridges this language gap, but, other shortcomings still persist.59

AGQA [5] focuses on spatio-temporal scene understanding. For example, Did they <action1> or60

<action2>for longer? What did the person do after <action>? What were they <action> first/last?61

STAR, a situation reasoning dataset, additionally, covers prediction and feasibility questions. However,62

they do not cover explanatory “why” questions like ours.63

We have discussed and compared with NextQA [19], CausalVidQA [11], IntentQA [13] in detail in64

the main paper. Here we provide some additional details on them. NextQA [19] contains descriptive65

(related to location, counting, yes/no), temporal (related to temporal ordering previous, next), and66

causal questions. CausalVidQA [11] contains descriptive, causal, predictive, and counterfactual.67

While they provide a rationale for predictive and counterfactual, they do not explore and provide multi-68

level answers and explanations for Why-questions, while our dataset does provide them. IntentQA69

[13], a concurrent dataset explores understanding motivations based on context. Their dataset is70

derived from NextQA causal and temporal questions, but they construct their dataset in a contrastive71

manner such that the same actions under different contexts lead to different underlying intents.72

A.1.2 Models73

In the following, we have discussed the state-of-the-art VideoQA models that we have benchmarked74

on VisCAQA dataset in the main paper. We have discussed their central concepts and unique design75

characteristics.76
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• BlindQA [1]. In this approach, no visual information is leveraged. Answers are chosen77

directly based on the questions. In a nutshell, this model learns a mapping from question to78

answer. Higher performance by method would suggest that the dataset contains questions79

that are not visually-grounded.80

• EVQA [1]. This method extends BlindQA baseline by incorporating the visual stream81

modeled by an LSTM.82

• Spatio-Temporal Reasoning in Visual Question Answering (STVQA) [7]. This work intro-83

duces three novel video QA tasks that demand spatio-temporal reasoning skills to answer84

questions accurately. In addition, a new TGIF-QA dataset has been created to facilitate85

research in this field. To address this issue, a dual-LSTM-based approach with both spatial86

and temporal attention mechanisms has been proposed as a baseline model.87

• Motion-Appearance Co-Memory Networks (CoMem) [4]. A novel Video QA framework,88

combining Dynamic Memory Network (DMN) principles with motion and appearance89

features. This innovative approach leverages a co-memory attention mechanism to incor-90

porate both motion and appearance cues. It employs a temporal conv-deconv network to91

create multi-level contextual information and utilizes a dynamic fact ensemble method for92

constructing dynamic temporal representations tailored to specific questions.93

• Heterogeneous Memory Enhanced Multimodal Attention Model (HME) [2].This innovative94

end-to-end trainable Video QA framework begins by generating global context-aware visual95

and textual features. It achieves this by interacting the current inputs with memory contents.96

Subsequently, it integrates these multimodal features through attentional fusion to make97

accurate inferences for answering questions.98

• HCRN [10]. This is a hierarchical framework with conditional relation networks as building99

blocks models input video at multiple scales (clip-, full video-level) in a cascaded manner.100

Visual features at each level are conditioned on the question features. The joint representation101

is fed into the classifier for answer prediction.102

• HGA [9]. Leverages heterogeneous graph reasoning module and a co-attention unit to103

capture the local and global correlations between video clips, linguistic concepts and their104

cross-modal correspondences.105

• Multimodal Iterative Spatial-temporal Transformer (MIST) [3]. MIST, designed for long-106

form Video Question Answering (VideoQA), revolutionizes conventional dense spatial-107

temporal self-attention. It accomplishes this by utilizing two critical modules: segment and108

region selection, which adaptively pick out frames and image regions tied to the questions.109

Following this, it processes diverse visual concepts effectively with an attention mechanism.110

This process occurs iteratively across multiple layers, empowering the model with multi-111

event reasoning capabilities.112

A.2 Implementation details113

We use the publicly available github code repository: https://github.com/doc-doc/NExT-QA114

for BlindQA, EVQA, CoMem, HME, HCRN, and HGA.115

A.3 Details regarding MIST-CC116

We design MIST-CC, a multitask version of MIST that learns to generate causal chains as an117

auxiliary task. With MIST-CC, our goal is not to generate perfect causal chains during testing, per118

se; but to focus on providing guiding signal to the model to improve the performance on question-119

answering task. Framework for MIST-CC is shown in Figure 1. We build upon the publicly available120

implementation of MIST. We implement the Causal Chain Generator in our MIST-CC framework121

using a single-layer gated recurrent unit (GRU) with a 1024-dimensional hidden state; and dropout122

rate of 0.2. The overall multitask (MTL) objective function to be minimized is the summation of: 1)123

multichoice question answering loss (LMCQA); 2) causal chain generation loss (LCCG) (Equation 1).124

We set α to 1. To obtain vanilla MIST, we set β to 0; while to obtain MIST-CC, we set β to 0.1. We125

use ADAM optimizer with an initial learning rate of 1e-4. We do not use learning rate schedulers.126

All the models are trained for 30 epochs, and the best version of a model is selected based on the127

performance on the validation set.128
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Figure 1: MIST-CC framework.
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Figure 2: Challenge of dynamic scene linking. Here we have shown temporal modeling or understanding in a
traditional sense; and compared it with dynamic scene linking. Our full causal chain for this particular example
consisted of three scenes. In traditional temporal modeling, typically the dependencies are modeled over gradual
transitions—typically, within a single scene. Notice the optical flow from traditional temporal modeling where
Jerry is going into a pool table hole. On the other hand, notice the abrupt scene change, which causes disruption
in visual flow, resulting in large amplitude and widespread optical flow. We have used optical flow as one way to
illustrate the magnitude of change (but other measures may also be used).

LMTL = αLMCQA + βLCCG (1)

A.4 Annotators’ Background129

Five undergraduate students from computer science and electrical engineering disciplines were130

recruited as annotators. All the annotators listed at least Fluency as the English language skills level.131

A.5 Dynamic Scene Linking132

Our CausalChaos dataset involves more abrupt/frequent scene (event) changes than existing causal133

video QA datasets. Causal links or clues needed to solve causal relationships in QA pairs in our134

dataset are embedded in different scenes/events. Thus, video QA models must link these scenes/events135

together to understand the story. We term this problem Dynamic Scene Linking. In the following, we136

briefly discuss a related problem of temporal modelling and differentiate Dynamic Scene Linking137

from it. Although humans can seamlessly link such scenes, dynamic scene linking introduces a novel138

challenge for video understanding models in addition to temporal modelling.139

Temporal modelling or understanding in video understanding generally refers to the process of140

analyzing and interpreting the temporal dynamics or changes within a sequence of frames in a141

video—typically within a single scene (refer to Figure 2). This involves capturing and understanding142

the patterns of motion, action, and context over time. Temporal modeling techniques aim to extract143

meaningful information from the temporal dimension of video data.144

In the traditional sense, temporal modelling involves techniques that capture the gradual changes145

and transitions occurring within a video sequence. This includes methods like optical flow and 3D146
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convolutional neural networks. These techniques are designed to capture the temporal dependencies147

and patterns of continuity or gradual evolution in videos.148

On the other hand, abrupt scenes or shot changes, such as those found in cartoons like Tom and Jerry,149

represent sudden and significant shifts in the content or context of a video, however, these changes150

are causally linked. These changes can include shifts in location, characters, actions, or camera151

perspectives. Unlike gradual temporal changes, abrupt changes occur rapidly and may disrupt the152

continuity of the narrative or visual flow. While temporal understanding typically involves linking153

very nearby dependencies, dynamic scene linking involves linking across abrupt scene changes. For154

example, in Figure 2, in Scene-2, some of the things the model needs to be able to understand are:155

1) the thing that Jerry is carrying is Tom’s tail from its partial observation; 2) white furry hand is156

of Tom. Implicit causal reasoning plays a crucial role in establishing continuity between scenes,157

even when objects are seen partially or there are view changes. By relying on their understanding of158

cause-and-effect relationships within the narrative, humans can seamlessly integrate partial views159

and view changes into their mental model of the story. Similarly, models are required to do implicit160

causal reasoning for dynamic scene linking, and can benefit from incorporating capabilities such as161

forming a mental ’world model’ of the story.162

Temporal modeling techniques in the context of abrupt scene changes need to be able to detect and163

handle these sudden transitions effectively. While some traditional temporal modeling methods may164

capture gradual changes well, they might struggle to handle abrupt changes efficiently. Specialized165

algorithms or models may be required to identify and adapt to such abrupt scene changes.166

A.6 Full-size Tables and Figures167

Examples from CausalChaos! dataset. For easier viewing, we have provided dataset video168

examples from Figure 1 from the main paper in the accompanying PowerPoint presentation.169

CausalChaos! vs NextQA dataset. For easier viewing, we have provided dataset video examples170

from Figure 2(c) from the main paper in the accompanying PowerPoint presentation.171

A.7 Further Dataset Stats and Examples172

Dataset Stats:173

• Average clip length : 357.95 frames174

• Longest of clips : 2315.0 frames175

• Average length of question : 6.54 words176

• Longest length question : 17 words177

• Longest question : Why did Jerry and Tuffy put the wire into the water and turn on the178

freeze mode?179

• Average length of Answer : 7.76 words180

• Longest length Answer : 26 words181

• Longest Answer : Tom saw his tail and hind legs at the top of the pipe while Tom’s head182

and front legs were at the bottom of the pipe.183

• Average length of Explanation: 13.88 words184

• Longest length Explanation: 30 words185

• Longest Explanation: Tom thought Jerry would walk into the hole and into Tom’s mouth186

but Jerry let the toy mouse go first and Tom ate the toy mouse thinking it was Jerry.187

Dataset examples. For easier viewing of the videos, we have provided them in the accompanying188

PowerPoint presentation.189

A.8 Wordclouds190

Wordclouds are illustrated in Figure 3.191
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(a) (b)

Figure 3: Wordclouds corresponding to (a) Answers; (b) Explanations.

A.9 Value in Multi-level Answers to Why-Questions192

We richly annotate our dataset with multi-level answers to "Why"-questions behind the actions of193

characters in the Tom and Jerry cartoon. In this section, we discuss why and how a significant value194

lies in providing multi-level answers to "why" questions (or exploring various layers of causality or195

explanation) regarding characters’ actions (or, in general life, people’s actions). "Why" questions do196

not always have simple, straightforward answers—they often involve multiple layers of explanation197

and understanding. In our dataset, we consider cartoon characters and their actions, but here for198

more generality, we take human behavior as a case for discussion. Human behavior is typically199

multifaceted, influenced by a variety of factors including personal experiences, emotions, social200

context, cultural background, cognitive processes, etc.201

There can be multiple layers of rationale behind any action or decision. For example, someone might202

choose to volunteer at a homeless shelter. On the surface, the reason may seem obvious – to help203

those in need. But delving deeper, you might find additional motivations such as personal fulfillment,204

a desire to contribute to the community, religious beliefs, or even social pressure from peers.205

Recognizing the complexity of human behavior and understanding that there can be multiple, inter-206

twined reasons for why people act the way they do is essential for empathy, effective communication,207

and building strong interpersonal relationships. Some of the ways multi-level answers to ’Why’-208

questions help are as follows:209

• Understanding Motivations: At the surface level, a person’s actions may seem straight-210

forward, but delving deeper can reveal the underlying motivations and intentions driving211

those actions. Multi-level answers can help uncover these motivations, providing a more212

comprehensive understanding of human behavior.213

• Contextual Understanding: Human behavior is complex and influenced by a variety of fac-214

tors, including personal experiences, societal norms, cultural background, and psychological215

factors. Providing multi-level answers allows for a more nuanced understanding of the216

context in which the behavior occurs, shedding light on the various influences at play.217

• Predictive Insights: By understanding the multiple layers behind people’s actions, it becomes218

easier to predict future behavior. Recognizing patterns in motivations and behaviors can help219

anticipate how individuals might act in different situations, enabling better decision-making220

and planning.221

• Empathy and Compassion: Exploring the deeper reasons behind someone’s actions fosters222

empathy and compassion. It allows us to see beyond the surface behavior and understand the223

person’s perspective, experiences, and struggles, leading to more meaningful interactions224

and relationships. While this might be more of a human experience-related factor and might225
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be limited to very specialized machines like empathetic robots, but still shows potentially226

how multi-level answers help.227

• Problem Solving and Conflict Resolution: In situations where conflicts arise or problems228

need to be addressed, understanding the multi-level reasons behind people’s actions can229

facilitate more effective problem-solving and conflict-resolution strategies. It enables230

individuals to address underlying issues rather than just surface-level symptoms.231

Overall, providing multi-level answers to “why" questions behind people’s actions enhances our232

understanding of human behavior, promotes empathy and compassion, and facilitates better decision-233

making and problem-solving.234

A.10 CausalChain Details and Examples235

In the following, we have provided some examples from our dataset to illustrate causal chains of236

different lengths. Note that, answer and explanation were combined when computing the length of237

causal chains.238

Question: Why did Jerry slide?
Answer+Explanation: Jerry slid down the clock because he saw Spike trying to catch Tom and was
confident that Spike’s attention was on Tom and not Jerry.

Length of causal chain: 2. In the given event involving Jerry, Spike, Tom, and a clock, we can identify239

several causal relationships that form a chain of events. Let’s break it down:240

1. Event A: Jerry sees Spike trying to catch Tom.241

2. Event B: Jerry is confident that Spike’s attention is on Tom.242

3. Event C: Jerry slides down the clock.243

Now, let’s consider the causal relationships:244

• Event A causes Jerry’s perception of Spike’s actions.245

• Event B is influenced by Jerry’s perception of Spike’s actions.246

• Event B causes Jerry’s confidence in Spike’s attention being on Tom.247

• Event C is influenced by Jerry’s confidence in Spike’s attention.248

So, we can identify at least two causal links or events in this scenario. Each event contributes to the249

next in a causal chain, leading to the final action of Jerry sliding down the clock.250

Question: Why did Jerry go below chicken?
Answer+Explanation: Jerry went below the chicken sitting on her nest to hide and get protection from
Tom.

Breakdown of the events and causal links in this case is:251

• Event A: Tom poses a threat to Jerry.252

• Event B: Jerry seeks protection and safety.253

• Event C: Jerry goes below the chicken sitting on her nest as a protective measure.254

Here, we can identify that there are two causal links in the causal chain of the event.255

A.11 Further details on Causal Chain Length Comparison Experiment256

We leveraged GPT-4o [18] to compute the lengths of causal chains involved in the QA pairs from our257

and existing causal video QA datasets [19, 11, 13]. We randomly sampled 100 causal-Why QA pairs258

from all the datasets. Then, we used the following prompt: “What is the causal chain in the following259

question-answer pair? Please return the causal chain in the form of event_A->event_B->event_C...If260
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Figure 4: Examples of various types of reasoning required by our dataset. Please zoom in & view in
AdobeReader to play the embedded videos.

no cause-and-effect relationship is addressed, then output 0...Question: [question added here] Answer:261

[answer added here]." to ask GPT-4o to obtain the causal chain in each QA pair. We define the length262

of a causal chain as the number of links in that chain. For example, “event_A->event_B" has a length263

of 1, while “event_A->event_B->event_C" has a length of 2. Since our dataset contains multi-level264

answers, we combined answers and explanations using GPT-4 to get an overall answer to reflect the265

true length of the full causal chain involved. We use these overall answers when computing the causal266

chains for our dataset. Extracted causal chains from all datasets were manually verified. Human267

verifiers agreed 89% of the times with the causal chains. Once the lengths of causal chains for all268

the samples are computed, we average them to get the average causal chain length for a dataset. We269

repeat the process for all datasets and then compare them.270

A.12 Details on Types of Reasoning271

A.12.1 Definitions of Types of Reasoning272

In the following, we have provided the definitions of various types of reasoning.273

1. Deductive Reasoning involves drawing specific conclusions based on general principles or274

premises. Questions from our dataset can require video understanding models to answer275

based on established patterns or cause-and-effect relationships between characters’ actions276

(e.g., Figure 4(a)).277

2. Inductive Reasoning involves making generalizations or forming hypotheses based on278

specific observations. Tom and Jerry episodes contain such episode-specific actions or279

features or nuances, e.g., as in Figure 4(b). Answering causal questions related to such280

actions involves inductive reasoning.281

3. Spatial Reasoning involves predicting and understanding spatial relationships or configura-282

tions. Our dataset requires Video-QA models to have an understanding of the physical space283

and how the characters navigate it, interactions with the environment, including concepts284

such as distance, direction, and obstacles (crashing in or avoiding it). For example, as shown285

in Figure 4(c).286

4. Causal Reasoning involves understanding cause-and-effect relationships between actions287

and their consequences. In the process of answering questions in our dataset, Video QA288

models will be required to engage in causal reasoning by linking the characters’ actions or289
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Figure 5: Screenshot of a guide used as a part to explain types of reasoning to human subjects.

sub-events within an episode to the resulting consequences and understanding the cause-290

and-effect chains in the cartoon as depicted in Figure 4(d).291

5. Critical Thinking in our setting encompasses a range of cognitive processes, including292

analysis, and evaluation by analyzing the visual cues, and interpreting the characters’ actions.293

A way to judge the complexity of critical thinking questions is by measuring the lengths294

of causal chains. To get the full picture, it is also important how difficult each link in this295

causal chain is to be inferred from the video (refer to Figure 4(e))296

6. Emotion Reasoning involves recognition and understanding of emotions and how they can297

affect behavior and decision-making. Our dataset requires models to perform emotion/facial298

expression recognition and link them to characters’ actions/behaviors. For example, as299

shown in Figure 4(f).300

7. Abductive reasoning involves making an inference or hypothesis based on limited or301

incomplete information, in order to explain or interpret a situation or phenomenon. Our302

dataset contains questions that involve making inferences from partial information, e.g., it is303

to be inferred that Tom was scared because there is a fight going on from the visual cues of304

furniture being thrown around, without seeing the actual fight as shown in Figure 4(f).305

8. Temporal Reasoning refers to understanding and reasoning about the sequence/ordering of306

events over time—understanding the relationships between different actions, and identifying307

causal relationships amongst them (Why A is done before/after B) as in Figure 4(g).308

A.12.2 Human Study Details309

Human subjects in human studies had a background in the disciplines of computer science and310

electrical engineering; from undergraduate student level to postdoctoral level. Five human subjects311

participated in the study. For determining reasoning types, the subjects were first explained reasoning312

types and given brief training on identifying those. A screenshot is shown in Figure 5. Subjects were313

then shown the question-answer pairs (unseen during the briefing) and asked to choose the reasoning314

types. Screenshots are shown in Figure 6, Figure 7. In the interface, all the reasoning types were315

listed out, and the subjects had the freedom to select multiple reasoning types if they thought an316

instance contained more than one type of reasoning. Additionally, a “No Reasoning Type" option317

was available to subjects in case they deemed that no reasoning was involved.318

A.13 Extended analysis of models’ performance319

In the main paper, we discussed two of the major limitations of VideoQA models. Other limitations320

include: 1) some models like MIST do not leverage explicit motion information using, e.g., spatiotem-321

poral convolutional neural networks. Due to this, they might inaccurately infer the scene based on a322

single static frame, instead of motion containing video clips. We believe these models can further323

improve their performance by incorporating explicit motion information. 2) Our CausalChaos dataset324

introduces the challenge of reasoning by linking scenes/shots. This is different from traditional325

temporal modeling, which is done within a scene. Scenes/shots involve an abrupt change in the scene.326

Traditional temporal modeling typically is geared toward smoother transitions; abrupt changes violate327

this condition. So while traditional temporal modeling does aid on our dataset, abrupt scene changes328

in our dataset poses a further challenge for VideoQA models which is not adequately addressed by329

traditional temporal models like 3DCNN feature extractors. We evaluated BLIP-2, VideoLLaMA and330
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Figure 6: Screenshot of user interface used for collecting responses from human subjects for CausalChaos!
dataset.

Figure 7: Screenshot of user interface used for collecting responses from human subjects for NextQA
dataset.

VideoChat2 on MCQA and Open-Ended Answer Generation (OEAG) task. We noticed that BLIP-2331

model performed better on MCQA, while VideoChat2 and VideoLLaMA performed better on OEAG332

task. Notably, OEAG requires better language modeling than that required in MCQA task.333

Qualitative results. We have provided the qualitative analysis of models’ failure cases in the334

accompanying PowerPoint presentation for the following tasks/cases:335

1. Multi-Choice Question Answering (MCQA)336

2. Open-Ended Answer Generation (OEAG)337

3. Incorporating our data into real-world Video QA338

Full results on OEAG are presented in Table 1.339

A.14 Discussion on cartoon physics340

Cartoon physics often operates within its own set of rules and logic, which may differ from real-world341

physics but still maintain consistency within the cartoon’s universe. These rules might include342

exaggerated movements, gravity-defying actions, and other fantastical elements that wouldn’t occur343

in reality but are accepted within the context of the cartoon world. Despite the departure from344

real-world physics, there is often an internal consistency to how these cartoon physics operate within345

their respective universes.346
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Model BLEU-1 BLEU-2 BLEU-3 METEOR ROUGE SPICE CIDEr S-BERT CapsMIX
A E A E A E A E A E A E A E A E

BlindQA [1] 0.2412 0.1912 0.1039 0.0618 0.0415 0.0221 0.1243 0.0891 0.2732 0.1885 0.2956 0.0703 0.1034 0.0403 0.4987 0.4195 2.7646
UATT [21] 0.2661 0.2203 0.1257 0.0805 0.0575 0.0330 0.1409 0.1046 0.3171 0.2293 0.3547 0.2775 0.1197 0.0397 0.5495 0.4767 3.3928
HME [2] 0.2650 0.2072 0.1301 0.0713 0.0554 0.0219 0.1504 0.0914 0.3125 0.2273 0.3184 0.0826 0.0936 0.0639 0.5328 0.4737 3.0975
HGA [9] 0.2891 0.2263 0.1588 0.0897 0.0789 0.0323 0.1856 0.1130 0.3388 0.2399 0.3980 0.2426 0.2782 0.0573 0.6026 0.4561 3.7872
BlindGPT-2 0.3770 0.3165 0.2530 0.1749 0.1632 0.1091 0.2452 0.1761 0.3858 0.2966 0.4305 0.3529 1.2482 0.7690 0.6755 0.6271 6.6006
VisionGPT-2 0.3878 0.3095 0.2605 0.1727 0.1738 0.1091 0.2560 0.1756 0.3934 0.2941 0.4498 0.3385 1.3725 0.7539 0.6760 0.6350 6.7582

BLIP-2 [12] 0.1381 0.0815 0.0451 0.0256 0.0167 0.0059 0.0664 0.0480 0.1618 0.1312 0.0530 0.0422 0.2279 0.1046 0.3837 0.3614 1.8931
Video-LLaMA [25] 0.1241 0.1181 0.0419 0.0344 0.0115 0.0098 0.1477 0.1163 0.1719 0.1435 0.2055 0.1383 0.0836 0.0430 0.5734 0.4834 2.4464
VideoChat2 [14] 0.2353 0.2116 0.0823 0.0776 0.0250 0.0253 0.1769 0.1295 0.2667 0.2168 0.3264 0.2547 0.3980 0.2910 0.6445 0.5908 3.9524

(a)
Model BLEU-1 BLEU-2 BLEU-3 METEOR ROUGE SPICE CIDEr S-BERT CapsMIX

A E A E A E A E A E A E A E A E

BlindQA [1] 0.2193 0.1795 0.0772 0.0468 0.0326 0.0149 0.1122 0.0813 0.2501 0.1767 0.2960 0.1147 0.1099 0.0434 0.5129 0.4260 2.6935
UATT [21] 0.2693 0.1947 0.1257 0.0581 0.0440 0.0146 0.1466 0.0847 0.3226 0.2107 0.3255 0.2012 0.1444 0.0646 0.5364 0.4829 3.2260
HME [2] 0.2475 0.1830 0.1031 0.0549 0.0363 0.0154 0.1417 0.0845 0.2820 0.2173 0.2933 0.2549 0.0831 0.0655 0.5165 0.4929 3.0719
HGA [9] 0.2586 0.1842 0.1085 0.0517 0.0365 0.0148 0.1433 0.0932 0.2909 0.1806 0.2908 0.2128 0.0877 0.0266 0.5231 0.4078 2.9111

(b)
Model BLEU-1 BLEU-2 BLEU-3 METEOR ROUGE SPICE CIDEr S-BERT CapsMIX

A E A E A E A E A E A E A E A E

BlindQA [1] 0.2312 0.1847 0.0869 0.0550 0.0319 0.0198 0.1263 0.0930 0.2519 0.1806 0.2758 0.2447 0.0667 0.0265 0.4844 0.4153 2.7747
UATT [21] 0.2659 0.1936 0.1180 0.0645 0.0548 0.0223 0.1423 0.0868 0.3025 0.2200 0.3449 0.2595 0.0940 0.0713 0.5447 0.4750 3.2601
HME [2] 0.2640 0.1930 0.1238 0.0644 0.0556 0.0239 0.1457 0.0868 0.2998 0.2155 0.3115 0.1623 0.0944 0.0698 0.5341 0.4761 3.1207
HGA [9] 0.2674 0.2293 0.1337 0.0823 0.0620 0.0308 0.1703 0.1123 0.3186 0.2363 0.3734 0.2558 0.1972 0.0477 0.5765 0.4692 3.5628

(c)
Table 1: OEAG Results on our dataset. (a) UD split; (b) PS split; (c) UN split.

Despite the departure from real-world physics, humans/video understanding models can apply causal347

reasoning within the context of cartoon physics to predict the consequences of characters’ actions.348

For example, if a character steps off a cliff, humans expect them to fall downwards due to gravity,349

even if the fall is exaggerated or prolonged for comedic effect. This consistency can allow video-350

understanding models to anticipate and understand the outcomes of actions within the cartoon world,351

facilitating their ability to follow the storyline and engage with the humor and narrative.352

Furthermore, the consistency of cartoon physics enables humans to make logical connections be-353

tween different events and understand the progression of the story. By recognizing patterns and354

understanding how actions lead to specific outcomes, video understanding models can engage in355

causal reasoning to predict future events and comprehend the logic of the cartoon universe.356

A.15 CausalConfusion incorrect/negative answer generation357

Samples from the dataset created using Vanilla Hard Negative mining:358

Q: Why did Tom dip his fingers in the ink?
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Correct A: To draw a mouse hole on the wall.
Incorrect A(1): Tom wanted Jerry to mistake Tom’s finger for a sausage.
Incorrect A(2): Tom was preparing to eat.
Incorrect A(3): Tom wanted to see if there was ink in the pen.
Incorrect A(4): Tom’s hand was in pain.
Correct E: Tom was trying to trick Jerry by drawing a fake mouse hole on the wall.
Incorrect E(1): Tom’s hand was in pain from hitting Jerry with the vase.
Incorrect E(2): Tom was excited to eat Jerry who was on Tom’s plate.
Incorrect E(3): Tom thought there was no ink in the pen as the ink did not come out when Jerry pulled the
pen.
Incorrect E(4): Tom wanted to trick Jerry to mistake Tom’s finger for a sausage so that Tom could catch
Jerry when Jerry tried to steal Tom’s finger.

Q: Why did Tom climb onto the gate?
Correct A: The bull was charging towards Tom.
Incorrect A(1): Tom was trying to get away from Spike.
Incorrect A(2): Tom wanted to get to a higher point on the tree.
Incorrect A(3): because Tom heard barking sounds and was scared.
Incorrect A(4): Tom was trying to get away from Spike and Tyke.
Correct E: The bull was charging towards Tom so Tom climbed onto the gate to avoid getting hurt by the
bull.
Incorrect E(1): because Jerry imitated Spike to bark at Tom to scare Tom into climbing up the tree.
Incorrect E(2): Tom was scared of Spike who was chasing Tom and climbed up the tree to get away from
Spike.
Incorrect E(3): Tom was dressed as a bird and wanted to climb higher on a tree to take off.
Incorrect E(4): Tom saw Spike and saw Tyke barking and wanted to get away from them.

Examples of Vanilla Hard Negatives vs. CausalConfusion Negatives:359

Q: Why did Tom dip his fingers in the ink?
Correct A: To draw a mouse hole on the wall.
Vanilla Hard Negatives
Incorrect A(1): Tom wanted Jerry to mistake Tom’s finger for a sausage.
Incorrect A(2): Tom was preparing to eat.
Incorrect A(3): Tom wanted to see if there was ink in the pen.
Incorrect A(4): Tom’s hand was in pain.
CausalConfusion version
Incorrect A(1): To not draw a mouse hole on the wall.
Incorrect A(2): Tom was preparing to eat.
Incorrect A(3): Tom wanted to see if there was ink in the pen.
Incorrect A(4): Tom’s hand was in pain.

Q: Why did Tom climb onto the gate?
Correct A: The bull was charging towards Tom.
Vanilla Hard Negatives
Incorrect A(1): Tom was trying to get away from Spike.
Incorrect A(2): Tom wanted to get to a higher point on the tree.
Incorrect A(3): because Tom heard barking sounds and was scared.
Incorrect A(4): Tom was trying to get away from Spike and Tyke.
CausalConfusion version
Incorrect A(1): The bull was not charging towards Tom.
Incorrect A(2): Tom was charging towards the bull.
Incorrect A(3): because Tom heard barking sounds and was scared.
Incorrect A(4): Tom was trying to get away from Spike and Tyke.

A.16 CapsMIX extended details360

However, we note that with such a wide range of metrics, it is difficult to get a comprehensive361

insight into models’ performances & compare them. To address that, we introduce a comprehensive362
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metric, termed Caps-MIX (Captioning Metrics Integration eXpert), which integrates all the previously363

mentioned scores after normalizing them to their theoretical best values. This 1) makes it easier to364

compare models using a single number and 2) combines the characteristics of individual metrics,365

each measuring performance from a unique perspective. We avoid using the WUPS score [16], as it366

is designed for single-word answers and is not suitable for our dataset’s detailed responses.367

A.17 Negative societal impact368

While our dataset has a positive attribute of being synthetic in nature. And as such, we do not suggest369

deploying models trained on our dataset in real-world applications. Causal reasoning models trained370

on real-world data can potentially be used to find out or estimate why people carried out actions.371

This, in-turn, can be used to deduce further actionable insights into people’s behavior. This might372

justifiably be seen as an intrusion of privacy, especially, without consent. Thus, such systems shall not373

be deployed/used without the consent of all the parties involved. We suggest that this space should374

be regularized by governing bodies, and consent from the end-users, and parties being monitored is375

inevitable.376

A.18 Compute details377

We used machine with following specifications: Intel(R) Xeon(R) W-2245 CPU@3.90GHz; 64GB378

RAM; 2x Nvidia A5000 24GB.379

A.19 Link to Dataset380

We have included the following dataset files in the supplementary.381

1. File containing all the annotations382

2. Vanilla hard negative sets383

3. CausalConfusion set384

The dataset files are also publicly available at: https://github.com/LUNAProject22/385

CausalChaos.386
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